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Preface

The idea of basing physics or natural philosophy on geometry goes back to
ancient times. The Greeks for example regarded geometry as beauty. The
amazing intricacy of the Insular style of the Book of Kells was based on
the triskelion to a large extent. The idea was used for example by Kepler
in the seventeenth century enlightenment which overthrew the Aristotelian,
earth centred, philosophy that had held sway since the classical time of
Aristotle. Newton's �Principia� is written in terms of geometry. The most
famous revival of the idea is Einsteinian general relativity, based on a type
of geometry developed by Riemann, Christo�el, Ricci, Levi-Civita, Bianchi
and others from the eighteen sixties onwards. Eventually Einstein based his
1915 �eld equation directly on what was then known as the second Bianchi
identity, inferred at the Scuola Normale Superiore in Pisa, around the corner
from the University in which Galileo worked.

The ECE theory is named the Einstein Cartan Evans theory to distin-
guish it from the Einstein Cartan theory, and the �rst ideas for ECE occurred
in early 2003. They emerged from O(3) electrodynamics, whose papers can
all be found in the Omnia Opera section of the www.aias.us website. The
key idea for O(3) electrodynamics was the B(3) �eld, which was inferred
at Cornell Theory Center in November 1991 after a year in the University
of Zuerich and ETH Zuerich in Switzerland. Vigier (who worked with de
Broglie) quickly realized that B(3) infers the existence of the Poincaré / de
Broglie photon mass, and con�rms its existence because B(3) was deduced
from experimental data in the inverse Faraday e�ect. The B(3) �eld meant
that the entire subject of electrodynamics had to be restructured, and this
process is recorded in the Omnia Opera of www.aias.us from 1992 to 2003.
The restructuring was named �O(3) electrodynamics�, a transition theory.

It gradually became apparent that the restructuring meant that a new
uni�ed �eld theory was necessary, one that was based on geometry. This is
because previous attempts at a uni�ed �eld theory, including Einstein's own
attempts, were based on a mixture of concepts and many adjustable vari-
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PREFACE

ables, so many that the old theories became essentially meaningless. The key
idea for ECE theory emerged after a reading of a book by Carroll: �Space-
time and Geometry: an Introduction to General Relativity�, in particular the
end of chapter three, which gives a short synopsis of a geometry due to the
mathematician Elie Cartan. This is a more rigorous geometry than the one
used by Einstein. The Cartan geometry is based on the de�nition of torsion
and curvature. The Einstein type of geometry contains only curvature.

In the Spring of 2003 I noticed that the de�ning equations of torsion and
curvature have a similar structure to the de�ning equations of O(3) electro-
dynamics, so the �rst years of ECE theory were dedicated to deducing as
much of physics as possible from these geometrical de�ning equations, with
as few hypotheses as possible. It was quickly realized that all the main equa-
tions of physics can be derived from Cartan geometry, from its two structure
equations, and identities. The ECE theory quickly branched out in many
directions and became hugely popular, its readership has always included
the best in the world: universities, institutes, government departments, cor-
porations and scholars. The development of ECE theory coincided with the
sweeping societal changes brought about by the knowledge revolution. By
now ECE is among the most studied theories of physics in history. The
readings of items on www.aias.us and www.upitec.org since about 2003 can
be estimated in terms of hundreds of millions of printed page equivalents.

Gradually I realized that the Einstein theory of general relativity omits
half of geometry: spacetime torsion. Nearly all the textbooks of the Einstein
theory assumed zero torsion, most made this assumption axiomatically, some
authors were not even aware of torsion. Starting with the classic UFT88,
read hundreds of thousands of time, and written in 2007, it has become clear
that the neglect of torsion means that curvature also vanishes, and that the
Einstein theory collapses completely. It has been replaced in many ways in
the 346 UFT items now available on www.aias.us. This is Alwyn van der
Merwe's �Post Einsteinian Paradigm Shift� of the avant garde physics of the
twenty �rst century. The tremendous power of website publishing, closely
monitored by feedback analysis, and meticulously checked for quality, has
meant that new ideas can be brought to any student, however poor, who
wishes to study the new ideas. The ideas of ECE and of the obsolete parts
of the standard model, now co exist. The main idea of ECE is to improve
the old physics, to cut away the deadwood and keep the good parts of the
old physics.

ECE and ECE2 have played an important role in applied physics and
engineering, notably their ability to explain new and ubiquitous sources of
energy. This work culminated in UFT311, which veri�es this aspect of ECE
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and ECE2 theory using a circuit design that is able to trap the unlimited
amount of electrical power in spacetime. ECE and ECE2 have also given a
plausible explanation of low energy nuclear reactors, now being considered
by Congress in Washington D. C. as a source of new energy. The old physics
has no plausible explanation for energy from spacetime or LENR.

Acknowledgments to all the AIAS / UPITEC Fellows and those who
helped bring about this great paradigm shift of natural philosophy, a new
enlightenment. They include all co workers and co authors back to 1971, and
those who built the www.aias.us, and www.upitec.org websites, notably Bob
Gray, Sean MacLachlan, Gianni Giachetta, Dave Burleigh, Horst Eckardt,
Alex Hill (www.et3m.net), Robert Cheshire, Michael Jackson, Simon Cli�ord
and many others. The main co authors of ECE and ECE2 are Horst Eckardt
and Douglas Lindstrom, but others such as Stephen Crothers, have also
contributed, notably Laurence Felker, who has written a book on ECE read
millions of time, literally. Some co authors such as Gareth Evans have worked
with me since 1974. Acknowledgments to Kerry Pendergast for writing a
biography.

Last but not least, acknowledgments to Queen Elizabeth II, Prime Min-
ister Tony Blair and Parliament for the award of a Civil List Pension in
2005, and to the College of Arms for the award of arms in 2008 in recog-
nition of work on behalf of science and voluntary work for society. There
are many others that deserve mention, notably my teachers at Pontardawe
Grammar School and University College of Wales Aberystwyth, notably my
Ph.D. supervisor Prof. Emeritus Mansel Davies, a humanist and a student
of nature.

Craig Cefn Parc, 2016 Myron W. Evans
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Chapter 1

Basics of Cartan Geometry

1.1 Historical Background

Geometry was equated with beauty by the ancient Greeks, and was used
by them to create art of the highest order. The Parthenon for example
was built on principles of geometry, and a deliberate �aw introduced so as
not to o�end the gods with perfection. A thousand years later the Book of
Kells scaled the magni�cent peak of insular Celtic art, using the principles of
geometry to draw the �ne triskeles. Aristotelian thought dominated natural
philosophy until Copernicus placed the sun at the centre of the solar system,
a challenge to Ecclesia, the dominant European power that had grown out
of the beehive cells of remote places such as Skellig Michael. In such places
civilization had clung on by its �ngernails after the Roman empire was swept
away by vigorous peoples of the far north. They had their own type of
geometry carved on the prows of their ships, interwoven patterns carved in
wood. Copernicus o�ered a challenge to dogma, always a dangerous thing to
do, and human nature never changes. Gradually a new enlightenment began
to dawn, with �gures such as Galileo and Kepler at its centre. Leonardo da
Vinci in the early renaissance had sensed that nature is geometry, and that
one cannot do physics without mathematics. Earlier still, the perpendicular
and gothic styles of architecture resulted in great European cathedrals built
on geometry, for example Cluny, Canterbury and Chartres. Both Leonardo
and Descartes thought in terms of swirling whirlpools, reminiscent of van
Gogh's starry night. Francis Bacon thought that nature is the measuring
stick of all theory, and that dogma is ultimately discarded. This was another
challenge to Ecclesia. Galileo boldly asserted that the sun is at the centre
of the solar system as we call it today. That o�ended Ecclesia so he was
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1.1. HISTORICAL BACKGROUND

put under house arrest but survived. It is dangerous to challenge dogma,
to challenge the comfortable received wisdom which by passes the need to
think. So around 1600, as Bruno was burnt at the stake, Kepler began the
laborious task of analyzing the orbit of Mars. Tycho Brahe had �nally given
him the needed data. This is all described in Koestler's famous book, �The
Sleepwalkers�. Kepler used the ancient thought in a new way, geometry
describes nature, nature is geometry. The orbit of Mars was found to be an
ellipse, not a circle, with the sun at one of its foci. After an immense amount
of work, Kepler discovered three laws of planetary motion. These laws were
synthesized by Newton in his theory of universal gravitation, later developed
by many mathematicians such as Euler, Bernoulli, Laplace and Hamilton.

Figure 1.1: The Book of Kells: incipit Liber generationis of the Gospel of
Matthew, beginning of the Gospel of John.

All of these descriptions of nature rested on three dimensional space and
time. The three dimensional space was that of Euclid and time �owed for-
ward on its own. Space and time were di�erent entitles until Michelson and
Morley carried out an experiment which overturned this dogma. It seemed
that the speed of light c was independent of the direction in which it was
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

measured. It seemed that c was an upper limit, a velocity v could not be
added to c. Fitzgerald and Heaviside corresponded about this puzzling re-
sult and Heaviside came close to resolving the contradiction. Lorentz swept
away the dogma of two thousand years by merging three dimensional space
with time to create spacetime in four dimensions, (ct,X, Y, Z). This was the
beginning of the theory of special relativity, in transforming quantities from
one frame to another, c remained constant but X,Y, and Z varied, so quan-
tities in the new frame are (ct′, X ′, Y ′, Z ′). Lorentz considered the simple
case when one frame moves with respect to the other at a constant velocity
v but if one frame accelerated with respect to the other the theory became
untenable. This is the famous Lorentz transform. The spacetime used by
Lorentz is known as �at spacetime, meaning that it is described by a certain
limit of a more general geometry. Flat spacetime is described by a simple
metric known as diag(1,−1,−1,−1), a four by four matrix with these num-
bers on its diagonal. Lorentz, Poincaré, Voigt and many others applied the
theory of special relativity to electrodynamics and found that the Maxwell
Heaviside equations obey the Lorentz transform, and were therefore thought
to be equations of special relativity. The Newtonian system of dynamics
does not obey the Lorentz transform, there is no limit on the linear velocity
in the Newtonian system.

So there developed a schism between dynamics and electrodynamics, they
seemed to obey di�erent transformation laws and di�erent geometries. Dy-
namics had been described for two centuries since Newton by the best minds
as existing in Euclidean space and time. Electrodynamics existed in �at
spacetime. The underlying geometries of the two subjects seemed to be dif-
ferent. Attempts were made around the turn of the twentieth century to
resolve this fundamental challenge to physics. Einstein in 1905 applied the
principles of Lorentz to dynamics, using the concepts of four momentum,
relativistic momentum and energy. The laws of dynamics were merged with
the laws of electrodynamics using c as a universal constant. Einstein also
challenged dogma and many scientists of the old school rejected special rel-
ativity out of hand. Some dogmatists still reject it. From 1905 onwards
physics ceased to be comprehensible without mathematics, which is why so
few people understand physics today and are easily deceived by dogmatists.
At the end of the nineteenth century several other �aws were found in the
older physics, and these were resolved by quantum mechanics, notably by
Planck's quantization of energy. Quantum mechanics seemed to give an ac-
curate description of black body radiation, the photoelectric e�ect and the
speci�c heat of solids, but departed radically from classical physics. Many
people today do not understand quantum mechanics or special relativity
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1.1. HISTORICAL BACKGROUND

because they are completely counter intuitive. Planck, Einstein and many
others, notably Sommerfeld and his school, developed what is known as the
old quantum theory.

Figure 1.2: Gregorio Ricci Cusbastro, Tulio Levi Civita and Elwin Bruno
Christo�el.

The old quantum theory and special relativity had many successes, but
existed as separate theories. There was no geometrical framework with which
the two types of theory could be uni�ed and special relativity was restricted
to one frame moving with respect to another with a constant velocity. The
brilliant successes of the classical Newtonian physics were thought of as a
limit of special relativity, one in which the velocity v of a particle is much
less than c. A new corpuscular theory of light emerged in the old quantum
theory, and this corpuscle was named the photon about twenty years later.
Initially the photon was thought of as quantized electromagnetic radiation.
In about 1905 physics was split three ways, and the work of Rutherford and
his school began to show the existence of elementary particles, the electron
having been just discovered. Einstein, Langevin and others analyzed the
Brownian motion to show the existence of molecules, �rst inferred by Dalton.
The old dogmatists had refused to accept the existence of molecules for over
a century. The Rutherford group showed the existence of the alpha particle
and inferred the existence of the nucleus and the neutron, later discovered by
Chadwick. Rutherford and Soddy demonstrated the existence of isotopes,
nuclei with the same number of protons but di�erent number of neutrons.
So physics rapidly diverged in all directions, there was no uni�ed theory that
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

could explain all of these tremendous discoveries.
Geometry in the meantime had developed away from Euclidean princi-

ples. There were many contributors, the most notable achievement of the mid
nineteenth century was that of Riemann, who proposed the concept of met-
ric. Christo�el inferred the geometrical connection shortly thereafter. The
metric and the connection describe the di�erence between Euclidean geome-
try and a new type of geometry often known as Riemannian geometry. In fact
Riemann inferred only the metric. The curvature tensor or Riemann tensor
was inferred much later in about 1900 by Ricci and his student Levi-Civita.
It took over thirty years to progress from the metric to the curvature tensor.
There was no way of knowing the symmetry of the connection. The latter has
one upper index and two lower indices, so is a matrix for each upper index.
In general a matrix is asymmetric, can have any symmetry, but can always
be written as the sum of a symmetric matrix and an antisymmetric matrix.
So the connection for each upper index is in general the sum of symmetric
and antisymmetric components. Christo�el, Ricci and Levi-Civita assumed
without proof that the connection is symmetric in its lower two indices � the
symmetric connection. This assumption was used by Bianchi in about 1902
to prove the �rst Bianchi identity from which the second Bianchi identity
follows. Both these identities assume a symmetric connection. The antisym-
metric part of the connection was ignored irrationally, or dogmatically. This
dogma eventually evolved into general relativity, an incorrect dogma which
unfortunately in�uenced thought in natural philosophy for over a century.

The �rst physicist to take much notice of these developments in geometry
appears to have been Einstein, whose friend Grossmann was a mathemati-
cian. Einstein was not fond of the complexity of the Riemannian geometry
as it became known, and never developed a mastery of the subject. After
several attempts from 1905 to 1915 Einstein used the second Bianchi iden-
tity and the covariant Noether Theorem to deduce a �eld equation of general
relativity in late 1915. This �eld equation was solved by Schwarzschild in
December 1915, but Schwarzschild heavily criticised its derivation. It was
later criticised by Schröedinger, Bauer, Levi-Civita and others, notably Elie
Cartan.

Cartan was among the foremost mathematicians of his era and inferred
spinors in 1913. In the early twenties he used the antisymmetric connec-
tion to infer the existence of torsion, a quantity that had been thrown away
twenty years earlier by Ricci, Levi-Civita and Bianchi, and also by Ein-
stein. The entire theory of general relativity continued to neglect torsion
throughout the twentieth century. Cartan and Einstein corresponded but
never really understood each other. Cartan realized that there are two fun-
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1.1. HISTORICAL BACKGROUND

damental quantities in geometry, torsion and curvature. He expressed this
with Maurer in the form of two structure equations and using a di�erential
geometry developed to try to merge the concept of spinors with that of tor-
sion and curvature. The structure equations were still almost unknown to
physics before they were implemented in 2003 in the subject of this book,
the Einstein- Cartan-Evans uni�ed �eld theory, known as ECE theory. The
ECE theory has swept the world of physics , and has been read an accu-
rately estimated thirty to �fty million times in a decade. This phenomenon
is known as the post-Einstein paradigm shift, a phrase coined by Alwyn van
der Merwe.

Figure 1.3: The eponyms of Einstein-Cartan-Evans theory.

The �rst and second Maurer-Cartan structure equations can be trans-
lated into the Riemannian de�nitions of respectively torsion and curvature.
The concept of commutator of covariant derivatives has been developed to
give the torsion and curvature simultaneously with great elegance. The com-
mutator acts on any tensor in any space of any dimension and always isolates
the torsion simultaneously with the curvature. The torsion is made up of
the di�erence of two antisymmetric connections, and these connections have
the same antisymmetry as the commutator. The connection used in the cur-
vature is also antisymmetric. A symmetric connection means a symmetric
commutator. A symmetric commutator always vanishes, and the torsion and
curvature vanish if the connection is symmetric. This means that the second
Bianchi identity used by Einstein is incorrect and that his �eld equation is
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

meaningless.
The opening sections of this book develop this basic geometry and use the

Cartan identity to produce the geometrically correct �eld equations of elec-
trodynamics uni�ed with gravitation. The dogmatists have failed to achieve
this uni�cation because they used a symmetric connection and because they
continued to regard electrodynamics as special relativity.

1.2 The Structure Equations of Maurer and Cartan

These structure equations were developed using the notation of di�eren-
tial geometry and are de�ned in many papers [1, 10] of the UFT series on
www.aias.us. The most important discovery made by Elie Cartan in this
area of his work was that of spacetime torsion. In order for torsion to ex-
ist the geometrical connection must be antisymmetric. In the earlier work
of Christo�el, Ricci, Levi-Civita and Bianchi the connection had been as-
sumed to be symmetric. The Einsteinian general relativity continued to
repeat this error for over a hundred years, and this incorrect symmetry is
the reason why Einstein did not succeed in developing a uni�ed �eld theory,
even though Cartan had informed him of the existence of torsion. The �rst
structure equation de�nes the torsion in terms of di�erential geometry. In
the simplest or minimalist notation the torsion T is:

T = D ∧ q = d ∧ q + ω ∧ q (1.1)

where d∧ denotes the wedge derivative of di�erential geometry, q denotes
the Cartan tetrad and ω denotes the spin connection of Cartan. The symbol
D∧ de�nes the covariant wedge derivative. In this notation the indices of
di�erential geometry are omitted for clarity. The Cartan tetrad was also
known initially as the vielbein (many legged) or vierbein (four legged). The
wedge derivative is an elegant formulation that can be translated [1,11] into
tensor notation. This is carried out in full detail in the UFT papers, which
can be consulted using indices or with google. In this section we concentrate
on the essentials without overburdening the text with details. The spin
connection is related to the Christo�el connection.

The only textbook to even mention torsion in a clear, understandable way
is that of S. M. Caroll [13], accompanied by online notes. The ECE theory
uses the same geometry precisely as that described in the �rst three chapters
of Carroll, but ECE has evolved completely away from the interpretation
given by. Carroll in his chapter four onwards. Carroll de�nes torsion but then
neglects it without reason, and this is exactly what the twentieth century
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1.2. THE STRUCTURE EQUATIONS OF MAURER AND CARTAN

general relativity proceeded to do. All of Carroll's proofs have been given in
all detail in the UFT papers and books [1]- [10] and a considerable amount of
new geometry also inferred, notably the Evans identity. In Carroll's notation
the �rst structure equation is:

T a = d ∧ qa + ωab ∧ qb (1.2)

in which the Latin indices of the tetrad and spin connection have been added.
These indices were originally indices of the tangent Minkowski spacetime
de�ned by Cartan at a point P of the general base manifold. The latter
is de�ned with Greek indices. Equation 1.2 when written out more fully
becomes:

T aµν = (d ∧ qa)µν + ωaµb ∧ qbν (1.3)

So the torsion had one upper Latin index and two lower Greek indices. It
is a vector-valued two form of di�erential geometry which is by de�nition
antisymmetric in its Greek indices:

T aµν = −T aνµ (1.4)

The torsion is a rank three mixed index tensor.
The tetrad has one upper Latin index a and one lower Greek index µ.

It is a vector-valued one form of di�erential geometry and is a mixed index
rank two tensor. The tetrad is de�ned as a matrix relating a vector V a and
a vector V µ:

V a = qaµV
µ (1.5)

In his original work Cartan de�ned V a as a vector in the tangent spacetime of
a base manifold, and de�ned the vector V µ in the base manifold. However,
during the course of development of ECE theory it was inferred that the
tetrad can be used more generally as shown in great detail in the UFT papers
to relate a vector V a de�ned by a given curvilinear coordinate system to the
same vector de�ned in another curvilinear coordinate system, for example
cylindrical polar and Cartesian, or complex circular and Cartesian. The spin
connection has one upper and one lower Greek index and one lower Latin
index and is related to the Christo�el connection through a fundamental
theorem of di�erential geometry known obscurely as the tetrad postulate.
The tetrad postulate is the theorem which states that the complete vector
�eld in any space in any dimension is independent of the way in which that
complete vector �eld is written in terms of components and basis elements.
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

For example in three dimensions the complete vector �eld is the same in
cylindrical polar and Cartesian coordinates or any curvilinear coordinates.
The Christo�el connection does not transform as a tensor [1,10], so the spin
connection is not a tensor, but for some purposes may be de�ned as a one
form, with one lower Greek index.

The wedge product of di�erential geometry is precisely de�ned in general,
and translates Equation 1.3 into tensor notation by acting on the one form
qaµ and the one form ωaµb to give:

T aµν = ∂µq
a
ν − ∂νqaµ + ωaµbq

b
ν − ωaνbqbµ (1.6)

which is a tensor equation. It is seen that the entire equation is antisym-
metric in the Greek indices µ and ν which means that:

T aνµ = ∂νq
a
µ − ∂µqaν + ωaνbq

b
µ − ωaµbqbν . (1.7)

This result is important for the ECE antisymmetry laws developed later in
this book. In this tensor equation there is summation over repeated indices,
so:

ωaµbq
b
ν = ωaµ1q

1
ν + · · ·+ ωaµnq

n
ν (1.8)

in general. It is seen that the torsion has some resemblance to the way in
which an electromagnetic �eld was de�ned by Lorentz, Poincaré and others in
terms of the four potential, a development of the work of Heaviside. This led
to the inference of ECE theory in 2003 through a simple postulate described
in the next chapter. The di�erence is that the torsion contains an upper
index a and contains an antisymmetric term in the spin connection.

All the equations of Cartan geometry are generally covariant, which
means that they transform under the general coordinate transformation,
and are equations of general relativity. Therefore the torsion is generally co-
variant as required by general relativity. The tetrad postulate results in the
following relation between the spin connection and the gamma connection:

∂µq
a
ν + ωaµbq

b
ν = Γλµνq

a
λ (1.9)

and using this equation in Equation 1.6 gives the Riemannian torsion:

T λµν = Γλµν − Γλνµ. (1.10)

In deriving the Riemannian torsion the following equation of Cartan geom-
etry has been used:

T aµν = qaλT
λ
µν (1.11)
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1.2. THE STRUCTURE EQUATIONS OF MAURER AND CARTAN

which means that the tetrad plays the role of switching the a index to a λ
index. Similarly the equation for torsion can be simpli�ed using:

ωaµbq
b
ν = ωaµν ; ωaνbq

b
µ = ωaνµ (1.12)

to give a simpler expression:

T aµν = ∂µq
a
ν − ∂νqaµ + ωaµν − ωaνµ. (1.13)

It can be seen that the Riemannian torsion is antisymmetric in µ and ν
so T λµν vanishes if the connection is symmetric, that is if the following were
true:

Γλµν =?Γλνµ. (1.14)

The Einsteinian general relativity always assumed Equation 1.14 without
proof. In fact the commutator method to be described below proves that the
connection is antisymmetric. We arrive at the conclusion that Einsteinian
general relativity is refuted entirely by its neglect of torsion, and part of the
purpose of this book is to forge a new cosmology based on torsion. In order
to make the theory of torsion of use to engineers and chemists the tensor
notation needs to be translated to vector notation. The precise details of
how this is done are given again in the UFT papers and other material on
www.aias.us.

In vector notation the torsion splits into orbital torsion and spin torsion.
In order to de�ne these precisely the tetrad four vector is de�ned as the four
vector:

qaµ = (qa0, −qa), (1.15)

qaµ = (qa0, qa), (1.16)

with a timelike component qa0 and a spacelike component qa. Similarly the
spin connection is de�ned as the four vector:

ωaµb = (ωa0b, −ωab). (1.17)

In this notation the orbital torsion is:

T aorb = −∇qa0 −
1

c

∂qa

∂t
− ωa0bqb + ωabq

b
0 (1.18)

and the spin torsion is:

T aspin = ∇× qa − ωab × qb. (1.19)
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

In ECE electrodynamics the orbital torsion gives the electric �eld strength
and the spin torsion gives the magnetic �ux density. In ECE gravitation
part of the orbital torsion gives the acceleration due to gravity, and the
spin torsion gives the magnetogravitational �eld. The physical quantities of
electrodynamics and gravitation are obtained directly from the torsion and
directly from Cartan geometry. For example the fundamental B(3) �eld of
electrodynamics [1,11] is obtained from the spin torsion of the �rst structure
equation.

In minimal notation the second Cartan Maurer structure equation de�nes
the Cartan curvature:

R = D ∧ ω = d ∧ ω + ω ∧ ω (1.20)

so the torsion is the covariant wedge derivative of the tetrad and the curva-
ture is the covariant wedge derivative of the spin connection. Fundamentally
therefore these are simple de�nitions, and that is the elegance of Cartan's
geometry. When expanded out into tensor and vector notation they look
much more complicated but convey the same information. In the standard
notation of di�erential geometry Equation 1.20 becomes:

Rab = d ∧ ωab + ωac ∧ ωcb (1.21)

where there is summation over repeated indices. When written out in full
Equation 1.21 becomes:

Rabµν = (d ∧ ωab)µν + ωaµc ∧ ωcνb (1.22)

where the indices of the base manifold have been reinstated. In tensor no-
tation Equation 1.22 becomes:

Rabµν = ∂µω
a
νb − ∂νωaµb + ωaµcω

c
νb − ωaνcωcµb (1.23)

which de�nes the Cartan curvature as a tensor valued two form. It is tensor
valued because it has indices a and b, and is a di�erential two form [1, 11]
antisymmetric µ and ν. Using the tetrad postulate Equation 1.9 it can be
shown that Equation 1.23 is equivalent to the Riemann curvature tensor:

Rλρµν = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ (1.24)

�rst inferred by Ricci and Levi Civita in about 1900. The proof of this is
complicated but is given in full in the UFT papers.

The geometrical connection was inferred by Christo�el in the eighteen
sixties in order to de�ne a generally covariant derivative. In four dimensions
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1.2. THE STRUCTURE EQUATIONS OF MAURER AND CARTAN

for example the ordinary derivative ∂µ does not transform covariantly [1,11]
but by de�nition the covariant derivative of any tensor has this property.
The Christo�el connection is de�ned by:

DµV
ρ = ∂µV

ρ + ΓρµλV
λ (1.25)

and the spin connection is de�ned by:

DµV
a = ∂µV

a + ωaµbV
b. (1.26)

Without additional information there is no way in which to determine the
symmetry of the Christo�el and spin connection, and both are asymmetric
in general in their lower two indices. The covariant derivative can act on any
tensor of any rank in a well de�ned manner explained in full detail in the
UFT papers on www.aias.us. When it acts on the tetrad, a rank two mixed
index tensor, it produces the result [1, 11]:

Dµq
a
ν = ∂µq

a
ν + ωaµbq

b
ν − Γλµνq

a
λ. (1.27)

The tetrad postulate means that:

Dµq
a
ν = 0 (1.28)

and so the covariant derivative of the tetrad vanishes in order to maintain the
invariance of the complete vector �eld. This has been a fundamental theorem
of Cartan geometry for almost a hundred years. The tetrad postulate is the
theorem by which Cartan geometry is translated into Riemann geometry.
The Riemann torsion and Riemann curvature are de�ned elegantly by the
commutator of covariant derivatives. This is an operator that acts on any
tensor in any space of any dimension. When it acts on a vector it is de�ned
for example by:

[Dµ, Dν ]V ρ = Dµ(DνV
ρ)−Dν(DµV

ρ). (1.29)

As shown in all detail in UFT 99 Equation 1.29 results in:

[Dµ, Dν ]V ρ = RρµνσV
σ − T λµνDλV

ρ. (1.30)

The Riemann curvature and Riemann torsion are always produced simulta-
neously by the commutator, which therefore produces the �rst and second
Cartan Maurer structure equations when the tetrad postulate is used to
translate the Riemann torsion and Riemann curvature to the Cartan torsion
and Cartan curvature. The commutator also de�nes the antisymmetry of
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

the connection and this is of key importance. By de�nition the commutator
is antisymmetric in the indices µ and ν:

[Dµ, Dν ]V ρ = − [Dν , Dµ]V ρ (1.31)

and vanishes if these indices are the same, i.e. if the connection is symmetric.
From inspection of the equation:

[Dµ, Dν ]V ρ = −(Γλµν − Γλνµ)DλV
ρ +RρµνσV

σ (1.32)

the connection has the same symmetry as the commutator, so the connection
is anti symmetric:

Γλµν = −Γλνµ, (1.33)

a result of key importance. A symmetric connection means a null commuta-
tor and this means that the Riemann torsion and Riemann curvature both
vanish if the connection is symmetric.

The Einsteinian general relativity used a symmetric connection incor-
rectly, so the entire twentieth century era is refuted. This is the essence of
the post Einsteinian paradigm shift. The correct general relativity is based
on �eld equations obtained from Cartan geometry. These �eld equations
are obtained from identities of Cartan geometry. The �rst such identity in
minimal notation is:

D ∧ T = d ∧ T + ω ∧ T := R ∧ q = q ∧R (1.34)

and this is referred to in this book as the Cartan identity. The covariant
derivative of the torsion is the wedge product of the tetrad and curvature.
The wedge products in Equation 1.34 are those of a one form and a two
form. In the UFT papers it is shown that this produces the following result
in tensor notation:

∂µT
a
νρ + ∂ρT

a
µν + ∂νT

a
ρµ + ωaµbT

b
νρ + ωaρbT

b
µν + ωaνbT

b
ρµ

:= Raµνρ + Raρµν + Raνρµ, (1.35)

a sum of three terms. In papers such as UFT 137 this identity is proven
in complete detail using the tetrad postulate. The proof is complicated but
again shows the great elegance of the Cartan geometry. Using the concept
of the Hodge dual [1, 11] the result in Equation 1.35 can be expressed as:

∂µT̃
aµν + ωaµbT̃

bµν := R̃a µν
µ (1.36)
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1.2. THE STRUCTURE EQUATIONS OF MAURER AND CARTAN

where the tilde's denote the tensor that is Hodge dual to T aµν . In four
dimensions the Hodge dual of an antisymmetric tensor, or two form, is an-
other antisymmetric tensor. From Equation 1.36 the Cartan identity can be
expressed as:

∂µT̃
aµν = jaν = R̃a µν

µ − ωaµbT̃ bµν . (1.37)

De�ning:

jaν = (ja0, ja) (1.38)

the Cartan identity splits into two vector equations:

∇ · T aspin = ja0 (1.39)

and

1

c

∂T aspin
∂t

+ ∇× T aorb = ja. (1.40)

These become the basis for the homogeneous equations of electrodynamics
in ECE theory, and de�ne the magnetic charge current density in terms
of geometry. These equations are given in the Engineering Model of ECE
theory on www.aias.us. They also de�ne the homogeneous �eld equations of
gravitation.

The Evans identity of di�erential geometry was inferred during the course
of the development of ECE theory and in minimal notation it is:

D ∧ T̃ = d ∧ T̃ + ω ∧ T̃ := R̃ ∧ q = q ∧ R̃. (1.41)

It is valid in four dimensions, because the Hodge dual of a two form in
four dimensions is another two form: So the Hodge duals of the torsion
and curvature obey the Cartan identity. This result is the Evans identity
Equation 1.41. In tensor notation it is:

∂µT̃
a
νρ + ∂ρT̃

a
µν + ∂ν T̃

a
ρµ + ωaµbT̃

b
νρ + ωaρbT̃

b
µν + ωaνbT̃

b
ρµ

:= R̃aµνρ + R̃aρµν + R̃aνρµ (1.42)

an equation which is equivalent to:

∂µT
aµν + ωaµbT

bµν := Ra µν
µ (1.43)

as shown in full detail in the UFT papers. The tensor equation Equation
1.43 splits into two vector equations:

∇ · T aorb = Ja0 = Ra µ0
µ − ωaµbT bµ0 (1.44)
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

and

∇× T aspin −
1

c

∂T aorb
∂t

= Ja. (1.45)

When translated into electrodynamics these become the inhomogeneous �eld
equations, which de�ne the electric charge density and the electric current
density in terms of geometry.

If torsion is neglected or incorrectly assumed to be zero, the Cartan
identity reduces to:

R ∧ q = 0, (1.46)

which is the elegant Cartan notation for the �rst Bianchi identity:

Rλµνρ +Rλρµν +Rλνρµ = 0. (1.47)

The second Bianchi identity can be derived from the �rst Bianchi identity
and is:

DµR
κ
λνρ +DρR

κ
λµν +DνR

κ
λρµ = 0. (1.48)

Clearly the two Bianchi identities are true if and only if the torsion is zero. In
other words the two identities are true if and only if the Christo�el connection
is symmetric. The commutator method shows that the Christo�el connection
is antisymmetric so the two Bianchi identities are incorrect. The �rst Bianchi
identity must be replaced by the Cartan identity Equation 1.35 and the
second Bianchi identity was replaced in UFT 255 by:

DµDλT
κ
νρ +DρDλT

κ
µν +DνDλT

κ
ρµ

:= DµR
κ
λνρ + DρR

κ
λµν + DνR

κ
λρµ. (1.49)

Therefore Einstein used entirely the wrong identity (Equation 1.48) in
his �eld equation. No experiment can prove incorrect geometry, and indeed
the claims of experimentalists to have tested the Einstein �eld equation with
precision have been extensively criticised for many years. The contempo-
rary experimental data themselves may or not be precise, but they do not
prove incorrect geometry. Einstein e�ectively threw away the �rst Cartan
Maurer structure equation, so his geometry contained and still contains only
half of the geometrical truth, and geometry is the most self contained of
all subjects. The velocity curve of the whirlpool galaxy, discovered in the
late �fties, entirely and completely refutes both Einstein and Newton. In
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1.2. THE STRUCTURE EQUATIONS OF MAURER AND CARTAN

several of the UFT papers on www.aias.us, the velocity curve is explained
straightforwardly by ECE theory using again the minimum of postulates, for
example UFT 238. The dogmatists used and still use ad hoc ideas such as
dark matter to cover up the catastrophic failure of the Einstein and Newton
theories in whirlpool galaxies. They became idols of the cave, and dreamt
up dark matter in it darkest comers. Their claim that the universe is made
up mostly of dark matter is an admission of abject failure. To compound
this failure they still claim that the Einstein theory is very precise in places
such as the solar system. This dogma has reduced natural philosophy to
utter nonsense. Either a theory works or it does not work. It cannot be bril-
liantly successful and fail completely at the same time. ECE and the post
Einsteinian paradigm shift uses no dark matter and no ideas deliberately
cobbled up so they cannot be tested experimentally: �not even wrong� as
Pauli wrote.

In some recent work in UFT 254 onwards the Cartan identity has been
reduced to a simple and clear vectorial format:

∇ · ωab × T bspin := ωab ·∇× T bspin − T bspin ·∇× ωab. (1.50)

As always in ECE theory this vector identity is generally covariant. It is very
useful when used with the geometrical equations for magnetic and electric
charge current densities also developed in UFT 254 onwards. In the follow-
ing chapter it is shown that combinations of ECE equations such as these
produce many new insights.

This introductory survey of Cartan geometry has shown that the ECE
theory is based entirely on four equations: the �rst and second Cartan Mau-
rer structure equations, the Cartan identity, and the tetrad postulate. These
equations have been known and taught for almost a century. Using these
equations the subject of natural philosophy has been uni�ed on a well known
geometrical basis. Electromagnetism has been uni�ed with gravitation and
new methods developed to describe the structure of elementary particles.
General relativity has been uni�ed with quantum mechanics by developing
the tetrad postulate into a generally covariant wave equation:

(� + κ2)qaµ = 0 (1.51)

where

κ2 = qνa∂
µ(ωaµν − Γaµν). (1.52)

The wave equation (Equation 1.51) has been reduced to all the main rel-
ativistic wave equations such as the Klein Gordon, Proca and Dirac wave
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CHAPTER 1. BASICS OF CARTAN GEOMETRY

equations, and in so doing these wave equations have been derived as equa-
tions of general relativity. They are all based on the most fundamental theo-
rem of Cartan geometry, the tetrad postulate. The Dirac equation has been
developed into the fermion equation by factorizing the ECE wave equation
that reduces in special relativity to the Dirac wave equation. The fermion
equation needs only two by two matrices, and does not su�er from negative
energy while at the same time producing the positron and other anti par-
ticles. So the discoveries of the Rutherford group have also been explained
geometrically.

The Heisenberg Uncertainty Principle was replaced and developed in
UFT 13, and easily shown to be incorrect in UFT 175. The uncertainty
principle should be described more accurately as the indeterminacy principle,
which is an admission of failure from the outset. It was rejected by Einstein,
de Broglie, Schröedinger and others at the famous 1927 Solvay Conference
and split natural philosophy permanently into scientists and dogmatists. The
indeterminacy principle has been experimentally proven to be wildly wrong
by the Croca group { 12 } using advanced microscopy and other experi-
mental methods. The dogmatists ignore this experimental refutation. The
scientists take note of it and adapt their theories accordingly as advocated
by Bacon, essentially the founder of the scienti�c method. Indeterminacy
means that quantities are absolutely unknowable, and according to the dog-
matists of Copenhagen, geometry is unknowable because general relativity
is based on geometry. So they never succeeded in unifying general relativity
and quantum mechanics. In ECE theory this uni�cation is straightforward
as just described, it is based on the tetrad postulate re-expressed as a wave
equation. Anything that is claimed dogmatically to emanate from the fer-
vent occult practices of indeterminacy can be obtained rationally and coolly
from UFT13 without any �re or brimstone.

So indeterminacy was the �rst major casualty of ECE theory, other idols
began to fall over, and the dogmatists with them. Everything has been
thrown out of the window: U(l) gauge invariance, transverse vacuum radi-
ation, the massless photon, the E(2) little group, the Einsteinian general
relativity, the U(l) gauge invariance, the GWS electroweak theory, refuted
completely in UFT 225, the SU(3) theory of quarks and gluons, quantum
electrodynamics with its adjustable parameters such as virtual particles, the
hocus pocus of renormalization and regularization, quantum chromodynam-
ics, asymptotic freedom, quark con�nement, approximate symmetry, string
theory, superstring theory, multiple dimensions, nineteen adjustables, even
more adjustables, yet more adjustables, dark matter, dark �ow, big bang,
black holes, interacting black holes, hundred billion dollar supercolliders, the
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1.2. THE STRUCTURE EQUATIONS OF MAURER AND CARTAN

whole lot, strange dreams leading to the Higgs boson, the murkiest idol of
all.

Everything is cool and in the light of reason, everything is geometry.
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Chapter 2

Electrodynamics and
Gravitation

Electromagnetic Units in S. I.

Electric �eld strength E = Vm−1 = JC−1m−1

Vector Potential A = J sC−1m−1

Scalar Potential φ = JC−1

Vacuum permittivity ε0 = J−1C−2m−1

Magnetic Flux Density B = J sC−1m−2

Electric charge density ρ = Cm−3

Electric current density J = Cm−2 s−1

Spacetime Torsion T = m−1

Spin connection ω = m−1

Spacetime Curvature R = m−2

2.1 Introduction

The old physics, prior to the post Einsteinian paradigm shift, completely
failed to provide a uni�ed logic for electrodynamics and gravitation because
the former was developed in �at, or Minkowski, spacetime and the latter
in a spacetime which was thought quite wrongly to be described only by
curvature. The ECE theory develops both electrodynamics and gravitation
directly from Cartan geometry. As shown in the ECE Engineering Model,
the �eld equations of electrodynamics and gravitation in ECE theory have
the same format, based directly and with simplicity on the underlying ge-
ometry. Therefore the Cartan geometry of Chap. 1 is translated directly into
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2.1. INTRODUCTION

electromagnetism and gravitation using the same type of simple, fundamen-
tal hypothesis in each case: the tetrad becomes the 4-potential energy and
the torsion becomes the �eld of force.

In retrospect the method used by Einstein to translate from geometry to
gravitation was cumbersome as well as being incorrect. The second Bianchi
identity was reformulated by Einstein using the Ricci tensor and Ricci scalar
into a format where it could be made directly proportional to the covariant
Noether Theorem through the Einstein constant k. Both sides of this equa-
tion used a covariant derivative, but it was assumed by Einstein without
proof that the integration constants were the same on both sides, giving the
Einstein �eld equation:

Gµν = kTµν (2.1)

where Gµν is the Einstein tensor, Tµν is the canonical energy momentum
density, and k is the Einstein constant. This equation is completely incor-
rect because it uses a symmetric connection and throws away torsion. If
attempts are made to correct this equation for torsion, as in UFT 88 and
UFT 255, summarized in Chap. 1, it becomes hopelessly cumbersome; it
could still only be used for gravitation and not for a uni�ed �eld theory of
gravitation and electromagnetism. Einstein himself thought that his �eld
equation of 1915 could never be solved, which shows that he was bogged
down in complexity. Schwarzschild provided a solution in December 1915
but in his letter declared �friendly war� on Einstein. The meaning of this
is not entirely clear but obviously Schwarzschild was not satis�ed with the
equation. His solution did not contain singularities, and this original solution
is on the net, together with a translation by Vankov of the letter to Einstein.
This solution of an incorrect �eld equation is obviously meaningless. The
errors were compounded by asserting (after Schwarzschild died in 1916) that
the solution contains singularities, so the contemporary Schwarzschild metric
is a misattribution and distortion, as well as being completely meaningless.
It has been used endlessly by dogmatists to assert the existence of incorrect
results such as big bang and black holes. So gravitational science was stag-
nant from 1915 to 2003. During the course of development of ECE theory
it gradually became clear in papers such as UFT 150 that there were many
other errors and obscurities in the Einstein theory, notably in the theory
of light bending by gravitation, and in the theory of perihelion precession.
One of the obvious contradictions in the theory of light de�ection by gravi-
tation is that it uses a massless photon that is nevertheless attracted to the
sun. The resulting null geodesic method is full of obscurities as shown in
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UFT 150 (www.aias.us). The Einsteinian general relativity has been com-
prehensively refuted in reference [2] of Chap. 1. It was completely refuted
experimentally in the late �fties by the discovery of the velocity curve of the
whirlpool galaxy. At that point it should have been discarded; its apparent
successes in the solar system are illusions. Instead, natural philosophy itself
was abandoned and dark matter introduced. The Einsteinian theory is still
unable to explain the velocity curve of the whirlpool galaxy, it still fails com-
pletely, and dark matter does not change this fact. So the Einstein theory
cannot be meaningful in the solar system as the result of these experimental
observations. ECE theory has revealed the reason why the Einstein theory
fails so badly � the neglect of torsion.

Electromagnetism also stagnated throughout the twentieth century and
remained the Maxwell Heaviside theory of the nineteenth century. This
theory was incorporated unchanged into the attempts of the old physics at
uni�cation using U(1) gauge invariance and the massless photon. The idea
of the massless photon leads to multiple, well known problems and absurdi-
ties, notably the planar E(2) little group of the Poincaré group. E�ectively
this result means that the free electromagnetic �eld can have only two states
of polarization. The two transverse states labelled (1) and (2). The time
like state (0) and the longitudinal state (3) are eliminated in order to save
the hypothesis of a massless photon. These problems and obscurities are
explained in detail by a standard model textbook such as that of Ryder [24].
The unphysical Gupta Bleuler condition must be used to �eliminate� the (0)
and (3) states, leading to multiple unsolved problems in canonical quantiza-
tion. The use of the Beltrami theory as in UFT 257 onwards produces richly
structured longitudinal components of the free electromagnetic �eld, refuting
the U(1) dogma immediately and indicating the existence of photon mass.
Beltrami was a contemporary of Heaviside, so the present standard model
was e�ectively refuted as long ago as the late nineteenth century. As soon
as the photon becomes identically non zero, however tiny in magnitude, the
U(1) theory becomes untenable, because it is no longer gauge invariant [1]-
[10], and the Proca equation replaces the d'Alembert equation. The ECE
theory leads to the Proca equation and �nite photon mass, from the tetrad
postulate, using the same basic hypothesis as that which translates geometry
into electromagnetism.

Although brilliantly successful in its time, there are many limitations
of the Maxwell Heaviside (MH) theory of electromagnetism. In the �eld
of non-linear optics for example its limitations are revealed by the inverse
Faraday E�ect [1]- [10] (IFE). This phenomenon is the magnetization of
material matter by circularly polarized electromagnetic radiation. It was
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inferred theoretically [7] by Piekara and Kielich, and later by Pershan, and
was �rst observed experimentally in the mid-sixties by van der Ziel at al. in
the Bloembergen group at Harvard. It occurs for example in one electron
as in UFT 80 to 84 on www.aias.us. The old U(1) gauge invariant theory
of electromagnetism becomes untenable immediately when dealing with the
inverse Faraday E�ect because the latter is caused by the conjugate product
of circularly polarized radiation, the cross product of the vector potential
with its complex conjugate:

A×A∗ = A(1) ×A(2). (2.2)

Indices (1) and (2) are used to de�ne the complex circular basis [1]- [10],
whose unit vectors are:

e(1) =
1√
2

(i− ij) (2.3)

e(2) =
1√
2

(i + ij) (2.4)

e(3) = k (2.5)

obeying the cyclical, O(3) symmetry, relation:

e(1) × e(2) = ie(3)∗ (2.6)

e(3) × e(1) = ie(2)∗ (2.7)

e(2) × e(3) = ie(1)∗ (2.8)

in three dimensional space. The unit vectors e(1) and e(2) are complex con-
jugates. The gauge principle of the MH theory can be expressed as follows:

A→ A + ∇χ (2.9)

so the conjugate product becomes:

A×A∗ = (A + ∇χ)× (A + ∇χ)∗ (2.10)

and is not U(1) gauge invariant, so the resulting longitudinal magnetization
of the inverse Faraday e�ect is not gauge invariant, Q. E.D. Many other
phenomena in non-linear optics [7] are not U(1) gauge invariant and they
all refute the standard model and such artifacts as the �Higgs boson�. The
absurdity of the old physics becomes glaringly evident in that it asserts
that the conjugate product exists in isolation of the longitudinal and time
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like components of spacetime, (0) and (3). So in the old physics the cross
product (2.2) cannot produce a longitudinal component. This is absurd
because space has three components (1), (2) and (3). The resolution of this
fundamental paradox was discovered in Nov. 1991 with the inference of the
B(3) �eld, the appellation given to the longitudinal magnetic component of
the free electromagnetic �eld, de�ned by CH01:BIB01- [10]:

B(3)∗ = −igA(1) ×A(2) (2.11)

where g is a parameter.
The B(3) �eld is the key to the geometrical uni�cation of gravitation and

electromagnetism and also infers the existence of photon mass, experimen-
tally, because it is longitudinal and observable experimentally in the inverse
Faraday e�ect. The zero photon mass theory is absurd because it asserts that
B(3) cannot exist, that the third component of space itself cannot exist, and
that the inverse Faraday e�ect does not exist. The equation that de�nes
the B(3) �eld is not U(1) gauge invariant because the B(3) �eld is changed
by the gauge transform (2.10). The equation is not therefore one of U(1)
electrodynamics, and was used in the nineties to develop a higher topology
electrodynamics known as O(3) electrodynamics CH01:BIB01- [10]. These
papers are recorded in the Omnia Opera section of www.aias.us. Almost si-
multaneously, several other theories of higher topology electrodynamics were
developed [25], notably theories by Horwitz et al., Lehnert and Roy, Barrett,
and Harmuth et al., and by Evans and Crowell [8] These are described in
several volumes of the �Contemporary Chemical Physics� series edited by
M. W. Evans [25]. These higher topology electrodynamical theories also oc-
cur in Beltrami theories as reviewed for example by Reed [7], [27]. In 2003
these higher topology theories evolved into ECE theory.

2.2 The Fundamental Hypotheses and Field and
Wave Equations

The �rst hypothesis of Einstein Cartan Evans (ECE) uni�ed �eld theory
is that the electromagnetic potential (Aaµ) is the Cartan tetrad within a
scaling factor. Therefore the electromagnetic potential is de�ned by:

Aaµ = A(0)qaµ (2.12)

and has one upper index a, indicating the state of polarization, and one lower
index to indicate that it is a vector valued di�erential 1-form of Cartan's
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geometry. The gravitational potential is de�ned by:

Φa
µ = Φ(0)qaµ (2.13)

where Φ(0) is a scaling factor. Therefore the �rst ECE hypothesis means
that electromagnetism is Cartan's geometry within a scalar, A(0). Physics
is geometry. Ubi materia, ibi geometria (Johannes Kepler). This is a much
simpler hypothesis than that of Einstein, and much more powerful. It is a
hypothesis that extends general relativity to electromagnetism. The mathe-
matical correctness of the theory is guaranteed by the mathematical correct-
ness and economy of thought of Cartan's geometry as described in chapter
one.

The second ECE hypothesis is that the electromagnetic �eld (F aµν ) is
the Cartan torsion within the same scaling factor as the potential. The
second hypothesis follows from the �rst hypothesis by the �rst Cartan Maurer
structure equation. Therefore in minimal notation:

F = D ∧A = d ∧A+ ω ∧A (2.14)

which is an elegant relation between �eld and potential, the simplest possible
relation in a geometry with both torsion and curvature. The �eld is the
covariant wedge derivative of the potential, both for electromagnetism and
gravitation. It follows that the entire geometrical development of chapter
one can be applied directly to electromagnetism and gravitation. In the
standard notation of di�erential geometry used by S. M. Carroll [13] the
electromagnetic �eld is de�ned in ECE theory by:

F a = d ∧Aa + ωab ∧Ab. (2.15)

In MH theory the same relation is [24]:

F = d ∧A. (2.16)

The MH theory does not have a spin connection and does not have polariza-
tion indices. The ECE theory is general relativity based directly on Cartan
geometry, the MH theory is special relativity and is not based on geometry.
The presence of the spin connection in Eq. (2.15) means that the �eld is the
frame of reference itself, a dynamic frame that translates and rotates. In MH
theory the �eld is an entity di�erent in concept from the frame of reference,
the Minkowski frame of �at spacetime.

In tensor notation the electromagnetic �eld is:

F aµν = ∂µA
a
ν − ∂νAaµ + ωaµbA

b
ν − ωaνbAbµ (2.17)
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and can be expressed more simply as:

F aµν = ∂µA
a
ν − ∂νAaµ +A(0)

(
ωaµν − ωaνµ

)
. (2.18)

In the MH theory the electromagnetic �eld is

Fµν = ∂µAν − ∂νAµ (2.19)

and has no polarization index or spin connection. The electromagnetic po-
tential is the 4-vector:

Aaµ = (Aa0,−Aa) =

(
φa

c
,−Aa

)
(2.20)

in covariant de�nition, or:

Aaµ =
(
Aa0,Aa

)
=

(
φa

c
,Aa

)
(2.21)

in contravariant de�nition. The upper index a denotes the state of polariza-
tion. For example in the complex circular basis it has four indices:

a = (0), (1), (2), (3) (2.22)

one timelike (0) and three spacelike (1), (2), (3). The (1) and (2) indices
are transverse and the (3) index is longitudinal. The spacelike part of the
potential 4-vector is the vector Aa, and so this can only have space indices,
(1), (2) and (3). It cannot have a timelike index (0) by de�nition. The
4-potential can be written for each of the four indices (0), (1), (2) and (3)
as:

Aµ = (A0,−A) . (2.23)

When the a index is (0) the 4-potential reduces to the scalar potential:

A(0)
µ =

(
A

(0)
0,−0

)
. (2.24)

When the a index is (1), (2) or (3) the 4-potential is interpreted as:

A(i)
µ =

(
A

(i)
0,−Ai

)
, i = 1, 2, 3 (2.25)

so A(i)
0 for example is the scalar part of the 4-potential Aaµ, associated with

index (1). As described by S. M. Carroll, the tetrad is a 1-form for each
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index a. This means that the 4-potential Aaµ is a 4-potential for each index
a:

A(0)
µ = (Aµ)(0) (2.26)

A(i)
µ = (Aµ)(i) , i = 1, 2, 3 (2.27)

and this is a basic property of Cartan geometry.
In order to translate the tensor notation of Eq. (2.17) to vector notation,

it is necessary to de�ne the torsion as a 4 x 4 antisymmetric matrix. The
choice of matrix is guided by experiment, so that the ECE theory reduces
to laws that are able to describe electromagnetic phenomena by direct use
of Cartan geometry. As described in Chap. 1 there exist orbital and spin
torsion de�ned by equations which are similar in structure to electromagnetic
laws which have been tested with great precision, notably the Gauss law of
magnetism, the Faraday law of induction, the Coulomb law and the Ampère
Maxwell law. These laws must be recovered in a well-de�ned limit of ECE
theory. Newtonian gravitation must be recovered in another limit of ECE
theory.

The torsion matrix for each a is chosen by hypothesis to be:

Tρσ =


0 T1(orb) T2(orb) T3(orb)

−T1(orb) 0 −T3(spin) T2(spin)
−T2(orb) T3(spin) 0 −T1(spin)
−T3(orb) −T2(spin) T1(spin) 0

 (2.28)

This equation may be looked upon as the third ECE hypothesis. The Hodge
dual [1]- [11], [24] of this matrix is:

T̃µν =


0 −T 1(spin) −T 2(spin) −T 3(spin)

T 1(spin) 0 T 3(orb) −T 2(orb)
T 2(spin) −T 3(orb) 0 T 1(orb)
T 3(spin) T 2(orb) −T 1(orb) 0

 (2.29)

Indices are raised and lowered by the metric tensor in any space [13]:

T̃µν = gµαgνβT̃αβ. (2.30)

Alternatively the antisymmetric torsion matrix may be de�ned as:

Tµν =


0 −T 1(orb) −T 2(orb) −T 3(orb)

T 1(orb) 0 −T 3(spin) T 2(spin)
T 2(orb) T 3(spin) 0 −T 1(spin)
T 3(orb) −T 2(spin) T 1(spin) 0

 (2.31)
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with raised indices. From this de�nition the spin torsion vector in 3D is:

T(spin) = TX(spin)i + TY (spin)j + TZ(spin)k (2.32)

in which:

TX(spin) = T 1(spin) = T̃ 10 = −T̃ 01 (2.33)

TY (spin) = T 2(spin) = T̃ 20 = −T̃ 02 (2.34)

TZ(spin) = T 3(spin) = T̃ 30 = −T̃ 03 (2.35)

Similarly the orbital torsion vector in 3D is de�ned by:

T(orb) = TX(orb)i + TY (orb)j + TZ(orb)k (2.36)

where the vector components are related to the matrix components as follows:

TX(orb) = T 1(orb) = T10 = −T01 (2.37)

TY (orb) = T 2(orb) = T20 = −T02 (2.38)

TZ(orb) = T 3(orb) = T30 = −T03 (2.39)

With these de�nitions the electric �eld strength Ea and the magnetic �ux
density Ba are de�ned by:

Ea = cA(0)Ta(orb) (2.40)

and

Ba = A(0)Ta(spin). (2.41)

For each index a the �eld tensor with raised µ and ν is de�ned to be:

Fµν =


0 −EX −EY −EZ
EX 0 −cBZ cBY
EY cBZ 0 −cBX
EZ −cBY cBX 0

 . (2.42)

With these fundamental de�nitions the tensor notation (2.17) can be
translated to vector notation. The latter is used by engineers and is more
transparent than tensor notation. The 4-derivative appearing in the tensor
equation (2.17) is de�ned to be:

∂µ =

(
1

c

∂

∂t
,∇
)
. (2.43)
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Consider the indices of the orbital torsion:

T a0i = ∂0q
a
i − ∂iqa0 + ωa0bq

b
i − ωaibqb0

i = 1, 2, 3. (2.44)

These translate into the indices of the �eld tensor as follows:

F a0i = ∂0A
a
i − ∂iAa0 + ωa0bA

b
i − ωaibAb0

i = 1, 2, 3 (2.45)

from which it follows that the electric �eld strength is:

Ea = −c∇Aa0 −
∂Aa

∂t
− cωa0bAb + cAb0ω

a
b (2.46)

where the spin connection 4-vector is expressed as:

ωaµb = (ωa0b,−ωab) (2.47)

using the above de�nitions.
The indices of the spin torsion tensor are:

T a12 = ∂1q
a
2 − ∂2qa1 + ωa1bq

b
2 − ωa2bqb1

T a13 = ∂1q
a
3 − ∂3qa1 + ωa1bq

b
3 − ωa3bqb1

T a23 = ∂2q
a
3 − ∂3qa2 + ωa2bq

b
3 − ωa3bqb2 (2.48)

and they translate into the spin components of the �eld tensor:

F a12 = ∂1A
a
2 − ∂2Aa1 + ωa1bA

b
2 − ωa2bAb1

F a13 = ∂1A
a
3 − ∂3Aa1 + ωa1bA

b
3 − ωa3bAb1

F a23 = ∂2A
a
3 − ∂3Aa2 + ωa2bA

b
3 − ωa2bAb2. (2.49)

With the above de�nitions these equations can be expressed as the magnetic
�ux density:

Ba = ∇×Aa − ωab ×Ab. (2.50)

In the MH theory the corresponding equations are:

E = −∇φ− ∂A

∂t
(2.51)

and

B = ∇×A (2.52)

without polarization indices and without spin connection.
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2.3 The B(3) Field in Cartan Geometry

The B(3) �eld is a consequence of the general expression for magnetic �ux
density in ECE theory:

Ba = ∇×Aa − ωab ×Ab. (2.53)

In general, summation over repeated indices means that:

Ba = ∇×Aa − ωa(1) ×A(1) − ωa(2) ×A(2) − ωa(3) ×A(3) (2.54)

but this general expression can be simpli�ed as discussed later in this book
using the assumption:

ωab = εabcω
c (2.55)

which is the expression for the duality of a tensor and vector. It can be
shown using the vector form of the Cartan identity that the B(3) �eld is
given by:

B(3) = ∇×A(3) − i κ

A(0)
A(1) ×A(2) (2.56)

where the potentials are related by the cyclic theorem:

A(1) ×A(2) = iA0A(3)∗ et cyclicum. (2.57)

For plane wave the potentials are as follows:

A(1) ×A(2)∗ =
A0

√
2

(i− ij) ei(ωt−κZ), (2.58)

A(3) = A0k, (2.59)

so the B(3) �eld is de�ned by:

B(3) = −i κ

A(0)
A(1) ×A(2). (2.60)

Therefore B(3) is the result of general relativity, and does not exist in the
Maxwell Heaviside �eld theory because the MH theory is a theory of special
relativity without a geometrical connection. The B(3) �eld is a radiated
longitudinal �eld that propagates in the (3) or Z axis. When it was inferred in
Nov. 1991 it was a completely new concept, and it was gradually realized that
it led to a higher topology electrodynamics which was identi�ed with Cartan
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geometry in 2003. �Higher topology� in this sense means that a di�erent
di�erential geometry is needed to de�ne electrodynamics. This can be seen
through the fact that the �eld in U(1) gauge invariant electrodynamics is:

F = d ∧A (2.61)

but in ECE theory it is:

F a = d ∧Aa + ωab ∧Ab (2.62)

with the presence of indices and spin connection. A choice of internal indices
leads to O(3) electrodynamics as outlined above and explained in more detail
later.

It was gradually realized that O(3) electrodynamics and ECE electrody-
namics accurately reduce to the MH theory in certain limits, but also give
much more information, an example being the inverse Faraday e�ect. The
B(3) �eld led for the �rst time to an electrodynamics that is based on general
covariance, and not Lorentz covariance, so it became easily possible to unify
electromagnetism with gravitation.

It is important to realize that B(3) is not a static magnetic �eld, it
interacts with material matter through the conjugate product A(1) × A(2)

by which it is de�ned. So B(3) is intrinsically nonlinear in nature while a
static magnetic �eld is not related to the conjugate product of nonlinear
optics. The B(3) �eld needs for its de�nition a geometrical connection, and
a di�erent set of �eld equations from those that govern a static magnetic
�eld. The latter is governed by the Gauss law of magnetism and the Ampère
law. The static magnetic �eld does not propagate at c in the vacuum, but
B(3) propagates in the vacuum along with A(1) and A(2) and when B(3)
interacts with matter it produces a magnetization through a well-de�ned
hyperpolarizability in the inverse Faraday e�ect. The �eld equations needed
to de�ne B(3) must be obtained from Cartan geometry, and are not equations
of Minkowski spacetime.

2.4 The Field Equations of Electromagnetism

These are based directly on the Cartan and Evans identities using the hy-
potheses (2.40) and (2.41) and give a richly structured theory summarized
in the ECE Engineering Model on www.aias.us. Before proceeding to a de-
scription of the �eld equations a summary is given of the Cartan identity
in vector notation. In a similar manner to the torsion, the second Cartan
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Maurer structure equation gives an orbital curvature and a spin curvature:

Ra
b(spin) = ∇× ωab − ωac × ωcb. (2.63)

As in UFT 254 consider now the Cartan identity:

d ∧ T a + ωab ∧ T b := Rab ∧ qb. (2.64)

The space part of this identity can be written as:

∇ ·Ta + ωab ·Tb = qb · (∇× ωab − ωac × ωcb) . (2.65)

Rearranging and using:

qb · ωac × ωcb = ωab · ωac × qc (2.66)

and

∇ ·∇× qa = 0 (2.67)

gives:

∇ · ωab × qb = ωab ·∇× qb − qb ·∇× ωab (2.68)

i. e. gives the Cartan identity in vector notation, a very useful result that will
be used later in this chapter and book. The self-consistency and correctness
of the result (2.68) is shown by the fact that it is an example of the well-
known vector identity:

∇ · F×G = G ·∇× F− F ·∇×G. (2.69)

So it can be seen clearly that Cartan geometry generalizes well known ge-
ometry and vector identities.

For ECE electrodynamics Eq. (2.68) becomes:

∇ · ωab ×Ab = ωab ·∇×Ab −Ab ·∇× ωab. (2.70)

The magnetic �ux density is de�ned in ECE theory as:

Ba = ∇×Aa − ωab ×Ab (2.71)

so:

∇ ·Ba = −∇ · ωab ×Ab (2.72)
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giving the Gauss law of magnetism in general relativity and ECE uni�ed
�eld theory.

As in UFT 256 the Cartan identity and the fundamental ECE hypotheses
give the homogeneous �eld equations of electromagnetism in ECE theory:

∇ ·Ba =
ρm

ε0c
= ωab ·Bb −Ab ·Ra

b(spin) (2.73)

and

∂Ba

∂t
+ ∇×Ea = Jm/ε0

= ωab ×Eb − cω0B
a − c

(
Ab ×Ra

b(orb)−Ab
0R

a
b(spin)

)
(2.74)

in which the spin curvature is de�ned by Eq. (2.63) and the orbital curvature
by:

Ra
b(orb) = −∇ωa0b −

1

c

∂ωab
∂t
− ωa0cωcb + ωc0bω

a
c. (2.75)

The right hand sides of these equations give respectively the magnetic charge
density and the magnetic current density. The controversy over the existence
of the magnetic charge current density has been going on for over a century,
and the consensus seems to be that they do not exist. (If they are proven to
be reproducible and repeatable the ECE theory can account for them as in
the above equations.) If the magnetic charge current density vanishes then:

ωab ·Bb = Ab ·Ra
b(spin) (2.76)

and

ωab ×Eb − cω0B
a = c

(
Ab ×Ra

b(orb)−Ab
0R

a
b(spin)

)
(2.77)

and they imply the Gauss law of magnetism in ECE theory:

∇ ·Ba = 0 (2.78)

and the Faraday law of induction:

∂Ba

∂t
+ ∇×Ea = 0. (2.79)

The Evans identity gives

∇ ·Ea =
ρa

ε0
= ωab ·Eb − cAb ·Ra

b(orb) (2.80)
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and:

∇×Ba − 1

c2
∂Ea

∂t
= µ0J

a

= ωab ×Bb +
ω0

c
Eb −Ab0Ra

b(orb)−Ab ×Ra
b(spin). (2.81)

Eq. (2.80) de�nes the electric charge density:

ρa = ε0

(
ωab ·Eb − cAb ·Ra

b(orb)
)

(2.82)

and Eq. (2.81) de�nes the electric current density:

Ja =
1

µ0

(
ωab ×Bb +

ω0

c
Eb −

(
Ab ×Ra

b(spin) +Ab0R
a
b(orb)

))
. (2.83)

With these de�nitions the inhomogeneous �eld equations become the Coulomb
law:

∇ ·Ea = ρa/ε0 (2.84)

and the Ampère Maxwell law:

∇×Ba − 1

c2
∂Ea

∂t
= µ0J

a. (2.85)

2.5 The Field Equations of Gravitation

As shown in the Engineering Model the �eld equations of gravitation are the
two homogeneous �eld equations:

∇ · h = 4πGρgm (2.86)

and

∇× g +
1

c

∂h

∂t
=

4πG

c
jgm (2.87)

and the two inhomogeneous equations:

∇ · g = 4πGρm (2.88)

and

∇× h− 1

c

∂g

∂t
=

4πG

c
Jm. (2.89)
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Here g is the acceleration due to gravity, and h is the gravitomagnetic �eld,
de�ned by the Cartan Maurer structure equations as:

g = −∂Q

∂t
−∇Φ− ω0Q + Φω (2.90)

and

Ω = ∇×Q− ω ×Q. (2.91)

In the Newtonian physics only Eq. (2.88) exists, where G is the Newton
constant and where ρm is the mass density. ρgm and Jgm are the (hypo-
thetical) gravitomagnetic mass density and current. In the ECE equations
there is a gravitomagnetic �eld h (developed in UFT 117 and UFT 118) and
a Faraday law of gravitational induction, Eq. (2.87), developed in UFT 75.
The latter paper describes the experimental evidence for the gravitational
law of induction and UFT 117 and UFT 118 use the gravitomagnetic �eld
to explain precession not explicable in the Newtonian theory.

It is likely that all the �elds predicted by the ECE theory of gravitation
will eventually be discovered because they are based on geometry as advo-
cated by Kepler. During the course of the development of ECE there have
been many advances in electromagnetism and gravitation. There has been
space here for a short overview summary.
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Chapter 3

ECE Theory and Beltrami
Fields

3.1 Introduction

Towards the end of the nineteenth century the Italian mathematician Eu-
genio Beltrami developed a system of equations for the description of hy-
drodynamic �ow in which the curl of a vector is proportional to the vector
itself [26]. An example is the use of the velocity vector. For a long time this
solution was not used outside the �eld of hydrodynamics, but in the �fties it
started to be used by workers such as Alfven and Chandrasekhar in the area
of cosmology, notably whirlpool galaxies. The Beltrami �eld as it came to be
known has been observed in plasma vortices and as argued by Reed [27] is in-
dicative of a type of electrodynamics such as ECE. Therefore this chapter is
concerned with the ways in which ECE electrodynamics reduce to Beltrami
electrodynamics, and with other applications of the Beltrami electrodynam-
ics such as a new theory of the parton structure of elementary particles. The
ECE theory is based on geometry and is ubiquitous throughout nature on
all scales, and so is the Beltrami theory, which can be looked upon as a sub
theory of ECE theory.

3.2 Derivation of the Beltrami Equation

Consider the Cartan identity in vector notation, derived in Chapter 2:

∇ · ωab × qb = qb ·∇× ωac − ωab ·∇× qb. (3.1)
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In the absence of a magnetic monopole:

∇ · ωab × qb = 0 (3.2)

so:

qb ·∇× ωab = ωab ·∇× qb. (3.3)

Assume that the spin connection is an axial vector dual in its index space to
an antisymmetric tensor:

ωab = εabcω
c (3.4)

where εabc is the totally antisymmetric unit tensor in three dimensions. Then
Eq. (3.3) reduces to:

qb ·∇× ωc = ωc ·∇× qb. (3.5)

An example of this in electromagnetism is:

A(2) ·∇× ω(1) = ω(1) ·∇×A(2) (3.6)

in the complex circular basis ((1), (2), (3)). The vector potential is de�ned
by the ECE hypothesis:

Aa = A(0)qa. (3.7)

From Chap. 2, Eq, (2.76) the geometrical condition for the absence of a
magnetic monopole is:

ωab ·Bb = Ab ·Ra
b(spin) (3.8)

where the spin curvature Eq. (2.63) is de�ned by:

Ra
b(spin) = ∇× ωab − ωac × ωcb (3.9)

and where Ba is the magnetic �ux density vector. Using Eq. (3.4):

Rc(spin) = ∇× ωc − ωb × ωa. (3.10)

In the complex circular basis de�ned by Eq. (3.6) the spin curvatures are:

R(1)(spin) = ∇× ω(1) + i ω(3) × ω(1)

R(2)(spin) = ∇× ω(2) + i ω(2) × ω(3) (3.11)

R(3)(spin) = ∇× ω(3) + i ω(1) × ω(2)
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and the magnetic �ux density vectors are:

B(1) = ∇×A(1) + i ω(3) ×A(1)

B(2) = ∇×A(2) + i ω(2) ×A(2) (3.12)

B(3) = ∇×A(3) + i ω(1) ×A(3).

Eq. (8) may be exempli�ed by:

ω(1) ·B(2) = A(1) ·R(2)(spin) (3.13)

which may be developed as:

ω(1) ·
(
∇×A(2) + i ω(2) ×A(3)

)
(3.14)

= A(1) ·
(
∇× ω(2) + i ω(2) × ω(3)

)
.

Possible solutions are

ω(i) = ± κ

A(0)
A(i), i = 1, 2, 3 (3.15)

and in order to be consistent with the original [1-10] solution of B(3) the
negative sign is developed:

B(3) = ∇×A(3) − i κ

A(0)
A(1) ×A(2) et cyclicum. (3.16)

From Eq. (3.2):

∇ · ω(3) ×A(1) = 0 (3.17)

and the following is an identity of vector analysis:

∇ ·∇×A(1) = 0. (3.18)

A possible solution of Eq. (3.17) is:

∇×A(1) = i ω(3) ×A(1) = −i κ

A(0)
A(3) ×A(1). (3.19)

Similarly:

∇×A(2) = i ω(2) ×A(3) = −i κ

A(0)
A(2) ×A(3). (3.20)

Now multiply both sides of the basis equations (3.6) to (3.8) of Chap. 2 by

A(0)2 eiφ e−iφ (3.21)
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where the electromagnetic phase is:

φ = ωt− κZ (3.22)

to �nd the cyclic equation:

A(1) ×A(2) = i A(0)A(3)∗ et cyclicum (3.23)

where:

A(1) = A(2)∗ = A(0)e(1)eiφ =
A(0)

√
2

(i− ij) eiφ, (3.24)

A(3) = A(0)e(3) = A(0)k. (3.25)

From Eqs. (3.23-3.25):

∇×A(1) = κA(1) (3.26)

∇×A(2) = κA(2) (3.27)

∇×A(3) = 0A(3) (3.28)

which are Beltrami equations [26], [27].
The foregoing analysis may be simpli�ed by considering only one compo-

nent out of the two conjugate components labelled (1) and (2). This proce-
dure, however, loses information in general. By considering one component,
Eq. (3.1) is simpli�ed to:

∇ · ω × q = q ·∇× ω − ω ·∇× q (3.29)

and the assumption of zero magnetic monopole leads to:

∇ · ω × q = 0 (3.30)

which implies

ω ·∇× q = q ·∇× ω. (3.31)

Proceeding as in note 257(7) in the UFT section of www.aias.us leads to:

ω ·B = A ·∇× ω (3.32)

where:

R(spin) = ∇× ω (3.33)
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is the simpli�ed format of the spin curvature. From Eqs. (3.31) and (3.32):

ω ·B = A ·∇× ω = ω ·∇×A (3.34)

so:

B = A ·∇×A. (3.35)

However, in ECE theory:

B = ∇×A− ω ×A (3.36)

so Eqs. (3.35) and (3.36) imply:

ω ×A = 0. (3.37)

Therefore in this simpli�ed model the spin connection vector is parallel to
the vector potential. These results are consistent with [1-10]:

pµ = eAµ = ~κµ = ~ωµ (3.38)

from the minimal prescription. So in this simpli�ed model:

ωµ = (ω0,ω) =
e

~
Aµ =

e

~
(A0,A). (3.39)

The electric �eld strength is de�ned in the simpli�ed model by:

E = −∇φ− ∂A

∂t
− cω0A + φω (3.40)

where the scalar potential is

φ = cA0. (3.41)

From Eqs. (3.39) and (3.40):

E = −∇φ− ∂A

∂t
, (3.42)

B = ∇×A, (3.43)

which is the same as the structure given by Heaviside, but these equations
have been derived from general relativity and Cartan geometry, whereas
the Heaviside structure is empirical. The equations (3.29) to (3.43) are
oversimpli�ed however because they are derived by consideration of only one
out of two conjugate conjugates (1) and (2). Therefore they are derived
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using real algebra instead of complex algebra. They lose the B(3) �eld and
also spin connection resonance, developed later in this book.

In the case of �eld matter interaction the electric �eld strength, E is
replaced by the electric displacement, D, and the magnetic �ux density, B
by the magnetic �eld strength, H:

D = ε0E + P, (3.44)

H =
1

µ0
(B−M), (3.45)

where P is the polarization, M is the magnetization, ε0 is the vacuum per-
mittivity and µ0 is the vacuum permeability. The four equations of electro-
dynamics for each index (1) or (2) are:

∇ ·B = 0 (3.46)

∇×E +
∂B

∂t
= 0 (3.47)

∇ ·D = ρ (3.48)

∇×H = J +
∂D

∂t
(3.49)

where ρ is the charge density and J is the current density.
The Gauss law of magnetism:

∇ ·B = 0 (3.50)

implies the magnetic Beltrami equation [27]:

∇×B = κB (3.51)

because:

1

κ
∇ ·∇×B = 0. (3.52)

So the magnetic Beltrami equation is a consequence of the absence of a
magnetic monopole and the Beltrami solution is always a valid solution.
From Eqs. (3.49) and (3.51)

∇×B = κB = µ0J +
1

c2
∂E

∂t
(3.53)

and for magnetostatics or if the Maxwell displacement current is small:

B =
µ0
κ

J. (3.54)
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In this case the magnetic �ux density is proportional to the current density.
From Eq. 3.51:

∇×B =
µ0
κ
∇× J = κB (3.55)

so

B =
µ0
κ2

∇× J. (3.56)

Eqs. (3.54) and (3.56) imply that the current density must have the struc-
ture:

∇× J = κJ (3.57)

in order to produce a Beltrami equation (3.51) in magnetostatics. Eq. (3.54)
suggests that the jet observed from the plane of a whirlpool galaxy is a
longitudinal solution of the Beltrami equation, a J(3) current associated
with a B(3) �eld.

In �eld matter interaction the electric Beltrami equation:

∇×E = κE (3.58)

is not valid because it is not consistent with the Coulomb law:

∇ ·E =
ρ

ε0
. (3.59)

From Eqs. (3.58) and (3.59):

∇ ·∇×E =
ρ

ε0
κ (3.60)

which violates the vector identity:

∇ ·∇×E = 0. (3.61)

The electric Beltrami equation:

∇×E = κE (3.62)

is valid for the free electromagnetic �eld.
Consider the four equations of the free electromagnetic �eld:

∇ ·B = 0 (3.63)

∇×E +
∂B

∂t
= 0 (3.64)

∇ ·E = 0 (3.65)

∇×B− 1

c2
∂E

∂t
= 0 (3.66)
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for each index of the complex circular basis. It follows from Eqs. (3.64) and
(3.66) that:

∇× (∇×B) =
1

c2
∂

∂t
∇×E (3.67)

and:

∇× (∇×E) = − ∂

∂t
∇×B. (3.68)

The transverse plane wave solutions are:

E =
E(0)

√
2

(i− ij) eiφ (3.69)

and

B =
B(0)

√
2

(ii + j) eiφ (3.70)

where:

φ = ωt− κZ (3.71)

and where ω is the angular velocity at instant t and κ is the magnitude of
the wave vector at Z.

From vector analysis:

∇× (∇×B) = ∇ (∇ ·B)−∇2B (3.72)

∇× (∇×E) = ∇ (∇ ·E)−∇2E (3.73)

and for the free �eld the divergences vanish, so we obtain the Helmholtz
wave equations:

(∇2 + κ2)B = 0 (3.74)

and

(∇2 + κ2)E = 0. (3.75)

These are the Trkalian equations:

∇× (∇×B) = κ∇×B = κ2B (3.76)
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and

∇× (∇×E) = κ∇×E = κ2E. (3.77)

So solutions of the Beltrami equations are also solutions of the Helmholtz
wave equations. From Eqs. (3.64), (3.67) and (3.76):

−∇2B− κ

c2
∂E

∂t
=

(
−∇2 +

1

c2
∂2

∂t2

)
B = 0 (3.78)

which is the d'Alembert equation:

� B = 0. (3.79)

For �nite photon mass, implied by the longitudinal solutions of the free
electromagnetic �eld:

~2ω2 = c2~2κ2 +m2
0c

4 (3.80)

in which case:(
� +

(m0c

~

)2)
B = 0 (3.81)

which is the Proca equation. This was �rst derived in ECE theory from
the tetrad postulate of Cartan geometry and is discussed later in this book.
From Eqs. (3.67) and (3.68):

∂2

∂t2
∇×B = −ω2∇×B (3.82)

and:

∂2

∂t2
∇×E = −ω2∇×E. (3.83)

In general:

∂2

∂t2
eiφ = −ω2eiφ (3.84)

and

eiφ = eiωte−iκZ (3.85)
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so the general solution of the Beltrami equation

∇×B = κB (3.86)

will also be a general solution of the equations (3.63) to (3.66) multiplied by
the phase factor exp(iωt).

ECE theory can be used to show that the magnetic �ux density, vec-
tor potential and spin connection vector are always Beltrami vectors with
intricate structures in general, solutions of the Beltrami equation. The Bel-
trami structure of the vector potential is proven in ECE physics from the
Beltrami structure of the magnetic �ux density B. The space part of the
Cartan identity also has a Beltrami structure. If real algebra is used, the
Beltrami structure of B immediately refutes U(1) gauge invariance because
B becomes directly proportional to A. It follows that the photon mass is
identically non-zero, however tiny in magnitude. Therefore there is no Higgs
boson in nature because the latter is the result of U(1) gauge invariance. The
Beltrami structure of B is the direct result of the Gauss law of magnetism
and the absence of a magnetic monopole. It is di�cult to conceive why U(1)
gauge invariance should ever have been adopted as a theory, because its refu-
tation is trivial. Once U(1) gauge invariance is discarded a rich panoply of
new ideas and results emerge.

The Beltrami equation for magnetic �ux density in ECE physics is:

∇×Ba = κBa. (3.87)

In the simplest case κ is a wave-vector but it can become very intricate.
Combining Eq. (3.87) with the Ampere Maxwell law of ECE physics:

∇×Ba = µ0J
a +

1

c2
∂Ea

∂t
(3.88)

the magnetic �ux density is given directly by:

Ba =
1

κ

(
1

c2
∂Ea

∂t
+ µ0J

a

)
. (3.89)

Using the Coulomb law of ECE physics:

∇ ·Ea =
ρa

ε0
(3.90)

it is found that:

∇ ·Ba =
µ0
κ

(
∂ρa

∂t
+ ∇ · Ja

)
= 0, (3.91)
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a result which follows from:

ε0 µ0 =
1

c2
(3.92)

where c is the universal constant known as the vacuum speed of light. The
conservation of charge current density in ECE physics is:

∂ρa

∂t
+ ∇ · Ja = 0 (3.93)

so Ba is always a Beltrami vector.
In the simpli�ed physics with real algebra:

B = ∇×A, (3.94)

∇×B = κ∇×A, (3.95)

where A is the vector potential. Eqs. (3.94) and (3.95) show immediately
that in U(1) physics the vector potential also obeys a Beltrami equation:

∇×A = κA, (3.96)

B = κA (3.97)

so in this simpli�ed theory the magnetic �ux density is directly proportional
to the vector potential A. It follows immediately that A cannot be U(1)
gauge invariant because U(1) gauge invariance means:

A→ A + ∇ψ (3.98)

and if A is changed, B is changed. The obsolete dogma of U(1) physics
asserted that Eq. (3.98) does not change any physical quantity. This dogma
is obviously incorrect because B is a physical quantity and Eq. (3.97) changes
it. Therefore there is �nite photon mass and no Higgs boson. Finite photon
mass and the Proca equation are developed later in this book, and the theory
is summarized here for ease of reference. The Proca equation [1-10] can be
developed as:

∇ ·Ba = 0 (3.99)

∇×Ea +
∂Ba

∂t
= 0 (3.100)

∇ ·Ea =
ρa

ε0
(3.101)

∇×Ba − 1

c2
∂Ea

∂t
= µ0J

a (3.102)
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where the 4-current density is:

Jaµ = (cρa,Ja) (3.103)

and where the 4-potential is:

Aaµ =

(
φa

c
,Aa

)
. (3.104)

Proca theory asserts that:

Jaµ = −ε0
(m c

~

)2
Aaµ (3.105)

where m is the �nite photon mass and ~ is the reduced Planck constant.
Therefore:

ρa = −ε0c2
(m c

~

)2
φa, (3.106)

Ja = −ε0c2
(m c

~

)2
Aa. (3.107)

The Proca equation was inferred in the mid-thirties but is almost entirely
absent from the textbooks. This is an unfortunate result of incorrect dogma,
that the photon mass, is zero despite being postulated by Einstein in about
1905 to be a particle or corpuscle, as did Newton before him. The U(1)
Proca theory in S. I. Units is:

∂µF
µν =

Jν

ε0
= −

(m c

~

)2
Aν . (3.108)

It follows immediately that:

∂ν∂µF
µν =

1

ε0
∂νJ

ν = −
(m c

~

)2
∂νA

ν = 0. (3.109)

and that:

∂µJ
µ = ∂µA

µ = 0. (3.110)

Eq. (3.109) is conservation of charge current density and Eq. (3.110) is the
Lorenz condition. In the Proca equation the Lorenz condition has nothing
to do with gauge invariance. The U(1) gauge invariance means that:

Aµ → Aµ + ∂µχ (3.111)
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and from Eq. (3.108) it is trivially apparent that the Proca �eld and charge
current density change under transformation (3.111), so are not gauge in-
variant, QED. The entire edi�ce of U(1) electrodynamics collapses as soon
as photon mass is considered.

In vector notation Eq. (3.109) is:

1

c

∂

∂t
∇ ·E =

1

cε0

∂ρ

∂t
= 0 (3.112)

and

∇ ·∇×B− 1

c2
∂

∂t
∇ ·E = µ0∇ · J = 0. (3.113)

Now use:

∇ ·∇×B = 0 (3.114)

and the Coulomb law of this simpli�ed theory (without index a):

∇ ·E =
ρ

ε0
(3.115)

to �nd that:

− 1

c2ε0

∂ρ

∂t
= µ0∇ · J (3.116)

which is the equation of charge current conservation:

∂ρ

∂t
+ ∇ · J = 0. (3.117)

In the Proca theory, Eq. (3.110) implies the Lorenz gauge as it is known in
standard physics:

∂µA
µ =

1

c2
∂φ

∂t
+ ∇ ·A = 0. (3.118)

The Proca wave equation in the usual development [31], [32] is obtained
from the U(1) de�nition of the �eld tensor:

Fµν = ∂µAν − ∂νAµ (3.119)

so

∂µ (∂µAν − ∂νAµ) = �Aν − ∂ν∂µAµ = −
(m c

~

)2
Aν (3.120)
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in which

∂µA
µ = 0. (3.121)

Eq. (3.121) follows from Eq. (3.108) in Proca physics, but in standard
U(1) physics with identically zero photon mass the Lorenz gauge has to
be assumed, and is arbitrary. So the Proca wave equation in the usual
development [31], [32] is:(

� +
(m c

~

)2)
Aν = 0. (3.122)

In ECE physics [1-10] Eq. (3.122) is derived from the tetrad postulate of
Cartan geometry and becomes:(

� +
(m c

~

)2)
Aaµ = 0. (3.123)

In ECE physics the conservation of charge current density is:

∂µJ
aµ = 0 (3.124)

and is consistent with Eqs. (3.48) and (3.49).
In ECE physics the electric charge density is geometrical in origin and

is:

ρa = ε0

(
ωab ·Eb − cAb ·Ra

b(orb)
)

(3.125)

and the electric current density is:

Ja =
1

µ0

(
ωab ×Bb +

ω0

c
Eb −Ab ×Ra

b(spin)−Ab0Ra
b(orb)

)
. (3.126)

Here Ra
b(spin) and Ra

b(orb) are the spin and orbital components of the
curvature tensor [1-10]. So Eqs. (3.93), (3.125) and (3.126) give many new
equations of physics which can be developed systematically in future work.
In magnetostatics for example the relevant equations are:

∇ ·Ba = 0, (3.127)

∇×Ba = µ0J
a, (3.128)

and

∇ · Ja = ∇ ·∇×Ba = 0 (3.129)
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so it follows from charge current conservation that:

∂ρa

∂t
= 0. (3.130)

If it is assumed that the scalar potential is zero in magnetostatics, the usual
assumption, then:

Ja =
1

µ0

(
ωab ×Bb −Ab ×Ra

b(spin)
)

(3.131)

because there is no electric �eld present. It follows from Eqs. (3.129) and
(3.131) that

∇ · ωab ×Bb = ∇ ·Ab ×Ra
b(spin) (3.132)

in ECE magnetostatics.
In UFT258 and immediately preceding papers of this series it has been

shown that in the absence of a magnetic monopole:

ωab ·Bb = Ab ·Ra
b(spin) (3.133)

and that the space part of the Cartan identity in the absence of a magnetic
monopole gives the two equations:

∇ · ωab ×Ab = 0 (3.134)

and

ωab ·∇×Ab = Ab ·∇× ωab. (3.135)

In ECE physics the magnetic �ux density is:

Ba = ∇×Aa − ωab ×Ab (3.136)

so the Beltrami equation gives:

∇×Ba = κBa = κ
(
∇×Aa − ωab ×Ab

)
. (3.137)

Eq. (3.134) from the space part of the Cartan identity is also a Beltrami
equation, as is any non-divergent equation:

∇×
(
ωab ×Ab

)
= κωab ×Ab. (3.138)
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From Eq. (3.137):

∇× (∇×Aa)−∇×
(
ωab ×Ab

)
= κ

(
∇×Aa − ωab ×Ab

)
. (3.139)

Using Eq. (3.138):

∇× (∇×Aa) = κ∇×Aa (3.140)

which implies that the vector potential is also de�ned in general by a Beltrami
equation:

∇×Aa = κAa (3.141)

QED. This is a generally valid result of ECE physics which implies that:

∇ ·Aa = 0. (3.142)

From Eq. (3.110) it follows that:

∂ρa

∂t
= 0 (3.143)

is a general result of ECE physics. From Eqs. (3.135) and (3.141):

∇× ωab = κωab (3.144)

so the spin connection vector of ECE physics is also de�ned in general by a
Beltrami equation. This important result can be cross checked for internal
consistency using note 258(4) on www.aias.us, starting from Eq. (3.50) of
this paper. Considering the X component for example:

ωaXb (∇×Aa)X = AbX (∇× ωab)X (3.145)

and it follows that:

1

A
(1)
X

(
∇×A(1)

)
X

=
1

ω
(a)
X(1)

(
∇× ωa(1)

)
X

(3.146)

and similarly for the Y and Z components. In order for this to be a Beltrami
equation, Eqs. (3.141) and (3.144) must be true, QED.

In magnetostatics there are additional results which emerge as follows.
From vector analysis:

∇ · ωab ×Bb = Bb ·∇× ωab − ωab ·∇×Bb (3.147)
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and

∇ ·Ab×Ra
b(spin) = Ra

b(spin) ·∇×Aa−Ab ·∇×Ra
b(spin). (3.148)

It is immediately clear that Eqs. (3.87) and (3.144) give Eq. (3.147) self
consistently, QED. Eq. (3.148) gives

∇ · ωab ×Bb = ∇ ·Ab ×Ra
b(spin) = 0 (3.149)

and using Eq. (3.148):

∇×Ra
b(spin) = κRa

b(spin) (3.150)

so the spin curvature is de�ned by a Beltrami equation in magnetostatics.
Also in magnetostatics:

∇×Ba = κBa = µ0J
a (3.151)

so it follows that the current density of magnetostatics is also de�ned by a
Beltrami equation:

∇× Ja = κ Ja. (3.152)

All these Beltrami equations in general have intricate �ow structures
graphed following sections of this chapter and animated on www.aias.us.
As discussed in Eqs. (3.31) to (3.35) of Note 258(5) on www.aias.us, plane
wave structures and O(3) electrodynamics [1-10] are also de�ned by Beltrami
equations. The latter give simple solutions for vacuum plane waves. In other
cases the solutions become intricate. The B(3) �eld is de�ned by the simplest
type of Beltrami equation

∇×B(3) = 0 B(3). (3.153)

In photon mass theory therefore:

∇×Aa = κ Aa, (3.154)(
� +

(mc
~

)2)
Aa = 0. (3.155)

It follows from Eq. (3.154) that:

∇ ·Aa = 0 (3.156)
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so:

∇× (∇×Aa) = κ ∇×Aa = κ2 Aa (3.157)

produces the Helmholtz wave equation:(
∇2 + κ2

)
Aa = 0. (3.158)

Eq. (3.155) is(
1

c2
∂2

∂t2
−∇2 +

(mc
~

)2)
Aa = 0 (3.159)

so: (
1

c2
∂2

∂t2
+ κ2 +

(mc
~

)2)
Aa = 0. (3.160)

Now use:

p = ~κ (3.161)

and:

∂2

∂t2
= −E

2

~2
(3.162)

to �nd that Eq. (3.160) is the Einstein energy equation for the photon of
mass m, so the analysis is rigorously self-consistent, QED.

In ECE physics the Lorenz gauge is:

∂µA
aµ = 0 (3.163)

i.e.

1

c2
∂φa

∂t
+ ∇ ·Aa = 0 (3.164)

with the solution:

∂φa

∂t
= ∇ ·Aa = 0. (3.165)

This is again a general result of ECE physics applicable under any circum-
stances. Also in ECE physics in general the spin connection vector has no
divergence:

∇ · ωab = 0 (3.166)
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because:

∇× ωab = κ ωab. (3.167)

Another rigorous test for self-consistency is given by the de�nition of the
magnetic �eld in ECE physics:

Ba = ∇×Aa − ωab ×Ab (3.168)

so:

∇ ·Ba = −∇ · ωab ×Ab = 0 (3.169)

By vector analysis:

∇ · ωab ×Ab = Ab ·∇× ωab − ωab ·∇×Ab = 0 (3.170)

because

∇× ωab = κ ωab, (3.171)

∇×Ab = κ Ab, (3.172)

and:

∇ ·Ab = 0, (3.173)

∇ · ωab = 0. (3.174)

In the absence of a magnetic monopole Eq. (3.84) also follows from the
space part of the Cartan identity. So the entire analysis is rigorously self-
consistent. The cross consistency of the Beltrami and ECE equations can be
checked using:

Bb = κ Ab − ωbc ×Ac (3.175)

as in note 258(1) on www.aias.us. Eq. (3.175) follows from Eqs. (3.168) and
(3.172). Multiply Eq. (3.175) by ωab and use Eq. (3.133) to �nd:

κ ωab ·Ab − ωab · ωbc ×Ac = Ab ·Ra
b(spin). (3.176)

Now use:

ωab · ωbc ×Ac = Ac ·
(
ωab × ωbc

)
(3.177)
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and relabel summation indices to �nd:

κ ωab ·Ab −Ab · (ωac × ωcb) = Ab ·Ra
b(spin). (3.178)

It follows that:

Ra
b(spin) = κ ωab − ωac × ωcb = ∇× ωab − ωac × ωcb (3.179)

QED. The analysis correctly and self consistently produces the correct de�-
nition of the spin curvature.

Finally, on the U(1) level for the sake of illustration, consider the Beltrami
equations of note 258(3) on www.aias.us:

∇×A = κ A (3.180)

and

∇×B = κ B (3.181)

in the Ampere Maxwell law

∇×B− 1

c2
∂E

∂t
= µ0J. (3.182)

It follows that:

κ2 A = J +
1

c2
∂E

∂t
(3.183)

where:

E = −∇φ− ∂A

∂t
. (3.184)

Therefore

κ2 A = µ0J +
1

c2
∂

∂t

(
−∇φ− ∂A

∂t

)
(3.185)

and using the Lorenz condition:

∇ ·A +
1

c2
∂φ

∂t
= 0 (3.186)

it follows that:

∂φ

∂t
= 0. (3.187)
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Using

� =
1

c2
∂2

∂t2
−∇2 (3.188)

Eq. (3.185) becomes the d'Alembert equation in the presence of current
density:

�A = µ0J. (3.189)

The solutions of the d'Alembert equation (3.189) may be found from:

B = κ A (3.190)

showing in another way that as soon as the Beltrami equation (3.87) is used,
U(1) gauge invariance is refuted.

3.3 Elecrostatics, Spin Connection Resonance and
Beltrami Structures

As argued already the �rst Cartan structure equation de�nes the electric
�eld strength as:

Ea = −c∇Aa0 −
∂Aa

∂t
− cωa0bAb + cAb0ω

a
b (3.191)

where the four potential of ECE electrodynamics is de�ned by:

Aaµ = (Aa0,−Aa) =

(
φa

c
,−Aa

)
. (3.192)

Here φa is the scalar potential. If it is assumed that the subject of electro-
statics is de�ned by:

Ba = 0, Aa = 0, Ja = 0 (3.193)

then the Coulomb law in ECE theory is given by:

∇ ·Ea = ωab ·Eb. (3.194)

The electric current in ECE theory is de�ned by:

Ja = ε0 c
(
ωa0bE

b − cAb0Ra
b(orb) + cωab ×Bb − cAb ×Ra

b(spin)
)
(3.195)
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where Ra
b(spin) is the spin part of the curvature vector and where Bb is the

magnetic �ux density. From Eqs. (3.193) and (3.195):

Ja = 0 = ε0 c
(
ωa0bE

b − cAb0Ra
b(orb)

)
(3.196)

so in ECE electrostatics:

ωa0bE
b = cAb0R

a
b(orb) (3.197)

and

Ea = −c∇Aa0 + cAb0ω
a
b (3.198)

with

∇×Ea = 0. (3.199)

From Eqs. (3.198) and (3.199)

∇×Ea = c∇× (Ab0ω
a
b) (3.200)

so we obtain the constraint:

∇× (Ab0ω
a
b) = 0. (3.201)

The magnetic charge density in ECE theory is given by:

ρamagn = ε0 c
(
ωab ·Bb −Ab ·Ra

b(spin)
)

(3.202)

and the magnetic current density by:

Jamagn = ε0

(
ωab ×Eb − cωa0bBb − c

(
Ab ×Ra

b(orb)−Ab0Ra
b(spin)

))
.

(3.203)

These are thought to vanish experimentally in electromagnetism, so:

ωab ·Bb = Ab ·Ra
b(spin) (3.204)

and

ωab ×Ea − cωa0bBb − cAb ×Ra
b(orb) + cAb0R

a
b(spin) = 0. (3.205)

In ECE electrostatics Eq. (3.204) is true automatically because:

Bb = 0, Ab = 0 (3.206)
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and Eq. (3.203) becomes:

ωab ×Eb + cAb0R
a
b(spin) = 0. (3.207)

So the equations of ECE electrostatics are:

∇ ·Ea = ωab ·Eb (3.208)

ωa0bE
b = φbRa

b(orb) (3.209)

ωab ×Eb + φbRa
b(spin) = 0 (3.210)

Ea = −∇φa + φbωab (3.211)

Later on in this chapter it is shown that these equations lead to a solution
in terms of Bessel functions, but not to Euler Bernoulli resonance.

In order to obtain spin connection resonance Eq. (3.208) must be ex-
tended to:

∇ ·Ea = ωab ·Eb − cAb(vac) ·Ra
b(orb) (3.212)

where Ab(vac) is the Eckardt Lindstrom vacuum potential [1-10]. The static
electric �eld is de�ned by:

Ea = −∇φa + φbωab (3.213)

so from Eqs. (3.212) and (3.213):

∇2φa+
(
ωab · ωbc

)
φc = ∇·

(
φbωab

)
+ωab·∇φb+cAb(vac)·Ra

b(orb). (3.214)

By the ECE antisymmetry law:

−∇φa = φbωab (3.215)

leading to the Euler Bernoulli resonance equation:

∇2φa +
(
ωab · ωbc

)
φc =

1

2
cAb(vac) ·Ra

b(orb) (3.216)

and spin connection resonance [1-10]. The left hand side contains the Hooke
law term and the right hand side the driving term originating in the vacuum
potential. Denote:

ρa(vac) =
ε0 c

2
Ab(vac) ·Ra

b(orb) (3.217)
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then the equation becomes:

∇2φa +
(
ωab · ωbc

)
φc =

ρa(vac)

ε0
. (3.218)

The left hand side of Eq. (3.218) is a �eld property and the right hand side
a property of the ECE vacuum. In the simplest case:

∇2φ+ (ω0)
2φ =

ρ(vac)

ε0
(3.219)

and produces undamped resonance if:

ρ(vac) = ε0A cosωZ (3.220)

where A is a constant. The particular integral of Eq. (3.219) is:

φ =
A cosωZ

(ω0)2 − ω2
(3.221)

and spin connection resonance occurs at:

ω = ω0 (3.222)

when:

φ→∞ (3.223)

and there is a resonance peak of electric �eld strength from the vacuum.
Later in this chapter solutions of Eq. (3.218) are given in terms of a com-

bination of Bessel functions, and also an analysis using the Eckardt Lind-
strom vacuum potential as a driving term.

In the absence of a magnetic monopole the Cartan identity is, as argued
already:

∇ · ωab ×Ab = 0 (3.224)

which implies:

ωab ·∇×Ab = Ab ·∇× ωab. (3.225)

A possible solution of this equation is:

ωab = εabcω
c (3.226)
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leading as argued already to a rigorous justi�cation for O(3) electrodynamics.
The Cartan identity (3.224) is itself a Beltrami equation:

∇×
(
ωab ×Ab

)
= κ ωab ×Ab. (3.227)

From Eqs. (3.226) and (3.227):

∇×
(
Ac ×Ab

)
= κ Ac ×Ab. (3.228)

In the complex circular basis:

A(1) ×A(2) = i A(0)A(3)∗ et cyclicum (3.229)

so from Eqs. (3.228) and (3.229):

∇×A(i) = κ A(i), i = 1, 2, 3 (3.230)

which are Beltrami equations as argued earlier in this chapter.
This result can be obtained self consistently using the Gauss law:

∇ ·Ba = 0 (3.231)

which as argued already implies the Beltrami equation:

∇×Ba = κ Ba. (3.232)

From Eqs. (3.168) and (3.232):

∇×Ba = κ Ba = κ
(
∇×Aa − ωab ×Ab

)
(3.233)

so:

∇× (∇×Aa)−∇×
(
ωab ×Ab

)
= κ

(
∇×Aa − ωab ×Ab

)
(3.234)

Using Eq. (3.227) gives:

∇× (∇×Aa) = κ ∇×Aa (3.235)

which implies Eqs. (3.228) to (3.230) QED. As shown earlier in this chapter
the Beltrami structure also governs the spin connection vector:

∇× ωab = κ ωab. (3.236)
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It follows that the equations:

ω(3) =
1

2

κ

A(0)
A(3) (3.237)

and:

ω(2) =
1

2

κ

A(0)
A(2) (3.238)

produce O(3) electrodynamics [1-10]:

B(1)∗ = ∇×A(1)∗ − i κ

A(0)
A(2) ×A(3) et cyclicum. (3.239)

As shown in Note 259(3) on www.aias.us there are many inter-related equa-
tions of O(3) electrodynamics which all originate in geometry.

Later in this chapter it is argued a consequence of these conclusions is
that the spin connection and orbital curvature vectors also obey a Beltrami
structure.

The fact that ECE is a uni�ed �eld theory also allows the development
and interrelation of several basic equations, including the de�nition of B(3):

B(3) = ∇×A(3) − i κ

A(0)
A(1) ×A(2). (3.240)

It can be written as:

B = −i e
~

A×A∗ = B(0)k = BZk. (3.241)

Although B(3) is a radiated and propagating �eld as is well-known [1-10] Eq.
(3.241) can be used as a general de�nition of the magnetic �ux density for a
choice of potentials. This is important for the subject of magnetostatics and
the development [1-10] of the fermion equation with:

A =
1

2
B× r. (3.242)

Eq. (3.241) gives the transition from classical to quantum mechanics. In
ECE electrodynamics A must always be a Beltrami �eld and this is the
result of the Cartan identity as already argued. So it is necessary to solve
the following equations simultaneously:

B = −i e
~

A×A∗, A =
1

2
B× r, ∇×A = κ A. (3.243)
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This can be done using the principles of general relativity, so that the electro-
magnetic �eld is a rotating and translating frame of reference. The position
vector is therefore:

r = r∗ =
r(0)√

2
(i− ij) eiφ (3.244)

where:

r = r(1), r∗ = r(2), φ = ωt− κZ (3.245)

so:

r(1) × r(2) = ir(0)r(3)∗ et cyclicum. (3.246)

It follows that:

∇× r(1) = κ r(1) (3.247)

∇× r(2) = κ r(2) (3.248)

∇× r(3) = 0 r(3) (3.249)

The results (3.246) for plane waves can be generalized to any Beltrami
solutions, so it follows that spacetime itself has a Beltrami structure. From
Eqs. (3.242) and (3.244):

A = A(1) =
B(0)r(0)

2
√

2
(ii + j) eiφ =

A(0)

√
2

(ii + j) eiφ (3.250)

where:

A(0) =
1

2
B(0)r(0) (3.251)

and from Eq. (3.250):

∇×A = κ A (3.252)

QED. Therefore it is always possible to write the vector potential in the
form (3.242) provided that spacetime itself has a Beltrami structure. This
conclusion ties together several branches of physics because Eq. (3.242) is
used to produce the Landé factor, ESR, NMR and so on from the Dirac
equation, which becomes the fermion equation [1-10] in ECE physics.

As argued already the tetrad postulate and ECE postulate give:(
� + κ20

)
A = 0 (3.253)
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and the fermion or chiral Dirac equation is a factorization of Eq. (3.253).
As shown in Chapter 1:

κ20 = qνa∂
µ
(
ωaµν − Γaµν

)
(3.254)

where qνa is the inverse tetrad, de�ned by:

qaνq
ν
a = 1. (3.255)

In generally covariant format Eq. (3.253) is:(
� + κ20

)
Aaµ = 0 (3.256)

and with:

Aaµ = (Aa0,−Aa) (3.257)

it follows that:(
� + κ20

)
A0 = 0, (3.258)(

� + κ20
)
A = 0, (3.259)

which gives Eq. (3.254) QED. The d'Alembertian is de�ned by:

� =
1

c2
∂2

∂t2
−∇2. (3.260)

The Beltrami condition:

∇A = κ A (3.261)

gives the Helmholtz wave equation:(
∇2 + κ2

)
A = 0 (3.262)

if:

∇ ·A = 0. (3.263)

From Eq. (3.259):(
1

c2
∂2

∂t2
−∇2 + κ20

)
A = 0 (3.264)
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so:

1

c2
∂2A

∂t2
+
(
κ20 + κ2

)
A = 0 (3.265)

which is the equation for the time dependence of A. The Helmholtz and
Beltrami equations are for the space dependence of A. Eq. (3.267) is satis�ed
by:

A = A0 exp(iωt) (3.266)

where:

ω2

c2
= κ2 + κ20. (3.267)

Eq. (3.267) is a generalization of the Einstein energy equation for a free
particle:

E2 = c2p2 +m2c4 (3.268)

where:

E = ~ω, p = ~κ (3.269)

using:

κ20 =
(mc

~

)2
= qνa∂

µ
(
ωaµν − Γaµν

)
. (3.270)

So mass in ECE theory is de�ned by geometry.
The general solution of Eq (3.256) is therefore:

Aaµ = Aaµ(0) exp (i(ωt− κZ)) (3.271)

where:

ω2 = c2
(
κ2 + κ20

)
. (3.272)

It follows that there exist the equations:(
� + κ20

)
φa = 0 (3.273)

and (
∇2 + κ2

)
φa = 0 (3.274)
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where φa is the scalar potential in ECE physics. For each a:(
∇2 + κ2

)
φ = 0. (3.275)

Now write:

κ0 =
mc

~
(3.276)

where m is mass. The relativistic wave equation for each a is:(
� + κ20

)
φ = 0 (3.277)

which is the quantized format of:

E2 = c2p2 +m2c4 = c2p2 + ~2κ20c2. (3.278)

Eq. (3.278) is:

E = γmc2 (3.279)

where the Lorentz factor is:

γ =

(
1− v2

c2

)−1/2
(3.280)

and where the relativistic momentum is:

p = γmv. (3.281)

De�ne the relativistic energy as:

T = E −mc2 (3.282)

and it follows that:

T = (γ − 1)mc2 −→v�c
1

2
mv2 (3.283)

which is the non-relativistic limit of the kinetic energy, i.e.:

T =
p2

2m
. (3.284)

Using:

T = i~
∂

∂t
, p = −i~∇ (3.285)
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Eq. (3.284) quantizes to the free particle Schroedinger equation:

− ~2

2m
∇2φ = Tφ (3.286)

which is the Helmholtz equation:(
∇2 +

2mT

~2

)
φ = 0. (3.287)

It follows that the free particle Schroedinger equation is a Beltrami equation
but with the vector potential replaced by the scalar potential φ, which plays
the role of the wavefunction. It also follows in the non-relativistic limit that:(

∇2 +
2mT

~2

)
A = 0, (3.288)

so:

κ2 =
2mT

~2
. (3.289)

The Helmholtz equation (3.287) can be written as:(
∇2 + κ2

)
φ = 0 (3.290)

which is an Euler Bernoulli equation without a driving term on the right
hand side. In the presence of potential energy V Eq. (3.286) becomes:

Hφ =

(
− ~2

2m
∇2 + V

)
φ = Eφ (3.291)

where H is the Hamiltonian and E the total energy:

E = T + V (3.292)

Eq. (3.291) is:(
∇2 + κ2

)
φ =

2mV

~2
φ (3.293)

which is an inhomogeneous Helmholtz equation similar to an Euler Bernoulli
resonance equation with a driving term on the right hand side. However
Eq. (3.293) is an eigenequation rather than an Euler Bernoulli equation
as conventionally de�ned, but Eq. (3.293) has very well-known resonance
solutions in quantum mechanics. Eq. (3.293) may be written as:(

∇2 + κ21
)
φ = 0 (3.294)
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where:

κ21 =
2m

~2
(E − V ) (3.295)

and in UFT226 �. on www.aias.us was used in the theory of low energy
nuclear reactions (LENR). Eq. (3.294) is well known to be a linear oscillator
equation which can be used to de�ne the structure of the atom and nucleus.
It can be transformed into an Euler Bernoulli equation as follows:(

∇2 + κ21
)
φ = A cos(κ2Z) (3.296)

where the right hand side represents a vacuum potential. It is exactly the
structure obtained from the ECE Coulomb law as argued already.

3.4 The Beltrami Equation for Linear Momentum

The free particle Schroedinger equation can be obtained from the Beltrami
equation for momentum:

∇× p = κp (3.297)

which can be developed into the Helmholtz equation:(
∇2 + κ2

)
p = 0 (3.298)

if it is assumed that:

∇ · p = 0. (3.299)

If p is a linear momentum in the classical straight line then:

κ = 0. (3.300)

In general however p has intricate Beltrami solutions, some of which are
animated in UFT258 on www.aias.us and its animation section.

Now quantize Eq. (3.298):

pψ = −i~∇ψ (3.301)

so: (
∇2 + κ2

)
∇ψ = 0. (3.302)
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Use:

∇2∇ψ = ∇∇2ψ (3.303)

and:

∇(κ2ψ) = κ2∇ψ (3.304)

assuming that:

∇κ = 0 (3.305)

to arrive at:

∇
((
∇2 + κ2

)
ψ
)

= 0. (3.306)

A possible solution is:(
∇2 + κ2

)
ψ = 0 (3.307)

which is the Helmholtz equation for the scalar ψ, the wave function of quan-
tum mechanics. The Schroedinger equation for a free particle is obtained by
applying Eq. (3.301) to:

E =
p2

2m
(3.308)

so:

− ~2

2m
∇2ψ = Eψ (3.309)

and: (
∇2 +

2Em

~2

)
ψ = 0. (3.310)

Eqs. (3.307) and (3.310) are the same if:

κ2 =
2Em

~2
(3.311)

QED. Using the de Broglie relation:

p = ~κ (3.312)
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then:

p2 = 2Em (3.313)

which is Eq. (3.308), QED. Therefore the free particle Schroedinger equation
is the Beltrami equation:

∇× p =

(
2Em

~2

)1/2

p (3.314)

with:

pψ = −i~∇ψ. (3.315)

The free particle Schroedinger equation originates in the Beltrami equation.
This method can be extended to the general Schroedinger equation in

which the potential energy V is present. Consider the momentum Beltrami
equation (3.297) in the general case where κ depends on coordinates. Taking
the curl of both sides of Eq. (3.297):

∇× (∇× p) = ∇× (κ p) . (3.316)

By vector analysis Eq. (3.316) can be developed as:

∇ (∇ · p)−∇2p = κ2p + ∇κ× p (3.317)

so: (
∇2 + κ2

)
p = ∇ (∇ · p)−∇κ× p. (3.318)

One possible solution is:(
∇2 + κ2

)
p = 0 (3.319)

and

∇ (∇ · p) = ∇κ× p. (3.320)

Eq. (3.320) implies

p ·∇ (∇ · p) = p ·∇κ× p = 0. (3.321)

Two possible solutions of Eq. (3.321) are:

∇ · p = 0 (3.322)
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and

∇ (∇ · p) = 0. (3.323)

Using the quantum postulate (3.301) in Eq. (3.319) gives:(
∇2 + κ2

)
∇ψ = 0 (3.324)

and the Schroedinger equation [1-10]:(
∇2 + κ2

)
ψ = 0. (3.325)

From Eq. (3.325)

∇
((
∇2 + κ2

)
ψ
)

= 0 (3.326)

i. e. (
∇2 + κ2

)
∇ψ +

(
∇
(
∇2 + κ2

))
ψ = 0, (3.327)

a possible solution of which is:(
∇2 + κ2

)
∇ψ = 0 (3.328)

and (
∇
(
∇2 + κ2

))
ψ = 0. (3.329)

Eq. (3.329) is Eq. (3.324), QED. Eq. (3.329) can be written as:

∇∇2ψ + ∇κ2ψ = 0 (3.330)

i. e.

∇
(
∇2ψ + κ2ψ

)
= 0. (3.331)

A possible solution of Eq. (3.331) is the Schroedinger equation:(
∇2 + κ2

)
ψ = 0. (3.332)

So the Schroedinger equation is compatible with Eq. (3.324).
Eq. (3.322) gives:

∇2ψ = 0 (3.333)
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which is consistent with Eq. (3.332) only if:

κ2 = 0. (3.334)

Eq. (3.323) gives:

∇
(
∇2ψ

)
= 0 (3.335)

where:

∇2ψ = −κ2ψ. (3.336)

Therefore:

∇
(
κ2ψ

)
=
(
∇κ2

)
ψ + κ2∇ψ (3.337)

and:

∇ψ = −
(
∇κ2

κ2

)
ψ. (3.338)

Therefore:

∇ ·∇ψ = ∇2ψ = −∇ ·
(
∇κ2

κ2
ψ

)
(3.339)

= −
(
∇ ·

(
∇κ2

κ2

))
ψ −

(
∇κ2

κ2

)
∇ψ.

From a comparison of Eqs. (3.332) and (3.339) we obtain the subsidiary
condition:

∇2κ2 = κ4 (3.340)

where:

κ2 =
2m

~2
(V − E) . (3.341)

Therefore:

∇κ2 =
2m

~2
∇V (3.342)

and

∇2κ2 =
2m

~2
∇2V (3.343)
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giving a quadratic constraint in V − E:

∇2(V − E) =
2m

~2
(V − E)2. (3.344)

This can be written as a quadratic equation in E, which is a constant. E is
expressed in terms of V, ∇V , and ∇2V . Using:

∇E = 0 (3.345)

gives a di�erential equation in V which can be solved numerically, giving an
expression for V. Finally this expression for V is used in the Schroedinger
equation:(

− ~2

2m
∇2 + V

)
ψ = Eψ (3.346)

to �nd the energy levels of E and the wavefunctions ψ. These are energy
levels and wavefunctions of the interior parton structure of an elementary
particle such as an electron, proton or neutron. The well-developed methods
of computational quantum mechanics can be used to �nd the expectation
values of any property and can be applied to scattering theory, notably deep
inelastic electron-electron, electron-proton and electron-neutron scattering.
The data are claimed conventionally to provide evidence for quark structure,
but the quark model depends on the validity of the U(1) and electroweak
sectors of the standard model. In this book these sector theories are refuted
in many ways.

3.5 Examples for Beltrami functions

In this section we give some examples of Beltrami �elds with the corre-
sponding graphs. We start the demonstration with a general consideration.
Marsh [28] de�nes a general Beltrami �eld with cylindrical geometry by

B =

 0
Bθ (r)
BZ (r)

 (3.347)

with cylindrical coordinates r, θ, Z. There is only an r dependence of the
�eld components. For this to be a Beltrami �eld, the Beltrami condition in
cylindrical coordinates

∇×B =


1
r
∂BZ
∂θ −

∂Bθ
∂Z

∂Br
∂Z −

∂BZ
∂r

1
r

(
∂(r Bθ)
∂r − ∂Br

∂θ

)
 = κ B (3.348)
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must hold. The divergence in cylindridal coordinates is

∇ ·B =
1

r

∂(r Br)

∂r
+

1

r

∂Bθ
∂θ

+
∂BZ
∂Z

. (3.349)

Obviously the �eld (3.347) is divergence-free, a prerequisite to be a Beltrami
�eld. Eq.(3.348) simpli�es to

∇×B =

 0

−∂BZ
∂r

∂Bθ
∂r + 1

rBθ.

 = κ

 0
Bθ
BZ

 . (3.350)

κ can be a function in general. Here we consider the case of constant κ.
From the second component of Eq.(3.350) follows

− ∂

∂ r
BZ = κBθ (3.351)

and from the third component

r
∂

∂ r
Bθ +Bθ = κ r BZ . (3.352)

Integrating Eq.(3.351), inserting the result for BZ into (3.352) gives

∂

∂ r
Bθ +

Bθ
r

= −κ2
∫
Bθ dr, (3.353)

and di�erentiating this equation leads to the second order di�erential equa-
tion

r2
∂2

∂ r2
Bθ + r

∂

∂ r
Bθ + κ2 r2Bθ −Bθ = 0. (3.354)

Finally we change the variable r to κr which leads to Bessel's di�erential
equation

r2
d2

d r2
Bθ (κ r) + r

d

d r
Bθ (κ r) +

(
κ2 r2 − 1

)
Bθ (κ r) = 0. (3.355)

The solution is the Bessel function

Bθ(r) = B0 J1(κr) (3.356)

(with a constant B0) and from (3.351) follows

BZ(r) = B0 J0(κr). (3.357)
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This is the known solution of Reed/Marsh, scaled by the wave number κ,
with longitudinal components. This solution is graphed in Fig. 3.1. The
stream lines are shown in Fig. 3.2. It has to be taken in mind that stream
lines show how a test particle moves in the vector �eld which is considered
a velocity �eld:

x + ∆x = x + v(x) ∆t. (3.358)

All streamline examples are started with 9 points in parallel on the X axis
so all animations should be comparable.

The general Beltrami �eld can be written as

v = κ ∇× (ψa) + ∇×∇× (ψa) (3.359)

where ψ is an arbitrary function, κ is a constant and a is a constant vector.
In Fig. 3.3 we show an example with

ψ =
1

L3
XY Z, (3.360)

a = [0, 0, 1]. (3.361)

The �eld is coplanar to the XY plane and gives planar streamlines of hyper-
bolic form.

Another known solution based on Bessel functions is the Lundquist so-
lution

v =

J1(κr)λe−λZJ1(κr)αe
−λZ

J1(κr)e
−λZ

 (3.362)

with

κ =
√
α2 + λ2 (3.363)

and constants α and λ. The Lundquist function (for Z > 0) is graphed in
Fig. 3.4 and initially behaves similar to the Bessel case discussed above.
However the �eld shrinks with Z due to the exponential factor. Fig. 3.5
shows a projection into the XY plane. The vectors are always rotated by
45◦ against the radial direction. Longitudinal parts are not visible here as
discussed for the Rodriguez-Vaz case. Outer streamlines (Fig. 3.6) go down
to the region Z < 0, and here the exponential factor exp(−λZ) gives an
exponential growth, this is well recognizable in the second version of this
animation on www.aias.us. λ can be assumed complex-valued as discussed
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by Reed, leading to oscillatory solutions, but then problems can arise in
other parts of the �eld de�nition.

Finally we give some graphic examples for plane waves. Although these
are well known, it is useful to recall certain features that not always are
considered where plane waves are used. In ECE theory their most prominent
appearance is in the vector potential of the free electromagnetic �eld, in cyclic
cartesian coordinates:

A1 =
A0√

2

 ei (ω t−κZ)

−i ei (ω t−κZ)
0

 , A2 =
A0√

2

 ei (ω t−κZ)i ei (ω t−κZ)

0

 , A3 = 0.

(3.364)

Their divergence is zero and the eigenvalue of the curl operator is κ or −κ,
respectively. The plane wave can also be de�ned as real valued:

A1 =
A0√

2

 cos(ω t− κZ)
− sin(ω t− κZ)

0

 , A2 =
A0√

2

sin(ω t− κZ)
cos(ω t− κZ)

0

 , A3 = 0

(3.365)

and are Beltrami �elds also, however with positive eigenvalues for A1 and
A2. The real-valued plane waves are graphed as vector �elds in Fig. 3.7 for
a �xed instant of time t = 0. A1 and A2 are perpendicular to one another
and de�ne a rotating frame in Z direction. The streamlines in one plane
are all parallel straight lines. To show a variation, they have been graphed
in Fig. 3.8 for di�erent starting points on the Z axis. Here the rotation of
frames can be seen again.

Streamlines of plane waves are not very instructive concerning the phys-
ical meaning of these waves. It is more illustrative to show their time be-
haviour. We started with streamlines in the XY plane and computed their
time evolution. The streamlines would remain in that plane so we added a
Z component v t to simulate a propagation in that direction as is the case
for electromagnetic waves with v = c. Thus in Fig. 3.9 the trace of circu-
larly polarized waves is obtained. Interestingly the waves are phase-shifted,
although all starting points are at Y = 0.

In this paper we are considering plane wave in the context of Beltrami
�elds. As worked out the �elds E, B and A are parallel. Therefore the compo-
nents A1 and A2 do not demonstrate the behaviour of electric and magnetic
�elds of ordinary transversal electromagnetic �elds which are phase-shifted
by 90◦. Reed [27] gives a very good explanation of this extraordinary case:
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Every plane wave solution corresponds to two circularly polarized waves
propagating oppositely to each other and combining to form a standing wave.
This standing wave does not possess the standard power �ow feature of linearly-
or circularly-polarized waves with E ⊥ B, since the combined Poynting vectors
of the circularly-polarized waves cancel each other similar to the situation we
met earlier in connection with Beltrami plasma vortex �laments. Essentially,
the combination of these two waves produces a standing wave propagating
non-zero magnetic helicity. In the book by Marsh [28] the relationship is
shown between the helicity and energy densities for this wave as well, as the
very interesting fact that any magnetostatic solution to the FFMF equations
can be used to construct a solution to Maxwell�s equations with E‖B.

Figure 3.1: Bessel function solution.
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Figure 3.2: Streamlines of the Bessel function solution.

Figure 3.3: General solution with ψ = 1
L3XY Z.
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Figure 3.4: Lundquist solution.

Figure 3.5: Lundquist solution, projected to XY plane.
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Figure 3.6: Streamlines of Lundquist solution.

Figure 3.7: Plane wave �eld, A1 and A2.
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Figure 3.8: Streamlines of plane waves.

Figure 3.9: Time evolution of points transported by plane waves.
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3.6 Parton Structure of Elementary Particles

We develop a solution of the constraint Schroedinger equation (3.346) on
basis of the Beltrami equations developed in this chapter. The solution is
applied to elementary particles and reveals their so-called Parton structure.

Solution of the constraint equation (3.340)

Before solving the Schroedinger equation (3.346), the potential is derived
from the constraint equation (3.340) or (3.344), respectively. We choose the
form (3.340) for κ2 which holds for all energies E so a solution of (3.340)
is universal in E. For the electron it is known that there is no angular
dependence of the particle charge density. For the proton there is only a
weak angular dependence. Therefore we restrict the ∇2 operator in (340) to
the radial part, giving

d2

d r2
κ2 (r) +

2

r

d

d r
κ2 (r) = κ4 (r) (3.366)

with

κ2 =
2m (V − E)

~2
(3.367)

as before. When κ2 is known, the potential is obtainable by

V = E +
~2 κ2

2m
. (3.368)

In order to simplify Eq.(3.366) we substitute κ by a new function λ:

λ2(r) := r κ2(r). (3.369)

This is the same procedure as getting rid of the �rst derivative in the standard
solution procedure for the radial Schroedinger equation. Eq.(3.366) then
reads:

d2

d r2
λ2 (r) =

λ4 (r)

r
. (3.370)

The initial conditions have to be chosen as follows. Because the radial coor-
dinate in (3.369) starts at r = 0, we have to use λ2(0) = 0 to be consistent.
For the derivative of λ2 follows from (3.369):

dλ2

dr
= κ2 + 2 r

dκ

dr
. (3.371)
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Only the �rst term contributes for r = 0 so that the initial value of κ2

determines the derivative of λ2 at this point. In total:

λ2(0) = 0, (3.372)

dλ2

dr
(0) = κ2(0). (3.373)

If κ2(0) is positive, we obtain only functions with positive curvature for
λ2 and κ2, see Fig. 3.10. The potential function is always positive and
greater than zero, allowing no bound states. Both functions diverge for
large r. Therefore we have to start with a negative value of κ2(0). Then we
obtain a negative region of the potential function, beginning with a horizontal
tangent. This is the same as in the Woods Saxon potential, a model potential
for of atomic nuclei. There is no singularity at the origin because there is no
point charge.

Numerical studies give the result that the solutions λ2 and κ2 are always
of the type shown in Fig. 3.11. The radial scale is determined by the
depth of the inital value κ2(0). We have chosen this value so large that
the radial scale (in atomic units) is in the range of the radii of elementary
particles, see Table 3.1. As an artifact, the diverging behaviour for r → ∞
found previously remains for negative initial values of the potential function.
Obviously κ2 crosses zero when the derivative of λ2 has a horizontal tangent
(Fig. 3.11). It would be convenient to cut the potential at this radius.

Solution of the radial Schroedinger equation

After having dertermined the potential function κ2 which internally depends
on E, we can solve the radial Schroedinger equation derived from (3.346):

− ~2

2m

d2

d r2
R (r)− ~2

mr

d

d r
R (r) + V (r) R (r) = E R (r) (3.374)

with R being the radial part of the wave function. We substitute R as usual:

P (r) := r R(r) (3.375)

to obtain the simpli�ed equation

d2

d r2
P (r) =

2m

~2
(V (r)− E) P (r) . (3.376)

V − E can be replaced by κ2 which is already known from the constraint
equation, so we have

d2

d r2
P (r) =

λ2 P (r)

r
= κ2 P (r) . (3.377)
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Obviously the energy parameter E is subsumed by κ. The computed κ func-
tion is valid for an arbitrary E. Since the left hand side of (3.377) is a
replacement of the ∇2 operator, the Schroedinger equation has been trans-
formed into a Beltrami equation with variable scalar function κ2 (assuming
no divergence of P ). There is no energy dependence left and the equation
can be solved as an ordinary di�erential equation. This is a linear equa-
tion in P so that the result can be normalized arbitrarily and so can the
�nal result R. This is the same again as for the solution procedure of the
Schroedinger equation. Regarding the initial conditions, P starts at zero as
discussed above and its derivative can be chosen arbitrarily, for example:

P (0) = 0, (3.378)

dP

dr
(0) = 1. (3.379)

The results for R, R2 and R2r2 are graphed in Fig. 3.12. Again the functions
have to be cut at the cut-o� radius of about 2 · 10−5 a.u.

Comparison with experiments

Experimental values of particle radii are listed in Table 3.1. The classical
electron radius is calculated from equating the mass energy with the elec-
trostostatic energy in a sphere and turns out to be simply

re = α2a0 (3.380)

with α being the �ne structure constant and a0 the Bohr radius. This radius
value is however larger than the proton radius. Therefore a more realistic
calculational procedure seems to be scaling the proton radius with the mass
ratio compared to the electron (second row in Table 3.1). The experimental
limits are even smaller so that the accepted opinion is that the electron is
a point particle which it certainly cannot be in a mathematical sense since
there are no singularities in nature.

The charge density characteristics of proton and neutron are exponen-
tially decreasing functions. This is not totally identical to the properties
obtained for R2 from our calculation (Fig. 3.13) which more looks like a
Gaussian function. However, Gaussians have been observed for atomic nu-
clei containing more than one proton and neutron.

There is a diagram in the literature showing the charge densities for the
proton and neutron [30] (replicated in Fig. 3.14). The charge densities start
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with zero values therefore they seem to describe the e�ective charge in a
sphere of radius r which has to be compared with

ρe = R2 · r2 (3.381)

of our calculation. This function (with negative sign) has been graphed
in Fig. 3.13 in the range below the cut-o� radius. Since our function is
not normalized the vertical scales di�er. The proton has a shoulder in the
charge density which is not reproduced by our calculation. The neutron is
known not to be charge-neutral over the radius but to have a positive core
and a negative outer region. The negative region which is called "shell" even
pertains to the centre in Fig. 3.14. The shape of the shell is quite conforming
to our calculation in Fig. 3.13. Some other experimental charge densities of
the proton have been derived by Venkat et al. [29] and Sardin [30], see Fig.
4 therein. They compare quite well with our results for R2r2, Fig. 3.13 of
this paper.

As already stated, our calculation does not contain an explicit energy pa-
rameter, therefore we do not obtain a mass spectrum of elementary particles
or partons. The diameter of e�ective charge is de�ned by the initial value
of κ2. For the results shown we had to choose κ2 = −5 · 1010 a.u. which is
quite a lot. The rest energy of the proton is 938 MeV or 3.5 · 107 a.u. which
is three orders of magnitude less. Obviously the potential has to be much
deeper than the (negative) rest energy.

In conclusion, the Beltrami approach of ECE theory leads to a quali-
tatively correct desription of the internal structure of elementary particles,
in particular the neutron. The binding energy cannot be determined since
it cancels out from the calculation. It seems that the Beltrami structure is
not valid in the boundary region of elementary particles or partons since the
charge density does not go asymptotically to zero. This can be remedied by
de�ning a cut-o� radius where the radial function has a zero crossing. This
was a �rst approach to compute the interior of elementary particles (the
so-called parton structure) by ECE theory. For future developments more
sophisticated approaches have to be found.

85



3.6. PARTON STRUCTURE OF ELEMENTARY PARTICLES

Particle charge density characteristic radius [m] radius [a.u.]
electron (classical) delta function 2.82 · 10−15 5.33 · 10−5

electron (derived)a delta function 9.1 · 10−17 1.72 · 10−6

proton (measured) neg. exponential function 1.11 · 10−15 2.10 · 10−5

proton (charge radius) neg. exponential function 8.8 · 10−16 1.66 · 10−5

neutron (measuerd) neg. exponential function 1.7 · 10−15 3.21 · 10−5

atomic nuclei Gaussian or Fermi function 2− 8 · 10−15 4− 15 · 10−5

aElectron radius from volume comparison with (mproton/melectron)
1/3

Table 3.1: Experimental data of elementary particles [29], [30].

Figure 3.10: Solution functions of constraint equation (38) for κ2(0) > 0.
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Figure 3.11: Solution functions of constraint equation (38) for κ2(0) < 0.

Figure 3.12: Parton solution of the Schroedinger equation.
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Figure 3.13: Radial wave function −R2 · r2.

Figure 3.14: Experimental charge densities of elementary particles [30].
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Chapter 4

Photon Mass and the B(3)
Field

4.1 Introduction

The B(3) �eld was inferred in November 1991 [1]- [10] from a consideration
of the conjugate product of nonlinear optics in the inverse Faraday e�ect. In
physics before the great paradigm shift of ECE theory the conjugate product
was thought to exist in free space only in a plane of two dimensions. This was
absurd dogma necessitated by the need for a massless photon and the U(1)
gauge invariance of the old theory [24]. The lagrangian had to be invariant
under a certain type of gauge transformation. Therefore there could be
no longitudinal components of the free electromagnetic �eld, meaning that
the vector cross product known as the conjugate product could have no
longitudinal component in free space, but as soon as it interacted with matter
it produced an experimentally observable longitudinal magnetization. In
retrospect this is grossly absurd, it de�es basic geometry, the basic de�nition
of the vector cross product in three dimensional space, or the space part of
four dimensional spacetime.

The �rst papers on B(3) appeared in Physica B in 1992 and 1993 and
can be seen in the Omnia Opera of www.aias.us. The discovery of B(3) was
not immediately realized to be linked to the mass of the photon, an idea that
goes back to the corpuscular theory of Newton and earlier. It was revived
by Einstein as he developed the old quantum theory and special relativity,
and with the inference of wave particle duality it became part of de Broglie's
school of thought in the Institut Henri Poincaré in Paris. Members of this
school included Proca and Vigier, whose life work was dedicated largely to
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the theory of photon mass and a type of quantum mechanics that rejected the
Copenhagen indeterminacy. This is usually known as causal or determinist
quantum mechanics. The ECE theory has clearly refuted indeterminacy in
favour of causal determinism, because ECE has shown that essentially all
the valid equations of physics have their origin in geometry. Indeterminism
asserts that some aspects of nature are absolutely unknowable, and that there
is no cause to an e�ect, and that a particle for example can do anything
it likes, go forward or backward in time. To the causal determinists this
is absurd and anti Baconian dogma, so they have rejected it since it was
proposed, about ninety years ago. This was the �rst great schism in physics.
The second great schism follows the emergence of ECE theory, which has split
physics into dogma (the standard model) and a perfectly logical development
based on geometry (ECE theory). Every e�ect has a cause, and the wave
equations of physics are derived from geometry in a rigorously logical manner.
Many aspects of the standard model have been refuted with astonishing ease.
This suggests that the standard model was �not even wrong� in the words
of Pauli, it was a plethora of ridiculous abstraction that could never be
tested experimentally and which very few could understand. This plethora
of nonsense is blasted out over the media as propaganda, doing immense
harm to Baconian science. This book tries to redress some of that harm.

Vigier immediately accepted the B(3) �eld and in late 1992 suggested in
a letter to M. W. Evans, the discoverer of B(3), that it implied photon mass
because it was an experimentally observable longitudinal component of the
free �eld and so refuted the dogma of U(1) gauge transformation. Vigier was
well aware of the fact that the Proca lagrangian is not U(1) gauge invariant
because of photon mass, and by 1992 had developed the subject in many
directions. The subject of photon mass was as highly developed as anything
in the standard physics. The two types of physics developed side by side,
one being as valid as the other, but one (the standard model) being much
better known. The de Broglie School of Thought was of course well known
to Einstein, who invited Vigier to become his assistant, so by implication
Einstein favoured the determinist school of quantum mechanics as is well
known. So did Schrödinger, who worked on photon mass for many years.
One of Schrödinger's last papers, with Bass, is on photon mass, from the
Dublin Institute for Advanced Studies in the mid �fties. So by implication,
Einstein, de Broglie and Schrödinger all rejected the standard model's U(1)
gauge invariance, so they would have rejected the Higgs boson today.

The B(3) �eld was also accepted by protagonists of higher topology elec-
trodynamics, three or four of whose books appear in this World Scienti�c
series �Contemporary Chemical Physics�. For example books by Lehnert
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and Roy, Barrett, Harmuth et al., and Crowell, and it was also accepted by
Kielich, a pioneer of nonlinear optics. Other articles, notably by Reed [27]
on the Beltrami �elds and higher topology electrodynamics, appear in �Mod-
ern Nonlinear Optics�, published in two editions and six volumes form 1992
to 2001. Piekara also worked in Paris and with Kielich, inferred the inverse
Faraday e�ect (IFE). The latter was re-inferred by Pershan at Harvard in the
early sixties and �rst observed experimentally in the Bloembergen School at
Harvard in about 1964. The �rst observation used a visible frequency laser,
and the IFE was con�rmed at microwave frequencies by Deschamps et al. [35]
in Paris in 1970 in electron plasma. So it was shown to be an ubiquitous
e�ect that depended for its description on the conjugate product. The B(3)
�eld was widely accepted as being a natural description of the longitudinal
magnetization of the IFE.

Following upon the suggestion by Vigier that B(3) implied the existence
of photon mass, the �rst attempts were made to develop O(3) electrodynam-
ics [1]- [10], in which the indices of the complex circular basis, (1), (2) and
(3), were incorporated into electrodynamics as described in earlier chapters
of this book. Many aspects of U(1) gauge invariance were rejected, as de-
scribed in the Omnia Opera on www.aias.us from 1993 to 2003, a decade of
development. During this time, �ve volumes were produced by Evans and
Vigier [1]- [10] in the famous van der Merwe series of �The Enigmatic Pho-
ton�, a title suggested by van der Merwe himself. These are available in the
Omnia Opera of www.aias.us. In the mid nineties van der Merwe had pub-
lished a review article on the implications of B(3) at Vigier's suggestion, in
�Foundations of Physics�. This was a famous journal of avantgarde physics,
one of the very few to allow publication of ideas that were not those of the
standard physics.

The O(3) electrodynamics was a higher topology electrodynamics that
was transitional between early B(3) theory and ECE theory, in which the
photon mass and B(3) were both derived from Cartan geometry.

4.2 Derivation of the Proca Equations from ECE
Theory

The Proca equation as discussed brie�y in Chapter Three is the fundamental
equation of photon mass theory and in this section it is derived from the
tetrad postulate. The latter always gives �nite photon mass in ECE theory
and consider it in the format:

Dµq
a
ν = ∂µq

a
ν + ωaµbq

b
ν − Γλµνq

a
λ = 0 (4.1)
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where qaν is the Cartan tetrad, where ωaµb is the spin connection and Γλµν
is the gamma connection. De�ne:

ωaµν = ωaµbq
b
ν , (4.2)

Γaµν = Γλµνq
a
λ, (4.3)

then:

∂µq
a
ν = Γaµν − ωaµν := Ωa

µν . (4.4)

Di�erentiate both sides:

∂µ∂µq
a
ν = �qaν = ∂µΩa

µν (4.5)

and de�ne:

∂µΩa
µν := −Rqaν (4.6)

to �nd the ECE wave equation:

(� +R)qaν = 0 (4.7)

and the equation:

∂µΩa
µν +Rqaν = 0, (4.8)

where the curvature is:

R = −qνa∂µΩa
µν . (4.9)

Now use the ECE postulate and de�ne an electromagnetic �eld:

F aµν := A(0)Ωa
µν (4.10)

to �nd:

(� +R)Aaµ = 0 (4.11)

and

∂µF aµν +RAaν = 0. (4.12)

These are the Proca wave and �eld equations, Q. E.D.
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The photon mass is de�ned by the curvature:

R =
(mc

~

)2
. (4.13)

Therefore:(
� +

(mc
~

)2)
Aaµ = 0 (4.14)

and

∂µF aµν +
(mc

~

)2
Aaν = 0. (4.15)

For each state of polarization a these are the Proca equations of the mid
thirties. They are not U(1) gauge invariant and refute Higgs boson theory
immediately, because Higgs boson theory is U(1) gauge invariant. Eq. (4.10)
can be regarded as a postulate of ECE theory in which the electromagnetic
�eld is de�ned by the connection Ωa

µν . By antisymmetry:

F aµν = −F aµν (4.16)

and from the �rst Cartan structure equation:

T aµν = ∂µq
a
ν − ∂νqaµ + ωaµν − ωaνµ. (4.17)

The fundamental postulates of ECE theory are:

Aaµ = A(0)qaµ, (4.18)

F aµν = A(0)T aµν , (4.19)

so:

F aµν = ∂µA
a
ν − ∂νAaµ +A(0)

(
ωaµν − ωaνµ

)
(4.20)

= A(0)
(
Γaµν − Γaνµ

)
.

By antisymmetry:

F aµν = 2
(
∂µA

a
ν +A(0)ωaµν

)
(4.21)

so:

F aµν (original) = 2
(
F aµν (new) +A(0)ωaµν

)
. (4.22)
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The postulate (4.10) is a convenient way of deriving the two Proca equa-
tions from the tetrad postulate. In so doing:

R0 =
(m0c

~

)2
(4.23)

where m0 is the rest mass of the photon. More generally de�ne:

R =
(mc

~

)2
(4.24)

where:

m = γm0 (4.25)

then the de Broglie equation is generalized to:

E = ~ω = mc2 = ~cR1/2 (4.26)

and the square of the mass of the moving photon is de�ned by the curvature:

m2 =

(
~
c

)2

R =

(
~
c

)2

qνa∂
µ
(
ωaµν − Γaµν

)
. (4.27)

The Proca equations are discussed further in Chapter 3. The dogmatic U(1)
gauge transformation of the standard physics is:

Aµ → Aµ + ∂µχ (4.28)

but the Proca Lagrangian in the usual standard model units is:

L = −1

4
FµνF

µν +
1

2
m2

0AµA
µ (4.29)

and this lagrangian is not U(1) gauge invariant because the transformation
(4.28) changes it.

This fundamental problem for U(1) gauge invariance has never been re-
solved, and the current theory behind the Higgs boson still uses U(1) gauge
invariance after many logical refutations. The result is a deep schism in
physics between the scienti�c ECE theory and the dogmatic standard the-
ory.
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4.3 Link between Photon Mass and B(3)

The complete electromagnetic �eld tensor of ECE theory can be de�ned by:

F aµν = faµν − faνµ + ωaµbA
b
ν − ωaνbAbµ (4.30)

where:

Aaµ = A(0)qaµ, f
a
µν = ∂µA

a
ν . (4.31)

Consider now the tetrad postulate in the format:

∂µq
a
ν = Γaµν − ωaµν := Ωa

µν . (4.32)

Eq. (4.31) follows directly from the subsidiary postulate:

faµν = A(0)Ωa
µν (4.33)

and as shown already in this chapter gives the Proca wave and �eld equa-
tions in generally covariant format. It is seen that the Proca equations are
subsidiary structures of the more general nonlinear structure (4.30).

The B(3) �eld that is the basis of uni�ed �eld theory is de�ned by:

Ba
µν = −ig

(
AcµA

b
ν −AcνAbµ

)
= ωaµbA

b
ν − ωaνbAbµ (4.34)

and is derived from the non linear part of the complete �eld tensor (4.30).
In the B(3) theory:

ωaµb = −igAcµεabc. (4.35)

Now de�ne for each polarization index a:

gµν = ∂µAν − ∂νAµ. (4.36)

It follows that:

∂ρgµν + ∂νgρµ + ∂µgνρ = 0. (4.37)

This equation is the same as:

∂µg̃µν = 0 (4.38)

where the tilde denotes the Hodge dual. It follows that:

∂µf̃µν = 0 (4.39)
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which is the homogenous �eld equation of the Proca structure. Eq. (4.32)
allows the description of the Aharonov Bohm e�ects [1]- [10] with the as-
sumption:

Γaµν = ωaµν . (4.40)

With this assumption the potential is non zero when the �eld is zero. In
UFT 157 on www.aias.us the following relation was derived for each polar-
ization index a:

jµ = − R
µ0
Aµ (4.41)

where the charge current density is:

jµ = (cρ,J) (4.42)

and where:

Aµ =

(
φ

c
,A

)
. (4.43)

Here µ0 is the vacuum permeability and ε0 is the vacuum permittivity. So:

ρ = −ε0Rφ (4.44)

and:

J = − R
µ0

A (4.45)

where ρ is the charge density, φ is the scalar potential, J is the current
density and A is the vector potential. A list of S. I. Units was given earlier
in this book, and the units of the vacuum permeability are:

[µ0] = J s2c−2m−1. (4.46)

The complete set of equations of the Proca structure is therefore:

faµν = A(0)
(
Γaµν − ωaµν

)
(4.47)

∂µfaµν +RAaν = 0 (4.48)

(� +R)qaµ = 0 (4.49)

∂µF aµν = �Aaν = −RAaν = µ0j
a
ν (4.50)
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∂µf̃aµν = 0 (4.51)

jµ = − R
µ0
Aµ. (4.52)

Now de�ne the �eld tensor and its Hodge dual as:

fµν =


0 EX/c EY /c EZ/c

−EX/c 0 −BZ BY
−EY /c BZ 0 −BX
−EZ/c −BY BX 0

 , (4.53)

f̃µν =


0 BX BY BZ
−BX 0 EZ/c −EY /c
−BY −EZ/c 0 EX/c
−BZ EY /c −EX/c 0

 .
These de�nitions give the inhomogeneous Proca �eld equation under all con-
ditions, including the vacuum:

∇ ·E = ρ/ε0 = −Rφ (4.54)

∇×B− 1

c2
∂E

∂t
= µ0J = −RA (4.55)

and the homogenous �eld equations:

∇ ·B = 0 (4.56)

∇×E +
∂B

∂t
= 0 (4.57)

under all conditions.
The solution of Eq. (4.54) is:

φ =
1

ε0

∫
ρ d3x′

|x− x′|
(4.58)

and from Eqs. (4.54) and (4.58):

φ = − ρ

ε0R
=

1

ε0

∫
ρ d3x′

|x− x′|
(4.59)

so: ∫
ρ d3x′

|x− x′|
= − ρ

R
(4.60)
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where:

R = −qaν∂µ
(
Γaµν − ωaµν

)
. (4.61)

Therefore:∫
ρ(x′) d3x′

|x− x′|
=

ρ

qνa∂
µ(ωaµν − Γaµν)

. (4.62)

The original Proca equation of the thirties assumed that:

qνa∂
µ
(
ωaµν − Γaµν

)
=
(m0c

~

)2
(4.63)

where m0 is the rest mass. For electromagnetic �elds in the vacuum this was
assumed to be the photon rest mass, so the Proca equations were assumed to
be equations of a boson with �nite mass. More generally in particle physics
this can be any boson. In Proca theory therefore the electromagnetic �eld
is associated with a massive boson (i. e. a photon that has mass). Therefore
the original Proca equations of the thirties assumed:

φ =
1

ε0

(
~
m0c

)2

ρ. (4.64)

It follows that:∫
ρ d3x′

|x− x′|
=

(
~
m0c

)2

ρ. (4.65)

From Eqs. (4.59) and (4.65):

φ(vac) =
1

ε0

(
~
m0c

)2

ρ(vac) (4.66)

giving the photon rest mass as the ratio:

m2
0 =

(
~
c

)2 1

ε0

ρ(vac)
φ(vac)

= 1.4× 10−74
ρ(vac)
φ(vac)

. (4.67)

Two independent experiments are needed to �nd ρ(vac) and φ(vac). A list of
experiments used to determine photon mass is given in ref. [37]. However, in
this section the assumptions used in these determinations are examined care-
fully, and in the main, they are shown to be untenable. Later in this chapter
a new method of determining photon mass, based on Compton scattering,
will be given.
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Conservation of charge current density for each polarization index a
means that:

∂µj
µ = 0. (4.68)

From Eqs. (4.68) and (4.52):

∂µA
µ = 0. (4.69)

In the standard physics Eq. (4.69) is known as the Lorenz gauge, an arbitrary
assumption. In the Proca photon mass theory the Lorenz gauge is derive
analytically. In the Proca theory the 4-potential is physical, and the U(1)
gauge invariance is refuted completely. In consequence, Higgs boson theory
collapses.

From the well known radiative corrections [1]- [10] it is known experi-
mentally that the vacuum contains charge current density. It follows directly
from Eq. (4.52) that the vacuum also contains a 4-potential associated with
photon mass. Therefore there are vacuum �elds which in the non linear ECE
theory include the B(3) �eld. The latter therefore also exists in the vacuum
and is linked to photon mass and Proca theory. In the standard dogma the
assumption of zero photon mass means that the vacuum �elds only have
transverse components. This is of course geometrical nonsense, and leads
to the unphysical E(2) little group [24] of the Poincaré group. The vacuum
4-potential is:

Aµ(vac) =

(
φ(vac)
c

,A(vac)
)
. (4.70)

It follows that a circuit can pick up the vacuum 4-potential via the inhomo-
geneous proca equations

∇ ·E = −Rφ(vac) (4.71)

and:

∇×B− 1

c2
∂E

∂t
= −RA(vac). (4.72)

In this process, total energy is conserved through the relevant Poynting the-
orem derived as follows. Multiply Eq. (4.72) by E:

E · (∇×B)− 1

c2
E · ∂E

∂t
= −RE ·A(vac). (4.73)
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Use:

E ·∇×B = −∇ ·E×B + B ·∇×E (4.74)

in Eq. (4.73) to �nd the Poynting theorem of conservation of total energy
density:

∂W

∂t
+ ∇ · S =

R

µ0
E ·A(vac). (4.75)

The electromagnetic energy density in joules per metres cubed is:

W =
1

2

(
ε0E

2 +
1

µ0
B2

)
(4.76)

and the Poynting vector is:

S =
1

µ0
E×B. (4.77)

Eq. (4.76) de�nes the electromagnetic energy density available from the
vacuum, more accurately spacetime. This process is governed by the Poynt-
ing Theorem (4.75) and therefore there is conservation of total energy, there
being electromagnetic energy density in the vacuum. The relevant electro-
magnetic �eld tensor is:

faµν = ∂µA
a
ν (4.78)

so either:

E = −∇φ (4.79)

or:

E = −∂A

∂t
. (4.80)

The antisymmetry of the Cartan torsion means that the complete non-linear
�eld of Eq. (4.30) is antisymmetric:

F aµν = −F aνµ = faµν − faνµ + ωaµν − ωaνµ. (4.81)

The Cartan torsion is de�ned by:

T aµν = qaλT
λ
µν (4.82)
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where the antisymmetric torsion tensor T λµν is de�ned by the commutator
of covariant derivatives:

[Dµ, Dν ]V ρ = −T λµνDλV
ρ +RρσµνV

σ. (4.83)

The torsion tensor is de�ned by the di�erence of antisymmetric connections:

T λµν = Γλµν − Γλνµ (4.84)

and the tetrad postulate means that:

Γaµν = −Γaνµ = ∂µq
a
ν + ωaµν . (4.85)

It follows that the antisymmetry in Eq. (4.30) is de�ned by:

faµν + ωaµbA
b
ν = −

(
faνµ + ωaνbA

b
µ

)
. (4.86)

If Eq. (4.79) is used for the sake of argument then the Poynting Theorem
becomes:

∂W

∂t
+ ∇ · S = −1

2

R

µ0

∂

∂t

(
A2(vac)

)
. (4.87)

From Eq. (4.45):

A(vac) = −µ0
R

J(vac) (4.88)

so we arrive at:

∂W

∂t
+ ∇ · S = −1

2
µ0R

∂

∂t

(
J2(vac)
R

)
(4.89)

which shows that the vacuum energy density and vacuum Poynting vector
are derived from the time derivative of the vacuum current density squared
divided by R.

In practical applications we are interested in transferring the electro-
magnetic energy density of the vacuum to a circuit which can use the energy
density. In an isolated circuit consider the equation:

�Aaµ = µ0j
a
µ . (4.90)

When the circuit interacts with the vacuum:

jaµ → jaµ + jaµ(vac) (4.91)
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so the Proca equation becomes:

�Aaµ = µ0
(
jaµ + jaµ(vac)

)
(4.92)

and

∂µF aµν = µ0
(
jaµ + jaµ(vac)

)
. (4.93)

The Coulomb law is modi�ed to:

∇ ·E =
1

ε0
(ρ(circuit) + ρ(vac)) (4.94)

and the equation governing the scalar potential is:

(� +R)φ =
ρ(vac)
ε0

. (4.95)

The d'Alembertian operator is de�ned by:

� =
1

c2
∂2

∂t2
−∇2. (4.96)

The time dependent part of φ of the circuit is therefore de�ned by:

1

c2
∂2φ

∂t2
+Rφ =

ρ(vac)
ε0

. (4.97)

The most fundamental unit of mass of the circuit is the electron mass me,
whose rest angular frequency is de�ned by the de Broglie wave particle du-
alism:

Re =
(mec

~

)2
=
ω2
e

c2
= qνa∂

µ
(
ωaµν − Γaµν

)
. (4.98)

So Eq. (4.97) becomes:

∂2φ

∂t2
+ ω2

eφ =
c2ρ(vac)

ε0
(4.99)

which is an Euler Bernoulli resonance equation provided that:

c2ρ(vac)
ε0

= A cosωt. (4.100)

The solution of the Euler Bernoulli equation

∂2φ

∂t2
+ ω2

eφ = A cosωt (4.101)
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is well known to be:

φ(t) =
A cosωt

(ω2
e − ω2)1/2

. (4.102)

At resonance:

ωe = ω (4.103)

and the circuit's scalar potential becomes in�nite for all A, however tiny in
magnitude. This allows the circuit design of a device to pick up practical
quantities of electromagnetic radiation density from the vacuum by reso-
nance ampli�cation. The condenser plates used to observe the well known
Casimir e�ect can be incorporated in the circuit design as in previous work
by Eckardt, Lindstrom and others [36].

From Eqs. (4.41) and (4.44)

c2ρ(vac)
ε0

= −c2Rφ(vac) (4.104)

and if we consider the space part of the scalar potential φ then:

�→ −∇2 (4.105)

and for each polarization index a the Proca equation reduces to:

∇2φ =
(mc

~

)2
φ. (4.106)

The radial part of the Laplacian in polar coordinates is de�ned by:

∇2φ =
∂2φ

∂r2
+

2

r

∂φ

∂r
(4.107)

so there is a solution to Eq. (4.106) known as the Yukawa potential:

φ =
B

r
exp

(
−
(mc

~

)
r
)
. (4.108)

This solution was used in early particle physics but was discarded as un-
physical. The early experiments to detect photon mass [1]- [10] all assume
the validity of the Yukawa potential. However the basic equation:

�Aµ = µ0jµ (4.109)
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also has the solution:

φ =
e

4πε0

((
1− n · v

c

) ∣∣r− r′
∣∣)−1
tr

(4.110)

and

A =
µ0ev

4π

((
1− n · v

c

) ∣∣r− r′
∣∣)−1
tr

(4.111)

which are the well known Liénard Wiechert solutions. Here tr is the retarded
time de�ned by:

tr = t− 1

c

∣∣r− r′
∣∣ , c =

|r− r′|
t− tr

. (4.112)

Therefore the static potential of the Proca equation is given by Eq. (4.110)
with:

v = 0 (4.113)

and the static vacuum charge density in coulombs per cubic metre is given
by:

ρ(vac) = −
(mc

~

)2 1

4π

(
e

|r− r′|

)
tr

(4.113a)

which is the Coulomb law for any photon mass.
This means that photon mass does not a�ect the Coulomb law, known

to be one of the most precise laws in physics. Similarly the photon mass
does not a�ect the Ampère Maxwell law or Ampère law. This is observed
experimentally [1]- [10] with high precision, so it is concluded that the usual
Liénard Wiechert solution is the physical solution, and that the Yukawa so-
lution is mathematically correct but not physical. On the other hand the
standard physics ignores the Liénard Wiechert solution, and other solutions,
and asserts arbitrarily that the Yukawa solution must be used in photon mass
theory. The use of the Yukawa potential means that there are deviations
from the Coulomb and Ampère laws. These have never been observed so
the standard physics concludes that the photon mass is zero for all practical
purposes. This is an entirely arbitrary conclusion based on the anthropo-
morphic claim of zero photon mass, a circular argument that is invalid. The
theory of this chapter shows that the Coulomb and Ampère laws are true
for any photon mass, and the latter cannot be determined from these laws.
In other words these laws are not a�ected by photon mass in the sense that
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their form remains the same. For example the inverse square dependence of
the Coulomb law is the same for any photon mass. The concept of photon
mass is not nearly as straightforward as it seems, for example UFT 244 on
www.aias.us shows that Compton scattering when correctly developed gives
a photon mass much di�erent from Eq. (4.67). These are unresolved ques-
tions in particle physics because UFT 244 has shown violation of conservation
of energy in the basic theory of particle scattering.

Before proceeding to the description of determination of photon mass by
Compton scattering a mention is made of the origin of the idea of photon
mass. This was by Henri Poincaré in his Palermo memoir submitted on July
23rd 1905, (Henri Poincaré, �Sur la Dynamique de l'Electron� Rendiconti del
Circolo Matematico di Palermo, 21, 127�175 (1905)). This paper suggested
that the photon velocity v could be less than c, which is the constant of
the Lorentz transformation. Typically for Poincaré he introduced several
new ideas in relativity, including new four vectors usually attributed to later
papers of Einstein. So Poincaré can be regarded as a co pioneer of special
relativity with many others. Einstein himself suggested a zero photon mass
as a �rst tentative idea, simply because an object moving at c must have zero
mass, otherwise the equations of special relativity become singular. Later,
Einstein may have been persuaded by the de Broglie School in the Institut
Henri Poincaré in Paris to consider �nite photon mass, but this is not clear.
It was therefore de Broglie who took up the idea of �nite photon mass from
Poincaré. He was in�uenced by the works of Henri Poincaré before inferring
wave particle duality in 1923, when he suggested that particles such as the
electron could be wave like. Confusion arises sometimes when it is asserted
that the vacuum speed of light is c. This is not the meaning of c in special
and general relativity, c is the constant in the Lorentz transform. Lorentz
and Poincaré had inferred the tensorial equations of electromagnetism much
earlier than Einstein as is well known. They had shown that the Maxwell
Heaviside equations obey the Lorentz transform. ECE has developed equa-
tions of electromagnetism that are generally covariant, and therefore also
Lorentz covariant in a well de�ned limit. It is well known that Einstein and
others were impressed by the work of de Broglie, Einstein described him
famously as having lifted a corner of the veil.

Louis de Broglie proceeded to develop the theory of photon mass and
causal quantum mechanics until the 1927 Solvay Conference, when inde-
terminism was proposed, mainly by Bohr, Heisenberg and Pauli. It was
rejected by Einstein, Schrödinger, de Broglie and others. Later de Broglie
returned to deterministic quantum mechanics at the suggestion of Vigier. A
minority of physicists have continued to develop �nite photon mass theory,
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setting upper limits on the magnitude of the photon mass.There are multiple
problems with the idea of zero photon mass, as is well known [24]. These
are discussed in comprehensive detail in the �ve volumes of �The Enigmatic
Photon� (Kluwer, 1994�2002) by M. W. Evans and J.-P. Vigier. Wigner [24]
for example showed that special relativity can be developed in terms of the
Poincaré group, or extended Lorentz group. In this analysis the little group
of the Poincaré group for a massless particle is the Euclidean E(2), the group
of rotations and translations in a two dimensional plane. This is obviously
incompatible with the four dimensions of spacetime or the three dimensions
of space. The little group for a massive particle is three dimensional and
physical, no longer two dimensional.

This is the most obvious problem for a massless particle, and one of
its manifestations is that the electromagnetic �eld in free space must be
transverse and two dimensional, despite the fact that the theory of elec-
tromagnetism is built on four dimensional spacetime. The massless photon
can have only two senses of polarization, labelled the transverse conjugates
(1) and (2) in the complex circular basis [1]- [10] used in earlier chapters.
This absurd dogma took hold because of the prestige of Einstein, but pres-
tige is no substitute for logic. The idea of zero photon mass developed into
U(1) gauge invariance, which became embedded into the standard model
of physics. The electromagnetic sector of standard physics is still based on
U(1) gauge invariance, refuted by the B(3) �eld in 1992 and in comprehen-
sive developments since then. The idea of U(1) gauge invariance is in fact
refuted by the Poincaré paper of 1905 described already, and by the work
of Wigner, so it is merely dogmatic, not scienti�c. It is refuted by e�ects
of nonlinear optics, notably the inverse Faraday e�ect, and in many other
ways. It was refuted comprehensively in chapter 3 by the fact that the Bel-
trami equations of free space electromagnetism have intricate longitudinal
solutions in free space. According to the U(1) dogma, these do not exist,
an absurd conclusion. Probably the most absurd idea of the U(1) dogma
is the Gupta Bleuler condition, in which the time like (0) and longitudinal
polarizations (3) are removed arti�cially [24]. There are also multiple well
known problems of canonical quantization of the massless electromagnetic
�eld. These are discussed in a standard text such as Ryder [24], and in great
detail in �The Enigmatic Photon� [1]- [10]. Finally the electroweak theory,
which can be described as U(1) × SU(2), was refuted completely in UFT 225.

The entire standard uni�ed �eld theory depends on U(1) gauge invari-
ance, so the entire theory is refuted as described above. Obviously there
cannot be a Higgs boson.
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4.4 Measurement of Photon Mass by Compton Scat-
tering

The theory of particle scattering has been advanced greatly during the course
of development of ECE theory in papers such as UFT 155 to UFT 171 on
www.aias.us, reviewed in UFT 200. It has been shown that the idea of zero
photon mass is incompatible with a rigorously correct theory of scattering,
for example Compton scattering. This is because of the numerous problems
discussed at the end of Section 4.3 � zero photon mass is incompatible with
special relativity, a theory upon which traditional Compton scattering is
based. In UFT 158 to UFT 171 it was found that the Einstein de Broglie
equations are not self consistent, a careful scholarly examination of the theory
showed up wildly inconsistent results, which were also present in equal mass
electron positron scattering.

The theory of Compton scattering with �nite photon mass was �rst given
in UFT 158 to UFT 171 and the notation of those papers is used here. The
relativistic classical conservation of energy equation is:

γm1c
2 +m2c

2 = γ′m1c
2 + γ′′m2c

2 (4.114)

wherem1 is the photon mass, m2 is the electron mass, and where the Lorentz
factors are de�ned by the velocities as usual. The photon mass is given by
the equation �rst derived in UFT 160 on www.aias.us:

m2
1 =

(
~
c2

)2 [ 1

2a

(
−b±

(
b2 − 4ac′

)1/2)]
(4.115)

a = 1− cos2 θ,

b =
(
ω′2 + ω2

)
cos2 θ − 2A

A = ωω′ − x2
(
ω − ω′

)
c′ = A2 − ω2ω′2 cos2 θ

where ω′ is the scattered gamma ray frequency, ω the incident gamma ray
frequency, and where:

x2 =
m2c

2

~
. (4.116)

Here ~ is the reduced Planck constant and c the speed of light in vacuo. The
scattering angle is θ. Experimental data on Compton scattering can be used
with the electron mass found in standards laboratories:

m2 = 9.10953× 10−31 kg (4.117)
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so:

x2 = 7.76343× 1020 rad s−1. (4.118)

The two solutions of Eq. (4.115) for photon mass are given later in this
section. One solution is always real valued and this root is usually taken to
be the physical value of the mass of the photon. It varies with scattering
angle but is always close to the electron mass. The photon in this method is
much heavier than thought previously. The other solution can be imaginary
valued, and usually this solution would be discarded as unphysical. However
R theory means that a real valued curvature can be found as follows:

R = mm∗
( c
~

)2
(4.119)

where ∗ denotes complex conjugate. It is shown later that an imaginary
valued mass can be interpreted in terms of superluminal propagation.

The velocity of the photon after it has been scattered from a stationary
electron is given by the de Broglie equation:

γ′m1c
2 = ~ω′ (4.120)

and is c for all practical purposes for all scattering angles (Section 4.3). A
photon as heavy as the electron does not con�ict therefore with the results
of the Michelson Morley experiment but on a cosmological scale a photon
as heavy as this would easily account for any mass discrepancy claimed at
present to be due to �dark matter�. Photon mass physics di�ers funda-
mentally from standard physics as explained in comprehensive detail [1]-
[10] in the �ve volumes of �The Enigmatic Photon� in the Omnia Opera of
www.aias.us. A photon as heavy as the electron would mean that previous
attempts at assessing photon mass would have to be re-assessed as discussed
already in this chapter. The Yukawa potential would have to be abandoned
or redeveloped.

However the theory of the photoelectric e�ect can be made compatible
with a heavy photon as follows. Consider a heavy photon colliding with a
static electron. The energy conservation equation is:

γm0c
2 +m2c

2 = γ′m0c
2 + γ′′m2c

2. (4.121)

The de Broglie equation can be used as follows:

~ω = γm0c
2 (4.122)
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~ω′′ = γ′′m2c
2 (4.123)

If the photon is stopped by the collision then the conservation of energy
equation is:

~ω +m2c
2 = m0c

2 + ~ω′′ (4.124)

where m0 is the rest mass of the photon. This concept does not exist in the
standard model because a massless photon is never at rest. So:

m0 = m2 +
~
c2
(
ω − ω′′

)
. (4.125)

If for the sake of argument the masses of the photon and electron are the
same, then:

m0 = m2 (4.126)

and:

ω = ω′′ (4.127)

i. e. all the energy of the photon is transferred to the electron.
If:

ω 6= ω′′ (4.128)

then:

~
(
ω − ω′′

)
= Φ + (m0 −m2) c

2 = Φ (4.129)

where Φ is the binding energy of the photoelectric e�ect. From Eq. (4.129):

~ω +m2c
2 = m0c

2 + ~ω′′ + Φ (4.130)

i. e.:

~ω = ~ω′′ + Φ = E + Φ (4.131)

or:

E = ~ω − Φ (4.132)

which is the usual equation of the photoelectric e�ect, Q. E.D. The heavy
photon does not disappear and transfers its energy to the electron, and the
heavy photon is compatible with the photoelectric e�ect.
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It is interesting to inspect the result for photon mass for a wider range
of parameters and to see if there are �islands of stability� [33]. Starting
from Eq. (4.115), there are in general four solutions for m1, appearing
in two pairs with positive and negative sign. We sorted out the negative
solutions and plotted the results in a surface plot for the range of ω′ and θ
as obtained from an experiment [34]. The graphs are shown in Figs. 4.1 and
4.2. The areas having zero values (black) are those of imaginary mass. It can
be seen that both solutions have continuous regions of well-de�ned values.
There is even a symmetry in the angle dependence. One solution rises for
increasing scattering angles while the other decreases correspondingly. There
are plateaus for m1 ≈ 1 which is the electron mass. However a true region
of constant mass does not exist, leading the de Broglie Einstein theory ad
absurdum.

Figure 4.1: Surface plot for photon mass m1(ω
′, θ), �rst solution.

A major and fundamental problem for standard physics emerges from
consideration of equal mass Compton scattering as described in UFT 160 on
www.aias.us. It can be argued as follows that equal mass Compton scattering
violates conservation of energy. Consider a particle of mass m colliding with
an initially static particle of mass m. If the equations of conservation of
energy and momentum are assumed to be true initially, they can be solved
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Figure 4.2: Surface plot for photon mass m1(ω
′, θ), second solution.

simultaneously to give:

x2 +
(
ω2 − x2

)1/2 (
ω′2 − x2

)1/2
cos θ = ωω′ −

(
ω − ω′

)
x (4.133)

where:

x = ω0 =
mc2

~
(4.134)

is the rest frequency of the particle of mass m, ω′ is the scattered frequency,
and ω the incoming frequency of particle m colliding with an initially static
particle of mass m. The scattering angle is θ and from Eq. (4.133):

cos2 θ =
ω2
0 + ω0 (ω − ω′)− ωω′

ω2
0 − ω0 (ω − ω′)− ωω′

. (4.135)

In order that

0 ≤ cos2 θ ≤ 1 (4.136)

then:

ω < ω′. (4.137)
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The de Broglie equation means that the collision can be described by:

~ω + ~ω0 = ~ω′ + ~ω′′ (4.138)

so:

ω + ω0 = ω′ + ω′′ (4.139)

and:

ω − ω′ = ω′′ − ω0. (4.140)

Therefore:

ω′′ < ω0. (4.141)

From Eqs. (4.137) and (4.141):

ω + ω0 < ω′ + ω′′. (4.142)

However the initial conservation of energy equation is (4.139), so the theory
violates conservation of energy and contradicts itself. This is a disaster for
particle scattering theory because violation of conservation of energy occurs
at the fundamental level. Quantum electrodynamics and string theory, or
Higgs boson theory of particle scattering are invalidated.

If two particles of mass m1 and m2 collide and both are moving, the
initial conservation of energy equation is:

γm1c
2 + γ2m2c

2 = γ′m1c
2 + γ′′m2c

2 (4.143)

i. e.

~ω + γ2m2c
2 = ~ω′ + ~ω′′. (4.144)

De�ne

x2 = γ2m2c
2/~ (4.145)

then:

x2 := ω2 = ω′ + ω′′ − ω. (4.146)

The equation of conservation of momentum is:

p = p1 + p2 = p′ + p′′. (4.147)
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Solving Eqs. (4.143) and (4.147) simultaneously leads to:

x2
(
ω − ω′

)
= ωω′ −

(
x21 +

(
ω2 − x21

)1/2 (
ω′2 − x21

)1/2
cos θ

)
. (4.148)

For equal mass scattering:

γ2x
(
ω − ω′

)
= ωω′ −

(
x2 +

(
ω2 − x2

)1/2 (
ω′2 − x2

)1/2
cos θ

)
(4.149)

where

x = mc2/~. (4.150)

By de�nition:

γ2 =

(
1− v2

c2

)−1/2
(4.151)

so:

(
ω2 − x2

)1/2 (
ω′2 − x2

)1/2
cos θ = ωω′ −

(
ω − ω′

)(
1− v2

c2

)−1/2
x− x2.

(4.152)

For

v � c (4.153)

then: (
1− v2

c2

)−1/2
∼ 1 +

1

2

v2

c2
(4.154)

so Eq. (4.152) is approximated by:

(
ω2 − x2

)1/2 (
ω′2 − x2

)1/2
cos θ = −

((
x− ω′

)
(x+ ω) +

1

2

v2

c2
x
(
ω − ω′

))
.

(4.155)

Therefore:

(ω − x) (ω + x)
(
ω′ − x

) (
ω′ + x

)
cos2 θ =(

x− ω′
)2

(x+ ω)2 +
v2

c2
x
(
ω − ω′

) (
x− ω′

)
(x+ ω) +

1

4

v4

c4
x2
(
ω − ω′

)2
.

(4.156)
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To order (v/c):

cos2 θ =
x2 + x (ω − ω′)

(
1 + v2/c2

)
− ωω′

x2 − x (ω − ω′)− ωω′
. (4.157)

However:

0 ≤ cos2 θ ≤ 1 (4.158)

so: (
ω − ω′

)(
1 +

v2

c2

)
< −

(
ω − ω′

)
(4.159)

i. e.:

ω < ω′. (4.160)

The conservation of energy equation (4.143) is:

ω + ω2 = ω′ + ω′′ (4.161)

so:

ω′ − ω = ω2 − ω′′. (4.162)

From Eqs. (4.160) and (4.162):

ω2 > ω′′. (4.163)

Add Eqs. (4.160) and (4.163):

ω + ω′′ < ω′ + ω2 (4.164)

so conservation of energy is again violated at the fundamental level and the
whole of particle scattering theory is refuted, including Higgs boson theory.

4.5 Photon Mass and Light De�ection due to Grav-
itation

In papers of 1923 and 1924 (L. de Broglie, Comptes Rendues, 77, 507 (1923)
and Phil. Mag., 47, 446 (1924)) Louis de Broglie used the concept of photon
mass to lock together the Planck theory of the photon as quantum of energy
and the theory of special relativity. He derived equations which are referred
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to as the de Broglie Einstein equations in this book. He quantized the
photon momentum, producing wave particle dualism, and these papers led
directly to the inference of the Schrödinger equation. In UFT 150B and
UFT 155 on www.aias.us, photon mass was shown to be responsible for light
de�ection and time change due to gravitation and the obsolete methods
of calculating these phenomena were shown to be incorrect in many ways.
This is an example of a pattern in which the ECE theory as it developed
made the old physics entirely obsolete. Photon mass emerged as one of the
main counter examples to standard physics � the Higgs boson does not exist
because of �nite photon mass, which also implies that there is a cosmological
red shift without an expanding universe. Therefore photon mass also refutes
Big Bang, as does spacetime torsion [1]- [10]. The red shift can be derived
from the original 1924 de Broglie Einstein equations without any further
assumption and the de Broglie Einstein equations can be derived from Cartan
geometry (chapter 1).

The existence of photon mass can be proven as in UFT 157 on www.aias.us
with light de�ection due to gravitation using the Planck distribution for one
photon. The result is consistent with a photon mass of about 10−51 kg for
a light beam heated to 2,500K as it grazes the sun and this result is one
of the ways of proving photon mass, inferred by the B(3) �eld. Prior to
this result, estimates of photon mass had been given as less than an upper
bound of about 10−52 kg, and many methods assumed the validity of the
Yukawa potential. These methods have been criticized earlier in this chap-
ter. The Einsteinian theory of light de�ection due to gravitation used zero
photon mass and is riddled with errors as shown in UFT 150B and UFT 155.
Therefore the experimental data on light de�ection due to gravitation were
thoroughly re-interpreted in UFT 157 to give a reasonable estimate of photon
mass. Once photon mass is accepted it works its way through in to all the
experiments that originally signalled the onset of quantum theory in the late
nineteenth century: black body radiation, speci�c heats, the photoelectric
e�ect, atomic and molecular spectra, and in the nineteen twenties, Compton
scattering. As already argued in the context of the Proca equation, photon
mass indicates the existence of a vacuum potential, which can be ampli�ed
by spin connection resonance to produce energy from spacetime.

The de Broglie Einstein equations are valid in the classical limit of the
Proca wave equation of special relativistic quantum mechanics. It has al-
ready been shown that the Proca equation is a limit of the ECE wave equa-
tion obtained from the tetrad postulate of Cartan geometry and the develop-
ment of wave equations from the tetrad postulate provides the long sought
for uni�cation of gravitational theory and quantum mechanics. The ECE
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equation of quantum electrodynamics is:

(� +R)Aaµ = 0 (4.165)

where R is a well de�ned scalar curvature and where:

Aaµ = A(0)qaµ. (4.166)

Here A(0) is the scalar potential magnitude and qaµ is the Cartan tetrad
de�ned in chapter one. Eq. (4.165) reduces to the 1934 Proca equation in
the limit:

R→
(mc

~

)2
(4.167)

where m is the mass of the photon, c is a universal constant, and ~ is the
reduced Planck constant. Note carefully that c is not the velocity of the
photon of mass m, and following upon the Palermo memoir of Poincaré, de
Broglie interpreted c as the maximum velocity available in special relativity.

Eq. (4.165) in the classical limit is the Einstein energy equation:

pµpµ = m2c2 (4.168)

where:

pµ =

(
E

c
,p

)
(4.169)

and where m is the mass of the photon. Here E is the relativistic energy:

E = γmc2 (4.170)

and p is the relativistic momentum:

p = γmvg. (4.171)

The factor γ is the result of the Lorentz transformation and was denoted by
de Broglie as:

γ =

(
1−

v2g
c2

)−1/2
(4.172)

where vg is the group velocity:

vg =
∂ω

∂κ
. (4.173)
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The de Broglie Einstein equations are:

pµ = ~κµ (4.174)

where the 4-wavenumber is:

κµ =
(ω
c
,κ
)
. (4.175)

Eq. (4.174) is a logically inevitable consequence of the Planck theory of
the energy quantum of light later called �the photon�, published in 1901, and
the theory of special relativity. The standard model has attempted to reject
the inexorable logic of Eq. (4.174) by rejecting m. Eq. (4.174) can be written
out as:

E = ~ω = γmc2 (4.176)

and:

p = ~κ = γmvg. (4.177)

In his original papers of 1923 and 1924 de Broglie de�ned the velocity in the
Lorentz transformation as the group velocity, which is the velocity of the
envelope of two or more waves:

vg =
∆ω

∆κ
=
ω2 − ω1

κ2 − κ1
, (4.178)

and for many waves Eq. (4.173) applies. The phase velocity vp was de�ned
by de Broglie as:

vp =
E

p
=
ω

κ
, (4.179)

vgvp = c2,

which is an equation independent of the Lorentz factor γ and universally
valid. The standard model makes the arbitrary and fundamentally erroneous
assumptions:

m =? 0, vg = vp =? c. (4.180)

In physical optics the phase velocity is de�ned by:

vp =
ω

κ
=
c

n
(4.181)
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where n(ω) is the frequency dependent refractive index, in general a com-
plex quantity (UFT 49, UFT 118 and OO 108 in the Omnia Opera on
www.aias.us). The group velocity in physical optics is:

vg = c

(
n+ ω

dn

dω

)−1
(4.182)

and it follows that:

vpvg = c2 =
c2

n
(
n+ ω dndω

) (4.183)

giving the di�erential equation:

dn

dω
= − n

2ω
. (4.184)

A solution of this equation is

n =
D

ω1/2
(4.185)

where D2 is a constant of integration with the units of angular frequency.
So:

n =
(ω0

ω

)1/2
(4.186)

where ω0 is a characteristic angular frequency of the electromagnetic ra-
diation. Eq. (4.186) has been derived directly from the original papers of
de Broglie [1]- [10] using only the equations (4.181) and (4.182) of physi-
cal optics or wave physics. The photon mass does not appear in the �nal
Eq. (4.186) but the photon mass is basic to the meaning of the calculation.
If ω0 is interpreted as the emitted angular frequency of light in a far distant
star, then ω is the angular frequency of light reaching the observer. If:

n > 1 (4.187)

then:

ω < ω0. (4.188)

and the light has been red shifted, meaning that its observable angular fre-
quency (ω) is lower than its emitted angular frequency (ω0), and this is due
to photon mass, not an expanding universe. The refractive index n(ω) is that
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of the spacetime between star and observer. Therefore in 1924 de Broglie
e�ectively explained the cosmological red shift in terms of photon mass. �Big
Bang� (a joke coined by Hoyle) is now known to be erroneous in many ways,
and was the result of imposed and muddy pathology supplanting the clear
science of de Broglie.

In 1924 de Broglie also introduced the concept of least (or �rest�) angular
frequency:

~ω0 = mc2 (4.189)

and kinetic angular frequency ωκ. The latter can be de�ned in the non
relativistic limit:

~ω = mc2

(
1−

v2g
c2

)−1/2
∼ mc2 +

1

2
mv2g (4.190)

so:

~ωκ ∼
1

2
mv2g . (4.191)

Similarly, in the non relativistic limit:

~κ ∼ mvg +
1

2
m
v3g
c2
, (4.192)

so the least wavenumber, κ0, is:

~κ0 ∼ mvg (4.193)

and the kinetic wavenumber is:

~κκ ∼
1

2
m
v3g
c2
. (4.194)

The total angular frequency in this limit is:

ω = ω0 + ωκ (4.195)

and the total wavenumber is:

κ = κ0 + κκ. (4.196)

The kinetic energy of the photon was de�ned by de Broglie by omitting the
least (or �rest�) frequency:

T = ~ωκ ∼
1

2
mv2g =

p2

2m
(4.197)
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where:

p = mvg. (4.198)

Using Eqs. (4.189) and (4.193) it is found that:

vp =
c2

vg
=
ω0

κ0
(4.199)

and using Eqs. (4.191) and (4.194)

vp =
c2

vg
=
ωκ
κκ
. (4.200)

Therefore:

vp =
ω

κ
=
ω0 + ωκ
κ0 + κκ

(4.201)

a possible solution of which is:

ωκ
κ0

= vp. (4.202)

Using Eqs. (4.193) and (4.191):

ωκ
κ0

=
1

2
vg (4.203)

so it is found that in these limits:

vg = 2vp. (4.204)

The work of de Broglie has been extended in this chapter to give a simple
derivation of the cosmological red shift due to the existence of photon mass,
and conversely, the red shift is a cosmological proof of photon mass. In
standard model texts, photon mass is rarely discussed, and the work of de
Broglie is distorted and never cited properly. The current best estimate of
photon mass is of the order of 10−52 kg. In UFT 150B and UFT 155 on
www.aias.us the photon mass from light de�ection was calculated as:

m =
R0

c2a
E (4.205)

using:

E = ~ω. (4.206)
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This gave the result:

m = 3.35× 10−41 kg. (4.207)

Here R0 is the distance of closest approach, taken to be the radius of the
sun:

R0 = 6.955× 108m (4.208)

and a is a distance parameter computed to high accuracy:

a = 3.3765447822× 104m. (4.209)

In a more complete theory, given here, the photon in a light beam grazing
the sun has a mean energy given by the Planck distribution [1]- [10]:

〈E〉 = ~ω

(
e−~ω/(kT )

1− e−~ω/(kT )

)
(4.210)

where k is Boltzmann's constant and T the temperature of the photon. It is
found that a photon mass of:

m = 9.74× 10−52 kg (4.211)

is compatible with a temperature of 2,500K. The temperature of the pho-
tosphere at the sun's surface is 5,778K, while the temperature of the sun's
corona is 1�3 millionK. Using Eq. (4.176) it is found that:

vg = 2.99757× 108ms−1 (4.212)

which is less than the maximum speed of relativity theory:

c = 2.9979× 108ms−1. (4.213)

As discussed in Note 157(13) the mean energy 〈E〉 is related to the beam
intensity I in joules per square metre by

I = 8π

(
f

c

)2

〈E〉 (4.214)

where f is the frequency of the beam in hertz. The intensity can be expressed
as:

I = 8πf2m

(
1−

v2g
c2

)−1/2
. (4.215)
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The total energy density of the light beam in joules per cubic metre is:

U =
f

c
I (4.216)

and its power density in watts per square metre (joules per second per square
metre) is:

Φ = cU = fI = 8πf3m

(
1−

v2g
c2

)−1/2
. (4.217)

The power density is an easily measurable quantity, and implies �nite photon
mass through Eq. (4.217). In the standard model there is no photon mass,
so there is no power density, an absurd result. The power density is related
to the magnitude of the electric �eld strength (E) and the magnetic �ux
density (B) of the beam by:

Φ = ε0cE
2 =

cB2

µ0
. (4.218)

The units in S. I. are as follows:

E = voltm−1 = JC−1m−1

B = tesla = J sC−1m−2

ε0 = J−1C2m−1

µ0 = J s2C−2m−1

 (4.219)

where ε0 and µ0 are respectively the vacuum permittivity and permeability
de�ned by:

ε0µ0 =
1

c2
(4.220)

so:

Φ = 8πf3m

(
1−

v2g
c2

)−1/2
= ε0cE

2 =
cB2

µ0
. (4.221)

4.6 Di�culties with the Einstein Theory of Light
De�ection due to Gravitation

The famous Einstein theory of light de�ection due to gravitation is based on
the idea of zero photon mass because in 1905 Einstein inferred such an idea
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from the basics of special relativity, he conjectured that a particle can travel
at c if and only if its mass is identically zero, and assumed that photons
travelled at c. Poincaré on the other hand realized that photons can travel
at less than c if they have mass, and that c is the constant in the Lorentz
transform. The Einsteinian calculation of light de�ection due to gravitation
was therefore based on the then new general relativity applied with a massless
particle. In the in�uential UFT 150B on www.aias.us it was shown that
Einstein's method contains several fundamental errors. However precisely
measured, such data cannot put right these errors, and the Einstein theory
is completely refuted experimentally in whirlpool galaxies, so that it cannot
be used anywhere in cosmology.

The Einstein method is based on the gravitational metric:

ds2 = c2dτ2 = c2dt2
(

1− r0
r

)
− dr2

(
1− r0

r

)−1
− r2dφ2 (4.222)

usually and incorrectly attributed to Schwarzschild. Here, cylindrical polar
coordinates are used in the XY plane. In Eq. (4.222) r0 is the so called
Schwarzschild radius, the particle of mass m orbits the massM , for example
the sun. The in�nitesimal of proper time is dτ . The lagrangian for this
calculation is:

L =
m

2

((
dt

dτ

)2 (
1− r0

r

)
−
(

1− r0
r

)−1(dr
dτ

)2

− r2
(
dφ

dτ

)2
)

(4.223)

and the total energy and momentum are given as the following constants of
motion:

E = mc2
(

1− r0
r

) dt
dτ
, L = mr2

dφ

dτ
. (4.224)

Since m�M the Schwarzschild radius is:

r0 =
2MG

c2
. (4.225)

Therefore the calculation assumes that the mass m is not zero. For light
grazing the sun, this is the photon mass.

The equation of motion is obtained from Eq. (4.222) by multiplying both
sides by 1− r0

r to give:

m

(
dr

dτ

)2

=
E2

mc2
−
(

1− r0
r

)(
mc2 +

L2

mr2

)
. (4.226)
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The in�nitesimal of proper time is eliminated as follows:

dr

dτ
=
dφ

dτ

dr

dφ
=

(
L2

mr2

)
dr

dφ
(4.227)

to give the orbital equation:(
dr

dφ

)2

= r4
(

1

b2
−
(

1− r0
r

)( 1

a2
+

1

r2

))
(4.228)

where the two constant lengths a and b are de�ned by:

a =
L

mc
, b =

cL

E
. (4.229)

The solution of Eq. (4.228) is:

φ =

∫
1

r2

(
1

b2
−
(

1− r0
r

)( 1

a2
+

1

r2

))−1/2
dr (4.230)

and the light de�ection due to gravitation is:

∆φ = 2

∫ ∞
R0

1

r2

(
1

b2
−
(

1− r0
r

)( 1

a2
+

1

r2

))−1/2
dr − π (4.231)

where R0 is the distance of closest approach, essentially the radius of the
sun. Using:

u = 1/r, du = − 1

r2
dr (4.232)

the integral may be rewritten as:

∆φ = 2

∫ 1/R0

0

(
1

b2
− (1− r0u)

(
1

a2
+ u2

))−1/2
du− π. (4.233)

If we are to accept the gravitational metric for the sake of argument its
correct use must be to assume an identically non zero photon mass and to
integrate Eq. (4.233), producing an equation for the experimentally observed
de�ection ∆φ in terms of m, a and b.

However, because of his conjecture of zero photon mass, Einstein used
the null geodesic condition:

ds2 = 0 (4.234)
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which means that m is identically zero. This assumption means that:

a =∞. (4.235)

However, the angular momentum is L is a constant of motion, so Eq. (4.235)
means:

m = 0,
dφ

dτ
=∞ (4.236)

which in the obsolete physics of the standard model was known as the ul-
trarelativistic limit. In this Einsteinian light de�ection theory Eq. (4.223) is
de�ned to be pure kinetic in nature, but at the same time the theory sets up
an e�ective potential:

V (r) =
1

2
mc2

(
−r0
r

+
a2

r2
− r0a

2

r3

)
(4.237)

and also assumes circular orbits:

dr

dτ
= 0. (4.238)

However, this assumption means that:

1

b2
=
(

1− r0
r

)( 1

a2
+

1

r2

)
(4.239)

and the denominator of Eq. (4.230) becomes zero and the integral becomes
in�nite. In order to circumvent this di�culty Einstein assumed:

r0
r
→ 0 (4.240)

which must mean:

r →∞ (4.241)

and

m→ 0, a→∞. (4.242)

The e�ective potential was therefore de�ned as:

V (r) −−−−−−−−−−−−→
m→0, a→∞, r→∞

mc2
(a
r

)2 (
1− r0

r

)
(4.243)

125



4.6. DIFFICULTIES WITH THE EINSTEIN THEORY OF LIGHT . . .

which is mathematically indeterminate. Einstein also assumed:

mc2 → 0 (4.244)

so the equation of motion (4.229) becomes:

E2

2mc2
=

L2

mr2

(
1

2
− MG

c2r

)
. (4.245)

He used:

r = R0 (4.246)

in this equation, thus �nding an expression for b0:

1

b20
=

1

R2
0

− r0
R3

0

. (4.247)

Finally he used Eq. (4.247) in Eq. (4.233) with:

a2 →∞ (4.248)

to obtain the integral:

∆φ = 2

∫ 1/R0

0

(
R0 − r0
R3

0

− u2 + r0u
3

)−1/2
du− π. (4.249)

It was claimed by Einstein that this integral is:

∆φ =
4MG

c2R0
(4.250)

but this is doubtful for reasons described in UFT 150B, whose calculations
were all carried out with computer algebra. The experimental result for light
grazing the sun is given for example by NASA Cassini as

∆φ = 1.75′′ = 8.484× 10−6 rad, (4.251)

but Eq. (4.250) depends on the assumption of data such as:

R0 = 6.955× 108m, M = 1.9891× 1030 kg,

G = 6.67428× 10−11m3 kg−1 s2. (4.252)

In fact only MG is known with precision experimentally, not M and G indi-
vidually. The radius R0 is subject to considerable uncertainty. If we accept
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the dubious gravitational metric for the sake of argument, the experimen-
tal data must be evaluated from Eq. (4.231) with �nite photon mass, and
independent methods used to evaluate a and b.

Einstein's formula (4.249) for light de�ection depends on the radius pa-
rameters R0, and r0. R0 represents the radius of the sun (6.955×108 metres)
while the so called Schwarzschild radius r0 is 2,954 metres. So:

r0 � R0 (4.253)

which implies from Eq. (4.247) that:

b0 ∼ R0. (4.254)

This gives the integral:

∆φ = 2

∫ 1/R0

0

(
R0 − r0
R3

0

− u2 + r0u
3

)−1/2
du− π (4.255)

which has no analytical solution. Its numerical integration is also di�cult,
even with contemporary methods. The square root in the integral has zero
crossings, leading to in�nite values of the integrand and as discussed in
Section 3 of UFT 150B there is a discrepancy between the experimental
data, Einstein's claim and the numerical evaluation of the integral.

The correct method of evaluating the light de�ection is obviously to use
a �nite mass m in Eq. (4.231). In a �rst rough approximation, UFT 150B
used:

E = ~ω (4.256)

for one photon. More accurately a Planck distribution can be used. However
Eq. (4.256) gives:

a =
~ω
mc2

b. (4.257)

The parameter b is a constant of motion, and is determined by the need for
zero de�ection when the mass M of the sun is absent. This gives:

∆φ = 2

∫ 1/R0

0

(
1

b2
− u2

)−1/2
du− π = 0 (4.258)

and as described in UFT 150B this gives a photon mass of:

m = 3.35× 10−41 kg (4.259)
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which again a lot heavier than the estimates in the standard literature.
So in summary of these sections, the B(3) �eld implies a �nite photon

mass which can be estimated by Compton scattering and by light de�ection
due to gravitation. The photon mass is not zero, but an accurate estimate
of its value needs re�ned calculations. These are simple �rst attempts only.
There are multiple problems with the claim that light de�ection by the sun is
twice the Newtonian value, because the latter is itself heuristic, and because
Einstein's methods are dubious, as described in UFT 150B and UFT 155.
The entire Einstein method is refuted by its neglect of torsion, as explained
in great detail in the two hundred and sixty UFT papers available to date.
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Chapter 5

The Uni�cation of Quantum
Mechanics and General
Relativity

5.1 Introduction

The standard physics has completely failed to unify quantum mechanics
and general relativity, notably because of indeterminacy, a non Baconian
idea introduced at the Solvay Conference of 1927. The current attempts of
the standard physics at uni�cation revolve around hugely expensive particle
colliders, and these attempts are limited to the uni�cation of the electromag-
netic and weak and strong nuclear �elds, leaving out gravitation completely.
So it is reasonable to infer that the standard physics will never be able to
produce a uni�ed �eld theory. In great contrast ECE theory has succeeded
with unifying all four fundamental �elds with a well known geometry due to
Cartan as described in foregoing chapters of this book.

Towards the end of the nineteenth century the classical physics evolved
gradually into special relativity and the old quantum theory. The experi-
ments that led to this great paradigm shift in natural philosophy are very
well known, so need only a brief description here. There were experiments
on the nature of broadband (black body) radiation leading to the Rayleigh
Jeans law, the Stefan Boltzmann distribution and similar. The failure of
the Rayleigh Jeans law led to the Planck distribution and his inference of
what was later named the photon. The photoelectric e�ect could not be ex-
plained using the classical physics, the Brownian motion needed a new type
of stochastic physics indicating the existence of molecules, �rst proposed by
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Dalton. The speci�c heats of solids could not be explained adequately with
classical nineteenth century physics. Atomic and molecular spectra could not
be explained with classical methods, notably the anomalous Zeeman e�ect.

The Michelson Morley experiment gave results that could not be ex-
plained with the classical Newtonian physics, so that Fitzgerald in corre-
spondence with Heaviside suggested a radically new physics that came to be
known as special relativity. The mathematical framework for special rela-
tivity was very nearly inferred by Heaviside but was developed by Lorentz
and Poincare. Einstein later made contributions of his own. The subjects of
special relativity and quantum theory began to develop rapidly. The many
contributions of Sommerfeld are typically underestimated in the history of
science, those of his students and post doctorals are better known. The
old quantum theory evolved into the Schroedinger equation after the infer-
ence by de Broglie of wave particle dualism. Peter Debye asked his student
Schroedinger to try to solve the puzzle posed by the fact that a particle could
be a wave and vice versa, and during this era Compton gave an impetus to
the idea of photon as particle by scattering high frequency electromagnetic
radiation from a metal foil - Compton scattering.

The Schroedinger equation proved to be an accurate description of for
example spectral phenomena in the non relativistic limit. In the simplest
instance the Schroedinger equation quantizes the classical kinetic energy of
the free particle, and does not attempt to incorporate special relativity into
quantum mechanics. Sommerfeld had made earlier attempts but the main
problem remained, how to quantize the Einstein energy equation of special
relativity. The initial attempts by Klein and Gordon resulted in negative
probability, so were abandoned for this reason. Pauli had applied his algebra
to the Schroedinger equation, but none of these methods were successful in
describing the g factor, Landé factor or Thomas precession in one uni�ed
framework of relativistic quantum mechanics.

Dirac famously solved the problem with the use of four by four matrices
and Pauli algebra but in so doing ran into the problem of negative energies.
Dirac suggested tentatively that negative energies could be eliminated with
the Dirac sea, but this introduced an unobservable, the Dirac sea still has not
been observed experimentally. Unobservables began to proliferate in twen-
tieth century physics, reducing it to dogma. However, Dirac was famously
successful in explaining within one framework the g factor of the electron,
the Landé factor, the Thomas factor and the Darwin term, and in producing
a theory free of negative probabilities. The Dirac sea seemed to give rise to
antiparticles which were observed. The Dirac sea itself cannot be observed,
and the problem of negative energies was not solved by Dirac.
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It is not clear whether Dirac ever accepted indeterminacy, a notion in-
troduced by Bohr and Heisenberg and immediately rejected by Einstein,
Schroedinger, de Broglie and others as anti Baconian and unphysical. The
Dirac equation reduces to the Schroedinger and Heisenberg equations in well
de�ned limits, but indeterminacy is pure dogma. It is easily disproven ex-
perimentally and has taken on a life of its own that cannot be described
as science. Heisenberg described the Dirac equation as an all time low in
physics, but many would describe indeterminacy in the same way. In this
chapter, indeterminacy is disproven straightforwardly with the use of higher
order commutators. Heisenberg's own methods are used to disprove the
Heisenberg Uncertainty Principle, a source of in�nite confusion for nearly
ninety years. One of the major outcomes of ECE theory is the rejection
of the Heisenberg Uncertainty Principle in favour of a quantum mechanics
based on geometry.

The negative energy problem that plagued the Dirac equation is removed
in this chapter by producing the fermion equation of relativistic quantum
mechanics. This equation is not only Lorentz covariant but also generally
covariant because it is derived from the tetrad postulate of a generally co-
variant geometry � Cartan geometry. All the equations of ECE theory are
automatically generally covariant and Lorentz covariant in a well de�ned
limit of general covariance. So the fermion equation is the �rst equation
of quantum mechanics uni�ed with general relativity. It has the major ad-
vantages of producing rigorously positive energy levels and of being able to
express the theory in terms of two by two matrices. The fermion equation
produces everything that the Dirac equation does, but with major advan-
tages. So it should be viewed as an improvement on the deservedly famous
Dirac equation, an improvement based on geometry and the ECE uni�ed
�eld theory. The latter also produces the d'Alembert and Klein Gordon
equations, and indeed all of the valid wave equations of physics. Some of
these are discussed in this chapter.

5.2 The Fermion Equation

The structure of ECE theory is the most fundamental one known in physics at
present, simply because it is based directly on a rigorously correct geometry.
The fermion equation can be expressed as in UFT 173 on www.aias.us in a
succinct way:

πµ ψ σ
µ = mcσ1ψ (5.1)
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where the fermion operator in covariant representation is de�ned as:

πµ = (π0, π1, π2, π3) . (5.2)

Here:

π0 = σ0p0, πi = σ3pi (5.3)

where pµ is the energy momentum four vector:

pµ = (p0, p1, p2, p3) . (5.4)

The Pauli matrices are de�ned by:

σµ =
(
σ0, σ1, σ2, σ3

)
(5.5)

where:

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (5.6)

The eigenfunction of Eq.(5.1) is the tetrad [1]- [10]:

ψ =

[
ψR1 ψR2
ψL1 ψL2

]
(5.7)

whose entries are de�ned by the right and left Pauli spinors:

φR =

[
ψR1
ψR2

]
, φL =

[
ψL1
ψL2

]
. (5.8)

This eigenfunction is referred to as �the fermion spinor�.
The position representation of the fermion operator is de�ned by the

symbol δ and is:

δµ = − i
~
πµ. (5.9)

Therefore the fermion equation is the �rst order di�erential equation:

i ~ δµ ψ σµ = mcσ1ψ. (5.10)

For purposes of comparison, the covariant format of the Dirac equation in
chiral representation [24] is:

γµ δµ ψD = mcψD. (5.11)
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where:

ψD =

[
φR

φL

]
(5.12)

is a column vector with four entries, and where the Dirac matrices in chiral
representation [24] are:

γµ =
(
γ0, γ1, γ2, γ3

)
. (5.13)

The complete details of the development of Eq. (5.1) are given in Note
172(8) accompanying UFT 172 on www.aias.us The ordering of terms in Eq.
(5.1) is important because matrices do not commute and ψ is a 2 x 2 matrix.
The energy eigenvalue of Eq.(5.1) is rigorously positive, never negative. The
complex conjugate of the adjoint matrix of the fermion spinor is referred to
as the â��adjoint spinorâ�� of the fermion equation, and is de�ned by:

ψ+ =

[
ψR1
∗

ψL1
∗

ψR2
∗

ψL2
∗

]
. (5.14)

The adjoint equation of Eq. (5.1) is de�ned as:

−i ~ δµ ψ+ σµ = mcσ1ψ+ (5.15)

where the complex conjugate of ψ has been used. These equations have well
known counterparts in the Dirac theory [1]- [10], [24] but in that theory the
4 x 4 gamma matrices are used and the de�nition of the adjoint spinor is
more complicated.

The probability four-current of the fermion equation is de�ned as:

jµ =
1

2
Tr
(
ψσµψ+ + ψ+σµψ

)
(5.16)

and its Born probability is:

j0 = ψR1 ψ
R
1
∗

+ ψR2 ψ
R
2
∗

+ ψL1 ψ
L
1
∗

+ ψL2 ψ
L
2
∗

(5.17)

which is rigorously positive as required of a probability. It is the same as
the Born probability of the chiral representation [1]- [10], [24] of the Dirac
equation. In the latter the four current is de�ned as:

jµD = ψD γ
µ ψD (5.18)

and the adjoint Dirac spinor is a four entry row vector de�ned by:

ψ
D

= ψ+
D γ

0. (5.19)
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It is shown as follows that the probability four-current of the fermion
equation is conserved:

δµj
µ = 0. (5.20)

To prove this result multiply both sides of Eq.(5.1) from the right with ψ+ :

i ~ δµ ψ σµ ψ+ = mcσ1 ψψ+. (5.21)

Multiply both sides of Eq.(5.15) from the right with ψ:

−i ~ δµ ψ+ σµψ = mcσ1ψ+ψ (5.22)

and subtract Eq.(5.22) from Eq.(5.21):

i ~ δµ
(
ψ σµ ψ+ + ψ+ σµ ψ

)
= mcσ1

(
ψψ+ − ψ+ψ

)
. (5.23)

By de�nition:

ψψ+−ψ+ψ =

[
ψR1 ψR2
ψL1 ψL2

] [
ψR1
∗

ψL1
∗

ψR2
∗

ψL2
∗

]
−
[
ψR1
∗

ψL1
∗

ψR2
∗

ψL2
∗

] [
ψR1 ψR2
ψL1 ψL2

]
(5.24)

so

Trace(ψψ+ − ψ+ψ) = 0. (5.25)

Therefore:

Trace
(
δµ(ψσµψ+ − ψ+σµψ)

)
= 0 (5.26)

and

δµj
µ = 0. (5.27)

Q. E. D.
The fermion equation (5.1) may be expanded into two simultaneous equa-

tions:

(E + cσ · p)φL = mc2 φR (5.28)

(E − cσ · p)φR = mc2 φL (5.29)

in which E and p are the operators of quantum mechanics:

E = i~
∂

∂t
, p = −i~∇. (5.30)
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Eqs.(5.28) and (5.29) may be developed as:

(E − cσ · p) (E + cσ · p)φL = m2 c4 φL (5.31)

(E + cσ · p) (E − cσ · p)φR = m2 c4 φR (5.32)

from which there emerge equations such as:(
E2 − c2σ · p σ · p

)
φR = m2 c4 φR. (5.33)

Using the quantum postulates this becomes the wave equation:(
� +

(mc

~

)2)
φR = 0 (5.34)

and it becomes clear that the fermion equation is a factorization of the ECE
wave equation:(

� +
(mc

~

)2)
ψ = 0 (5.35)

whose eigenfunction is the tetrad (ψ).
Therefore the fermion equation is obtained from the tetrad postulate and

Cartan geometry. The tetrad is de�ned by:[
V R

V L

]
=

[
ψR1 ψR2
ψL1 ψL2

] [
V 1

V 2

]
(5.36)

i.e. as a matrix relating two column vectors.
The parity operator P acts on the fermion spinor as follows:

Pψ =

[
ψL1 ψL2
ψR1 ψR2

]
(5.37)

and the anti fermion is obtained straightforwardly from the fermion equation
by operating on each term with P as follows:

P (E) = E, P (p) = −p, P

[
ψR1 ψR2
ψL1 ψL2

]
=

[
ψL1 ψL2
ψR1 ψR2

]
. (5.38)

Note carefully that the eigenstates of energy are always positive, both in the
fermion and anti fermion equations. The anti fermion is obtained from the
fermion by reversing helicity:

P (σ · p) = −σ · p (5.39)
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and has opposite parity to the fermion, the same mass as the fermion, and
the opposite electric charge. The static fermion is indistinguishable from
the static anti fermion [24]. So CPT symmetry is conserved as follows form
fermion to anti fermion:

CPT → (−C) (−P )T (5.40)

where C is the charge conjugation operator and T the motion reversal opera-
tor. Note carefully that there is no negative energy anywhere in the analysis.

The pair of simultaneous equations (5.28) and (5.29) can be written as:

(E − cσ · p)(E + σ · p)φL,= m2 c4 φL (5.41)

an equation which can be re arranged as:

(E2 −m2 c4)φL = c2σ · p σ · pφL (5.42)

and factorized to give:

(E −mc2)(E +mc2)φL = c2σ · p σ · pφL. (5.43)

If p is real valued, Pauli algebra means that:

σ · p σ · p = p2 (5.44)

so if E and p are regarded as functions, not operators, Eq.(5.43) becomes
the Einstein energy equation:

E2 −m2 c4 = c2 p2 (5.45)

multiplied by φL on both sides. It is well known [1]- [10] that the Einstein
energy equation is a way of writing the relativistic energy and momentum:

E = γ mc2, (5.46)

p = γ mv. (5.47)

Realizing this, Eq.(5.43) can be linearized as follows. First, express it as:

(E −mc2)φL =
c2σ · p σ · p
E +mc2

φL (5.48)

and approximate the total energy:

E = γ mc2 (5.49)
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by the rest energy:

E ≈ mc2, (5.50)

then Eq.(5.48) becomes:

(E −mc2)φL =
1

2m
c2σ · p σ · pφL (5.51)

which has the structure of the free particle Schroedinger equation:

ENR φ
L =

p2

2m
φL (5.52)

in which the non relativistic limit of the kinetic energy is de�ned in the limit
v << c by:

ENR = E −mc2 = (γ − 1)mc2 → p2

2m
. (5.53)

So the fermion equation reduces correctly to the non relativistic Schroedin-
ger equation for the free particle, Q. E. D.

The great importance of the fermion equation to chemical physics emerges
from the fact that it can describe the phenomena for which the Dirac equa-
tion is justly famous while at the same time eliminating the problem of
negative energy as we have just seen. In quantum �eld theory this leads to
a free fermion quantum �eld theory. This aim is very di�cult to achieve [24]
in the standard quantum �eld theory because methods have to be devised
to deal with the negative energy. The latter is due simply to Dirac's choice
of gamma matrices.

The way in which the fermion equation describes the g factor of the
electron, the Landé factor, the Thomas factor and Darwin term is described
in the following section.

5.3 Interaction of the ECE Fermion with the Elec-
tromagnetic Field

The simplest and most powerful way of describing this interaction for each
polarization index a of ECE theory is through the minimal prescription

pµ → pµ − eAµ (5.54)
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where a negative sign is used [24] because the charge on the electron is -e.
Eq.(5.54) can be written as:

E → E − eφ (5.55)

and:

p→ p− eA. (5.56)

Using Eqs.(5.55) and (5.56) in the Einstein energy equation (5.45) gives:

(E − eφ)2 = c2(p− eA)2 +m2 c4 (5.57)

which can be factorized as follows:

(E − eφ−mc2)(E − eφ+mc2) = c2(p− eA)2 (5.58)

and written as:

E = mc2 + eφ+ c2
(p− eA)

(E − eφ+mc2)
(p− eA) (5.59)

in a form ready for quantization. The latter is carried out with:

p→ −i~∇ (5.60)

and produces many well known e�ects and new e�ects of spin orbit coupling
described in papers of ECE theory such as UFT 248 � on www.aias.us.

The most famous result of the Dirac equation, and its improved version,
the ECE fermion equation, is electron spin resonance, which depends on the
use of the Pauli matrices as is very well known. In this section the various
intricacies of this famous derivation are explained systematically. Electron
spin resonance occurs in the presence of a static magnetic �eld, so the scalar
potential can be omitted from consideration leaving hamiltonians such as:

H2ψ =
1

2m
(σ · (−i~∇− eA) σ · (−i~∇− eA))ψ. (5.61)

Note carefully that the operator ∇ acts on the wave function, which is
denoted ψ for ease of notation. The following type of Pauli algebra:

σ ·V σ ·W = V ·W + iσ ·V ×W (5.62)

leads to:

H2ψ =
1

2m

(
ie~ (∇ ·A + iσ ·∇×A)− ~2

(
∇2 + iσ ·∇×∇

)
(5.63)

+e2
(
A2 + iσ ·A×A

)
+ ie~(A ·∇ + iσ · (A×∇))

)
ψ.
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Assuming that A is real valued, then:

A×A = 0. (5.64)

Also:

∇×∇ = 0 (5.65)

so:

H2ψ =
1

2m

(
−~2∇2ψ + e2A2ψ + ie~∇ · (Aψ) (5.66)

−e~σ ·∇× (Aψ) + ie~A ·∇ψ − e~σ ·A×∇ψ) .

It can be seen that the fermion equation produces many e�ects in general,
all of which are experimentally observable. So it is a very powerful result of
geometry and ECE uni�ed �eld theory. Gravitational e�ects can be consid-
ered through the appropriate minimal prescription as in papers such as UFT
248 �. Many of these e�ects remain to be observed.

Electron spin resonance is given by the term:

H2ψ = − e~
2m
σ · (∇× (Aψ) + A×∇ψ) + ... (5.67)

= − e~
2m
σ ·B + ...

where the standard relation between B and A has been used to illustrate
the argument:

B = ∇×A. (5.68)

In the rigorous ECE theory the spin connection enters into the analysis. A
vast new subject area of chemical physics emerges because electron spin reso-
nance (ESR) and nuclear magnetic resonance (NMR) dominate the subjects
of chemical physics and analytical chemistry.

Use of a complex valued potential such as that in an electromagnetic �eld
rather than a static magnetic �eld produces many more e�ects through the
equation:

((E − eφ) + cσ · (p− eA)) ((E − eφ)− cσ · (p− eA∗))φR (5.69)

= m2 c4 φR,

ψ := φR,

i.e.

(E − eφ−mc2)(E − eφ+mc2)ψ

= c2σ · (p− eA) σ · (p− eA∗)ψ + ec(E − eφ)σ · (A∗ −A)ψ
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where * denotes �complex conjugate�. Eq.(5.69) can be linearized as:

(E − eφ−mc2)ψ =
c2σ · (p− eA) σ · (p− eA∗)

E − eφ+mc2
ψ (5.70)

+
ec(E − eφ)

E − eφ+mc2
σ · (A∗ −A)ψ

and re-arranged as follows:

Eψ = (eφ+mc2)ψ (5.71)

+
1

2m
σ · (p− eA)

(
1− eφ

2mc2

)−1
σ · (p− eA∗)ψ

+
e

2mc
(mc2 − eφ)

(
1− eφ

2mc2

)−1
σ · (A∗ −A)ψ.

In the approximation:

eφ << mc2 (5.72)

Eq.(5.71) gives:

Eψ = (H1 +H2 +H3)ψ (5.73)

where the three hamiltonians are de�ned as follows:

H1 = Eφ+mc2, (5.74)

H2 =
1

2m
σ · (p− eA)

(
1 +

eφ

2mc2

)
σ · (p− eA∗), (5.75)

H3 =
1

2
ec

(
1 +

eφ

2mc2

)
σ · (A∗ −A), (5.76)

leading to many new fermion resonance e�ects using the electromagnetic
�eld rather than the static magnetic �eld.

For example the H2 hamiltonian can be developed as:

H21ψ =
1

2m
(ie~(∇ ·A∗ + iσ ·∇×A∗ (5.77)

−~2(∇2 + iσ ·∇×∇)

+e2(A ·A∗ + iσ ·A×A∗)

+ie~(A ·∇ + iσ ·A×∇)))ψ,
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an equation that can be written as:

H21ψ =
1

2m

(
ie2σ ·A×A∗ψ − e~σ ·A×∇ψ (5.78)

−e~σ ·∇ψ ×A∗ − e~σ · (∇×A∗)ψ + ...) ,

giving four out of many terms that can give novel fermion resonance e�ects.
Using for the sake of argument:

B∗ = ∇×A∗ (5.79)

then the hamiltonian reduces to:

H211 = − e~
2m
σ ·B∗ (5.80)

and a term due to the conjugate product of the electromagnetic �eld:

H212 = i
e2

2m
σ ·A×A∗ (5.81)

which de�nes the B(3) �eld introduced in previous chapters:

B(3)∗ = −igA×A∗ = −igA(1) ×A(2). (5.82)

Eq.(5.81) is the hamiltonian that de�nes radiatively induced fermion reso-
nance (RFR), extensively discussed elsewhere [1]- [10] but derived here in a
rigorous way from the fermion equation or chiral representation of the Dirac
equation.

Spin orbit coupling and the Thomas factor can be derived from the H22

hamiltonian de�ned as follows:

H22ψ =
e

4m2c2
(σ · (p− eA)φ σ · (p− eA))ψ. (5.83)

This hamiltonian has its origins in the following equation:

Eψ =

(
mc2 + eφ+ c2(p− eA)

E − eφ+mc2
· (p− eA)

)
ψ (5.84)

in the approximation:

E = γmc2 ≈ mc2. (5.85)
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In this approximation. Eq.(5.84) becomes:

Eψ =

(
mc2 + eφ+

1

2m
(p− eA)

(
1− eφ

2mc2

)−1
· (p− eA)

)
ψ

(5.86)

and in the approximation:

eφ << 2mc2 (5.87)

the H22 hamiltonian is recovered as the last term on the right hand side.
In the derivation of the spin orbit coupling term several assumptions are

made, but not always made clear in textbooks. The vector potential A is not
considered in the derivation of spin orbit interaction, so that only electric
�eld e�ects are considered. Therefore the relevant hamiltonian reduces to:

H22ψ =
e

4m2c2
σ · pφ σ · pψ. (5.88)

It is assumed that the �rst p is the operator:

p = −i~∇ (5.89)

but that the second p is a function. This point is rarely if ever made clear in
the textbooks. This assumption can be justi�ed only on the grounds that it
seems to succeed in describing the experimental data. When this assumption
is made Eq.(5.88) reduces to:

H22ψ = − ie~
4m2c2

σ ·∇φ σ · pψ. (5.90)

The ∇ operator acts on φ σ · pψ, so by the Leibnitz Theorem :

∇(φ σ · pψ) = ∇(σ · p)φψ + σ · p ∇(φψ) (5.91)

and the spin orbit interaction term emerges from:

H22ψ = − ie~
4m2c2

(σ ·∇(φψ) σ · p). (5.92)

In this equation the Leibnitz Theorem asserts that:

∇(φ ψ) = (∇φ)ψ + φ (∇ψ) (5.93)
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so the spin orbit interaction term is:

H22ψ = − ie~
4m2c2

(σ ·∇φ σ · p)ψ + ... (5.94)

It is seen Eq. (5.94) is only one out of many possible e�ects that emerge
from the fermion equation and which should be systematically investigated
experimentally.

In the development of the spin orbit term the obsolete standard physics
is used as follows:

E = −∇φ (5.95)

so the spin orbit hamiltonian becomes:

H22ψ = − ie~
4m2c2

σ ·E σ · pψ. (5.96)

Now use the Pauli algebra:

σ ·E σ · p = E · p + iσ ·E× p (5.97)

so the real part of the hamiltonian from these equations becomes:

H22ψ =
e~

4m2c2
σ ·E× pψ (5.98)

in which p is regarded as a function, and not an operator. If this second p
is regarded as an operator, then new e�ects appear.

Note carefully that in the derivation of the Zeeman e�ect, ESR, NMR
and the g factor of the electron, both p's are regarded as operators, but in
the derivation of spin orbit interaction, only the �rst p is regarded as an
operator, the second p is regarded as a function.

Finally in the standard derivation of spin orbit interaction, the Coulomb
potential of electrostatics is chosen for the scalar potential:

φ = − e

4πε0r
(5.99)

so the electric �eld strength is:

E = −∇φ = − e

4πε0r3
r. (5.100)

The relevant spin orbit hamiltonian becomes:

H22ψ = − e2~
8πc2ε0m2r3

σ · r× pψ (5.101)
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in which the orbital angular momentum is:

L = r× p. (5.102)

Therefore the spin orbit hamiltonian is:

H22ψ = − e2~
8πc2ε0m2r3

σ · Lψ. (5.103)

In the description of atomic and molecular spectra, the spin angular
momentum operator is de�ned as:

S =
1

2
~σ (5.104)

and the orbital angular momentum also becomes an operator. So:

H22ψ = −ξ S · L = − e2

8πc2ε0m2r3
S · Lψ (5.105)

and the Thomas factor of two is contained in Eq. (5.105) as part of the
denominator. The derivation of the Thomas factor is one of the strengths
of the fermion equation, which as we have argued does not su�er from the
negative energy problem of the Dirac equation.

Consider again the H22 hamiltonian:

H22ψ =
e

4m2c2
σ · (p− eA)φ σ · (p− eA)ψ (5.106)

and assume that:

A = 0 (5.107)

so:

H22ψ =
e

4m2c2
σ · pφ σ · pψ. (5.108)

In the derivation of spin orbit coupling and the Thomas factor the �rst p is
regarded as an operator and the second p as a function. In the derivation of
the Darwin term both p's are regarded as operators, de�ned by:

−i~∇ψ = pψ (5.109)

with expectation value:

〈p〉 =

∫
ψ∗pψ dτ. (5.110)
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Therefore the Darwin term is obtained from:

H22ψ =
e

4m2c2
σ · (−i~∇)φ σ · (−i~∇)ψ (5.111)

and is a quantum mechanical phenomenon with no classical counterpart.
From Eq. (5.111):

H22ψ = − e~2

4m2c2
(σ ·∇φ σ ·∇)ψ (5.112)

and the �st del operator ∇ operates on all that follows it, so:

H22ψ = − e~2

4m2c2
σ ·∇ (φ σ ·∇ψ) . (5.113)

The Leibnitz Theorem is used as follows:

∇ (φσ ·∇) = (∇φ)(σ ·∇ψ) + φ∇ (σ ·∇ψ) . (5.114)

Therefore:

H22ψ = − e~2

4m2c2
(σ ·∇φσ ·∇ψ + σ · φ∇(σ ·∇ψ)) . (5.115)

Usually the Darwin term is considered to be:

HDarwinψ = − e~2

4m2c2
σ ·∇φ σ ·∇ψ. (5.116)

and the second term in Eq. (5.115) can be developed as:

σ ·∇(σ ·∇ψ) = (σ ·∇)(σ ·∇)ψ (5.117)

so:

H22ψ = − e~2

4m2c2
(
∇φ ·∇ψ + φ∇2ψ

)
. (5.118)

5.4 New Electron Spin Orbit E�ects from the Fermion
Equation

On the classical standard level consider the kinetic energy of an electron of
mass m and linear momentum p:

H =
p2

2m
(5.119)
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and use the minimal prescription (5.56) to describe the interaction of an
electron with a vector potential A. The interaction hamiltonian is de�ned
by:

H =
1

2m
(p− eA) · (p− eA) (5.120)

=
p2

2m
− e

2m
(p ·A + A · p) +

e2A2

2m
.

As discussed in earlier chapters the vector potential can be de�ned by:

A =
1

2
B× r. (5.121)

Now consider the following term of the hamiltonian:

H1 = − e

2m
(p ·A + A · p) = − e

4m
(p ·B× r + B× r · p) (5.122)

where the orbital angular momentum can be de�ned as follows:

p · (B× r) = B · r× p = B · L. (5.123)

This analysis gives the well known hamiltonian for the interaction of a mag-
netic dipole moment with the magnetic �ux density:

H1 = − e

2m
L ·B = −mD ·B. (5.124)

The classical hamiltonian responsible for Eq. (5.124) is:

H1 = − e

2m
(p ·A + A · p) (5.125)

which can be written in the SU(2) basis as:

H1 = − e

2m
(σ · p σ ·A + σ ·A σ · p) . (5.126)

Using Pauli algebra:

σ · p σ ·A = p ·A + iσ · p×A (5.127)

σ ·A σ · p = A · p + iσ ·A× p (5.128)

and the same result is obtained because:

iσ · (p×A + A× p) = 0. (5.129)
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However, as discussed for example by H. Merzbacher in �Quantum Me-
chanics� (Wiley, 1970):

σ · p =
1

r2
σ · r (r · p + iσ · L) (5.130)

σ ·A =
1

r2
σ · r (r ·A + iσ · r×A) (5.131)

in which:

1

r2
σ · r σ · r = 1. (5.132)

Therefore:

σ · p σ ·A =
1

r2
(r · p r ·A + iσ · L r ·A (5.133)

+ir · p σ · r×A− σ · L σ · r×A) .

From comparison of the real and imaginary parts of Eqs. (5.127) and (5.133):

p ·A =
1

r2
(r · p r ·A− σ · L σ · r×A) (5.134)

in which:

σ · p×A = σ · L r ·A + r · p σ · r×A, (5.135)

r ·A =
1

2
r ·B× r =

1

2
B · r× r = 0. (5.136)

Therefore we obtain the important identities:

p ·A = − 1

r2
σ · L σ · r×A, (5.137)

σ · p×A = r · p σ · r×A. (5.138)

The hamiltonian (5.125) can therefore be written as:

H1 = − e

m
p ·A =

e

mr2
σ · L σ · r×A = −mB ·B. (5.139)

Finally use eqs. (5.121) and (5.139) to �nd:

H1 =
e

2m
σ · L

(
σ ·B− σ · r

r2
B · r

)
= −mD ·B. (5.140)
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It can be seen that the well known hamiltonian responsible for the Zeeman
e�ect has been developed into a hamiltonian that gives electron spin res-
onance of a new type, a resonance that arises from the interaction of the
Pauli matrix with the magnetic �eld as in Eq. (5.140). If the magnetic �eld
is aligned in the Z axis then:

σZ =

[
1 0
0 −1

]
(5.141)

and the electron spin orbit (ESOR) resonance frequency is:

ω =
eB

m~
σ · L. (5.142)

This compares with the usual ESR frequency:

ω =
eB

m
(5.143)

from the hamiltonian derived already in this chapter from the fermion equa-
tion.

The ESOR hamiltonian contains a novel spin orbit coupling when quan-
tized:

H1ψ =
e

2m
σ ·B σ · L ψ. (5.144)

De�ning the spin angular momentum as:

S =
1

2
~σ (5.145)

gives [1]- [10]:

L · Sψ =
1

2
(J2 − L2 − S2)ψ (5.146)

=
1

2
~2 (J(J + 1)− L(L+ 1)− S(S + 1))ψ

so the energy levels of the ESOR hamiltonian operator are:

E =
e~
2m

(J(J + 1)− L(L+ 1)− S(S + 1))σ ·B (5.147)

giving the ESOR frequency:

ω =
e~
2m

(J(J + 1)− L(L+ 1)− S(S + 1)) (5.148)
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in which the total angular momentum J is de�ned by the Clebsch Gordan
series:

J = L+ S,L+ S − 1, . . . , |L− S|. (5.149)

Eq. (5.144) was �rst derived in UFT 249 and is di�erent from the well known
ESR spin hamiltonian:

HESR = − e

2m
L ·B + λS · L− e~

2m
σ ·B = −gSpinσ ·B. (5.150)

It was derived using well known Pauli algebra together with the fermion
equation and potentially gives rise to many useful spectral e�ects.

For chemical physicists and analytical chemists therefore the most useful
format of the fermion equation is:

Eψ =

(
mc2 + eφ+

1

2m
σ · (p− eA)(1 +

eφ

2mc2
)σ · (p− eA)

)
ψ

(5.151)

and a few examples have been given in this chapter of its usefulness. In ECE
theory Eq. (5.151) has been derived from Cartan geometry and by using the
minimal prescription. The fermion equation as argued is the chiral Dirac
equation without the problem of negative energy, which to chemists was
never of much interest. In chemistry the subject is approached as follows.
Consider one term of the complete equation (5.151):

H1ψ = − e

2m
(σ ·A σ · p + σ · p σ ·A)ψ. (5.152)

By regarding σ as a function rather than an operator this term can be
developed using Pauli algebra as follows:

H1ψ = − e

2m
(A · p + p ·A + iσ · (A × p + p ×A))ψ. (5.153)

For a uniform magnetic �eld:

A =
1

2
B× r (5.154)

so:

H1ψ =− e

4m
(B× r · p + p ·B× r (5.155)

+iσ · ((B × r)× p + p × (B× r))ψ.
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By regarding p as a function:

B× r · p = B · r× p = B · L (5.156)

so the hamiltonian becomes:

H1ψ = − e

2m
L ·Bψ + (iσ ·A× p + iσ · p×A)ψ. (5.157)

At this stage p is regarded as an operator so the second term on the right
hand side of eq. (5.157) does not vanish. The use of p and σ as functions
or operators is arbitrary, and justi�ed only by the �nal comparison with
experimental data. From Eqs. (5.157) and (5.154) the hamiltonian can be
written in the format used in chemistry

H1ψ = (− e

2m
L ·B− e~

2m
σ ·B)ψ (5.158)

= − e

2m
(L + 2S)ψ

The total angular momentum is conserved so Eq. (5.158) can be written as:

H1ψ = − e

2m
gLJ ·B ψ (5.159)

where:

J = L+ S, . . . , |L− S| (5.160)

from the Clebsch Godan series.
The conventional spin orbit term emerges as described earlier in this

chapter from another term of the hamiltonian:

Hsoψ = − e

4mc2
σ · (p− eA)φ σ · (p− eA)ψ (5.161)

in which the �rst p is described as an operator but in which the second p is
a function, giving the spin orbit term:

Hsoψ = − ie~
4m2c2

σ ·∇φ σ · p ψ. (5.162)

So the complete ESR hamiltonian is:

Hψ = (− e

2m
L ·B− e~

2m
σ ·B− ξS · L)ψ (5.163)
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in which the spin orbit coupling constant is:

ξ =
e

4πc2ε0m2r3
. (5.164)

Finally both S and L are operators, so:

S · L ψ =
~2

2
(J(J + 1)− L(L+ 1)− S(S + 1))ψ. (5.165)

The above is the very well known conventional description of ESR in
the language used by chemists, and is a description based in ECE theory
on geometry. In ECE theory it can be developed in many ways because
it is generally covariant while the obsolete standard description is Lorentz
covariant.

However, several new spectroscopies can be developed using a well known
Pauli algebra but one which seems never to have been applied to fermion
resonance spectroscopies:

σ · p =
1

r2
σ · r (r · p + iσ · L) , (5.166)

σ ·A =
1

r2
σ · r (r ·A + iσ · r×A) . (5.167)

For a uniform magnetic �eld:

r ·A = 0 (5.168)

so:

p ·A =
1

r2
σ · L σ ·A× r (5.169)

and

σ · p×A =
1

r2
r · p σ · r×A (5.170)

as in note 250(7) accompanying UFT 250 on www.aias.us. Using these results
it is found that:

H1ψ = − e

2m
(p ·A + A · p)ψ (5.171)

= − e

mr2
σ ·A× r σ · L ψ.
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Using Eq. (5.171) for a uniform magnetic �eld gives:

A× r =
1

2
(B× r)× r =

1

2

(
r(r ·B)− r2B

)
(5.172)

giving a novel spin orbit hamiltonian in the useful form:

H1ψ =
e

~m
σ ·
(
B− r

r2
(r ·B)

)
S · Lψ. (5.173)

Its expectation value is:

〈H1〉 =
e

~m

∫
ψ∗H1ψ dτ (5.174)

with the normalization:∫
ψ∗ψ dτ = 1. (5.175)

Using the result:

S · Lψ =
~2

2
(J(J + 1)− L(L+ 1)− S(S + 1))ψ (5.176)

the energy eigenvalues of the hamiltonian are:

E =
e~
2m

(J(J + 1)− L(L+ 1)− S(S + 1)) (5.177)(
σ ·B−

∫
ψ∗
σ · r
r2

r ·Bψ dτ
)

as in note 250(9) accompanying UFT 250 on www.aias.us.
In spherical polar coordinates:

X = r sin θ cosφ

Y = r sin θ sinφ (5.178)

X = r cos θ

and integration of a function over all space means:∫
f dτ =

∫ 2π

φ=0

∫ π

θ=0

∫ ∞
0

fr2 sin θ dr dθ dφ. (5.179)

If the magnetic �eld is aligned in the Z axis then in Cartesian coordinates:

σ · r
r2

r ·B = σZBZ
Z2

X2 + Y 2 + Z2
(5.180)
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and if it is assumed on average that:〈
Z2

X2 + Y 2 + Z2

〉
=

1

3
(5.181)

the Eq. (5.177) reduces to:

E =
1

3

e~
m
σZBZ (J(J + 1)− L(L+ 1)− S(S + 1)) (5.182)

and electron spin orbit resonance occurs at:

ω =
2

3

e

m
BZ (J(J + 1)− L(L+ 1)− S(S + 1)) . (5.183)

In spherical coordinates:

Z2

X2 + Y 2 + Z2
= cos2 θ (5.184)

so: ∫
ψ∗
σ · r
r2

r ·Bψ dτ (5.185)

= σZBZ

∫ 2π

φ=0

∫ π

θ=0

∫ ∞
0

ψ∗ cos2 θ ψ r2 sin θ dr dθ dφ.

It is seen that this part of the hamiltonian is r dependent and must be
evaluated for each wave function ψ. The only analytical wave functions are
those of atomic H, so computational methods can be used to evaluate the
energy levels of Eq. (5.185) for the H atom. The results are given in UFT 250
on www.aias.us As an example we show the two contributions of Eq. (5.177)
in Table 5.1. These results are obtained for quantum numbers of atomic H.
The column E1 gives the contribution of the σ ·B term and column E2 the
contribution of the integral in (5.177). Fj is the factor of quantum numbers
J, L, etc. It can be seen that there are no contributions for s sates and the
contributions of E1 are always larger than those of E2.

Consider now the hamiltonian:

H = − e

2m
(σ · p σ ·A + σ ·A σ · p) (5.186)

in its quantized form:

Hψ = − e

2m

~
i

(σ ·∇ σ ·A + σ ·A σ ·∇)ψ. (5.187)
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n L ML J S MS MJ Fj E1 E2 E1 + E2

1 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0

1 0 0 1/2 1/2 1/2 -1/2 0 0 0 0

2 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0

2 0 0 1/2 1/2 1/2 -1/2 0 0 0 0

2 1 -1 3/2 1/2 -1/2 -3/2 1 1 1
5

6
5

2 1 -1 3/2 1/2 1/2 -1/2 1 1 1
5

6
5

2 1 0 1/2 1/2 -1/2 -1/2 -1 -1 −3
5 −8

5

2 1 0 3/2 1/2 1/2 1/2 1 1 3
5

8
5

2 1 1 1/2 1/2 -1/2 1/2 -1 -1 −1
5 −6

5

2 1 1 3/2 1/2 1/2 3/2 1 1 1
5

6
5

3 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0

3 0 0 1/2 1/2 1/2 -1/2 0 0 0 0

3 1 -1 3/2 1/2 -1/2 -3/2 1 1 1
5

6
5

3 1 -1 3/2 1/2 1/2 -1/2 1 1 1
5

6
5

3 1 0 1/2 1/2 -1/2 -1/2 -1 -1 −3
5 −8

5

3 1 0 3/2 1/2 1/2 1/2 1 1 3
5

8
5

3 1 1 1/2 1/2 -1/2 3/2 -1 -1 −1
5 −6

5

3 1 1 5/2 1/2 1/2 -5/2 1 1 1
5

6
5

3 2 -2 5/2 1/2 -1/2 -5/2 2 2 2
7

16
7

3 2 -2 5/2 1/2 1/2 -3/2 2 2 2
7

16
7

3 2 -1 3/2 1/2 -1/2 -3/2 -2 -2 −6
7 −20

7

3 2 -1 5/2 1/2 1/2 -1/2 2 2 6
7

20
7

3 2 0 3/2 1/2 -1/2 -1/2 -2 -2 −22
21 −64

21

3 2 0 5/2 1/2 1/2 1/2 2 2 22
21

64
21

3 2 1 3/2 1/2 -1/2 1/2 -2 -2 −6
7 −20

7

3 2 1 5/2 1/2 1/2 3/2 2 2 6
7

20
7

3 2 2 3/2 1/2 -1/2 3/2 -2 -2 −2
7 −16

7

3 2 2 5/2 1/2 1/2 5/2 2 2 2
7

16
7

Table 5.1: Energies E1, E2 and E1 + E2 in units of e~/(2m).

154



CHAPTER 5. THE UNIFICATION OF QUANTUM MECHANICS . . .

Note that:

r · p =
~
i
r er ·∇ =

~
i
r
∂

∂r
(5.188)

where the radial unit vector is de�ned as:

er =
r

r
. (5.189)

From Pauli algebra:

σ ·A =
σ · r
r2

(r ·A + iσ · r×A) (5.190)

and for a uniform magnetic �eld

A =
1

2
B× r (5.191)

in which:

r ·A = 0 (5.192)

it follows that:

σ ·A = i
σ · r
r2

σ · r×A. (5.193)

As in note 251(1) accompanying UFT 251 on www.aias.us it follows that:

σ · p σ ·Aψ =
~
r

(
σ · r×A

∂ψ

∂r
+

∂

∂r
(σ · r×A)

)
ψ (5.194)

− 1

r2
σ · r×A σ · Lψ.

Using Eq. (5.191) it follows that:

1

r
r×A =

r

2
(B− er(B− er)) (5.195)

and that:

1

r

∂

∂r
r×A = B− 1

2r

∂

∂r
(r2er(er ·B)) (5.196)

= B− er(er ·B)

so:

σ · p σ ·Aψ = σ ·B1(~ψ +
1

2
r
∂ψ

∂r
− 1

2
σ · Lψ) (5.197)
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in which the modi�ed magnetic �ux density is:

B1 = B− er(er ·B). (5.198)

The hamiltonian (5.187) can therefore be developed as:

Hψ = − e~
2m
σ ·B1(ψ + r

∂ψ

∂r
) +

e

2m
σ ·B1 σ · Lψ. (5.199)

Recall that the conventional development of the hamiltonian is well known:

Hψ = i
e~
2m

(∇ · (Aψ) + A ·∇ψ) (5.200)

− e~
2m

(σ ·∇× (Aψ) + A×∇ψ)

= − e~
2m
σ ·B + i

e~
2m

((∇ ·A)ψ + 2∇ψ ·A)

and misses the information given in Eq. (5.199).
As in note 251(2) on www.aias.us it is possible to de�ne three novel types

of hamiltonian:

H1ψ = − e~
2m
σ ·B1ψ (5.201)

H2ψ = − e~
2m
σ ·B1r

∂ψ

r
(5.202)

H3ψ =
e

2m
σ ·B1 σ · Lψ (5.203)

whose energy expectation values are:

E1 = − e~
2m

∫
ψ∗σ ·B1ψ dτ (5.204)

E2 = − e~
2m

∫
ψ∗σ ·B1r

∂ψ

∂r
dτ (5.205)

E3 =
e

2m

∫
ψ∗σ ·B1 σ · Lψ dτ (5.206)

with the Born normalization:∫
ψ∗ψ dτ = 1. (5.207)

These are developed in UFT 251 for the hydrogenic wavefunctions, giving
many novel results of usefulness to analytical chemisty.
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The use of well known Pauli algebra in a new way is illustrated on the
simplest level in UFT 252 with the kinetic energy hamiltonian itself:

Hψ =
1

2m
σ · p σ · pψ (5.208)

in which the Pauli algebra is:

σ · p =
1

r2
(r · p + iσ · L). (5.209)

Therefore:

σ · p σ · p =
1

r2
(r · p + iσ · L)(r · p + iσ · L) (5.210)

=
1

r2
(r · p r · p + i(r · p σ · L + σ · L r · p)

−L2 − iσ · L× L
)

which can be quantized using:

r · pψ =
~
i
r
∂ψ

∂r
,

L2ψ = ~2l(l + 1)ψ,

L× Lψ = i~ψ,

S · Lψ =
~2

2
(j(j + 1)− l(l + 1)− s(s+ 1))ψ.

Therefore there are results such as the following which are instructive in the
use of operators in quantum mechanics:

r · p(r · pψ) =
~
i
r
∂

∂r

(
(
~
i
r
∂

∂r
)ψ

)
. (5.211)

As shown in detail in UFT 252 the hamiltonian (5.208) can be developed as:

− ~2

2m
σ ·∇ σ ·∇ψ = − ~2

2m
∇2ψ +

1

m

S · L
r

(
2
∂ψ

∂r
+
ψ

r

)
(5.212)

where the wavefunctions are the spherical harmonics:

ψ = Y m
l . (5.213)

The analysis gives two novel classes of energy expectation values:

E1 =
~2

m
(j(j + 1)− l(l + 1)− s(s+ 1))

∫
ψ∗

1

r

∂ψ

∂r
dτ (5.214)
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and

E2 =
~2

2m
(j(j + 1)− l(l + 1)− s(s+ 1))

∫
ψ∗

1

r2
ψ dτ (5.215)

which are evaluated by computer in UFT 252.
Similarly the hamiltonian quadratic in the potential:

H5 =
e2

2m
σ ·A σ ·Aψ (5.216)

can be developed as in UFT 252 using Eq. (5.191) as:

H5ψ =
e2B2

Z

8m
r2(1− cos2θ)ψ (5.217)

again giving novel types of spectroscopy.
The hamiltonian:

H7ψ =
1

2m
σ · p(1 +

eφ

2mc2
)σ · pψ (5.218)

from the fermion equation gives the spin orbit component:

H8ψ =
e

4m2c2
σ · pφ σ · pψ (5.219)

as we have seen and Eq. (5.219) can also be developed using Eq. (5.209) to
give:

H8ψ =
e

4m2c2
(r · p + iσ · L)

φ

r2
(r · p + iσ · L)ψ. (5.220)

There are several terms in this equation that can be developed as in UFT
252. For example:

H9ψ =
e

4m2c2
r · p(

φ

r2
r · p)ψ (5.221)

in which:

r · pψ = −i~r∂ψ
∂r
. (5.222)

So the hamiltonian gives:

H9ψ =
e2~2

16m2c2πε0
(j(j + 1)− l(l + 1)− s(s+ 1))

1

r3
(3ψ − r∂ψ

∂r
)

(5.223)
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and two types of energy expectation values:

E91 =
3e2~2

16m2c2πε0
(j(j + 1)− l(l + 1)− s(s+ 1))

∫
ψψ∗

r3
dτ (5.224)

and

E92 = − e2~2

16m2c2πε0
(j(j + 1)− l(l + 1)− s(s+ 1))

∫
ψψ∗

r2
dτ (5.225)

which give observable new fermion resonance spectra.
The main spin orbit hamiltonian (5.220) can be developed into the fol-

lowing four hamiltonians:

H10ψ =
e

4m2c2
r · p(

φ

r2
r · pψ) (5.226)

H11ψ =
ie

4m2c2
σ · L(

φ

r2
r · pψ) (5.227)

H12ψ =
ie

4m2c2
r · p(

φ

r2
σ · Lψ) (5.228)

H13ψ = − e

4m2c2
σ · L(

φ

r2
σ · Lψ) (5.229)

and these are evaluated systematically in UFT 252 giving many new results.
Finally in this section the e�ect of gravitation on fermion resonance spec-

tra can be evaluated as in UFT 253 using the gravitational minimal prescrip-
tion:

E → E +mΦ (5.230)

where the gravitational potential is:

Φ = −GM
r

(5.231)

where G is Newton's constant and where Φ is the gravitational potential.
Here M is a mass that is attracted to the mass of the electron m. Various
e�ects of gravitation are developed in UFT 253.

5.5 Refutation of Indeterminacy: Quantum Hamil-
ton and Force Equations

The methods used to derive the fermion equation can be used as in UFT
175 to UFT 177 on www.aias.us to derive the Schroedinger equation from
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di�erential geometry. The fundamental axioms of quantum mechanics can
be derived from geometry and relativity. These methods can be used to
infer the existence of the quantized equivalents of the Hamilton equations
of motion, which Hamilton derived in about 1833 without the use of the
lagrangian dynamics. It is very well known that the Hamilton equations
use position (x) and momentum (p) as conjugate variables in a well de�ned
classical sense [1]- [10] and so x and p are �speci�ed simultaneously� in the
dense Copenhagen jargon of the twentieth century. Therefore, by quantum
classical equivalence, x and p are speci�ed simultaneously in the quantum
Hamilton equations, thus refuting the Copenhagen interpretation of quantum
mechanics based on the commutator of operators of position and momentum.
The quantum Hamilton equations were derived for the �rst time in UFT 175
in 2011, and are described in this section. They show that x and p are
speci�ed simultaneously in quantum mechanics, a clear illustration of the
confusion caused by the Copenhagen interpretation.

The anti commutator {x̂, p̂} is used in this section to derive further refu-
tations of Copenhagen, in that {x̂, p̂} acting on a wavefunctions that are
exact solutions of Schroedinger's equation produces expectation values that
are zero for the harmonic oscillator, and non zero for atomic H. The anti
commutator {x̂, p̂} is shown to be proportional to the commutator [x2, p2],
whose expectation values for the harmonic oscillator are all zero, while for
atomic H they are all non-zero. For the particle on a ring, combinations
can be zero, while individual commutators of this type are non-zero. For
linear motion self inconsistencies in the Copenhagen interpretation are re-
vealed, and for the particle on a sphere the commutator is again non-zero.
The hand calculations in �fteen additional notes accompanying UFT 175
are checked with computer algebra, as are all calculations in UFT theory
to which computer algebra may be applied. Tables were produced in UFT
175 of the relevant expectation values. The Copenhagen interpretation is
completely refuted because in that interpretation it makes no sense for the
expectation value of a commutator of operators to be both zero and non-zero
for the same pair of operators. One of the operators would be absolutely un-
knowable and the other precisely knowable if the expectation value were non
zero, and both precisely knowable if it were zero. These two interpretations
refer respectively to non zero and zero commutator expectation values, and
both interpretations cannot be true for the same pair of operators. Prior to
the work in UFT 175 in 2011, commutators of a given pair of operators were
thought to be zero or non zero, never both zero and non zero, so a clear
refutation of Copenhagen was never realized. In ECE theory, Copenhagen
and its unscienti�c, anti Baconian, jargon are not used, and expectation
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values are straightforward consequences of the fundamental operators intro-
duced by Schroedinger. The latter immediately rejected Copenhagen, as did
Einstein and de Broglie.

The Schroedinger equation is derived in ECE from the tetrad postulate
of Cartan geometry, which is reformulated as the ECE wave equation:

(� +R)qaν = 0 (5.232)

where:

R := qνa∂
µ(ωaµν − Γaµν) (5.233)

as discussed earlier in this book. The fermion equation in its wave format is
the limit:

R→
(mc

~

)2
(5.234)

and for the free particle reduces to:

− ~2

2m
∇2ψ = (E −mc2)ψ. (5.235)

This equation reduces to the Schroedinger equation:

− ~2

2m
∇2ψ = ENRψ (5.236)

where:

ENR = E −mc2. (5.237)

In the presence of potential energy the Schroedinger equation becomes:

− ~2

2m
∇2ψ = (ENR + V )ψ. (5.238)

In this derivation, the fundamental axiom of quantum mechanics follows from
the wave equation (5.232) and from the necessity that the classical equivalent
of the hamiltonian operator H is the hamiltonian in classical dynamics, the
sum of the kinetic and potential energies:

H = ENR + V. (5.239)

So in ECE physics, quantum mechanics can be derived from general relativity
in a straightforward way that can be tested against experimental data at each
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stage. For example earlier in this chapter the method resulted in many new
types of spin orbit spectroscopies.

The two quantum Hamilton equations are derived respectively using the
well known position and momentum representations of quantum mechanics.
In the position representation the Schroedinger axiom is:

p̂ψ = −i~∂ψ
∂x

, (p̂ψ)∗ = i~
∂ψ

∂x
, (5.240)

from which it follows that:

[x̂, p̂]ψ = i~ψ. (5.241)

So the expectation value of the commutator is:

〈[x̂, p̂]〉 = i~. (5.242)

In the position representation the expectation value, <x>, of x is x. It
follows that:

d

dx
〈x̂〉 = − i

~
〈[x̂, p̂]〉 = 1. (5.243)

Note that this tautology can be derived as follows from the equation:

d

dx
〈x̂〉 =

d

dx

∫
ψ∗x̂ψ dτ (5.244)

which can be proven as follows. First use the Leibnitz Theorem to �nd that:

d

dx

∫
ψ∗x̂ψ dτ =

∫
dψ∗

dx
x̂ψ dτ +

∫
ψ∗x̂

dψ

dx
dτ. (5.245)

In quantum mechanics the operators are hermitian operators de�ned as fol-
lows: ∫

ψ∗mÂψn dτ =

(∫
ψ∗nÂψm dτ

)∗
=

∫
Â∗ψ∗mψn dτ. (5.246)

Therefore it follows that that Eq. (5.245) is:

d

dx
〈x̂〉 = − i

~

∫
ψ∗(p̂x̂− x̂p̂)ψ dτ (5.247)

which is Eq. (5.243), Q. E. D.
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The �rst quantum Hamilton equation is obtained by generalizing x to
any hermitian operator A of quantum mechanics:

x̂→ Â (5.248)

so one format of the �rst quantum Hamilton equation is:

d

dx

〈
Â
〉

=
i

~

〈[
p̂, Â

]〉
. (5.249)

In the special case:

Â = Ĥ (5.250)

then:

d

dx

〈
Ĥ
〉

=
i

~

〈[
p̂, Ĥ

]〉
. (5.251)

However, it is known that:

d

dt
〈p̂〉 =

i

~

〈[
Ĥ, p̂

]〉
(5.252)

so from Eqs. (5.251) and (5.252) the quantum Hamilton equation is:

d

dx

〈
Ĥ
〉

= − d

dt
〈p̂〉 . (5.253)

The expectation values in this equation are:

H =
〈
Ĥ
〉
, p = 〈p̂〉 (5.254)

so the �rst Hamilton equation of motion of 1833 follows, Q. E. D.:

dH

dx
= −dp

dt
. (5.255)

The second quantum Hamilton equation follows from the momentum
representation:

x̂ψ = −~
i

∂ψ

∂p
, p̂ψ = pψ (5.256)

from which the following tautology follows:

d

dp
〈p̂〉 =

~
i

[〈x̂〉 , 〈p̂〉] = 1. (5.257)
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This tautology can be obtained from the equation:

d

dp
〈p̂〉 =

d

dp

∫
ψ∗p̂ψ dτ. (5.258)

Now generalize p to any operator A:

p̂→ Â (5.259)

and the second quantum Hamilton equation in one format is:

d

dp

〈
Â
〉

= − i
~

〈[
x̂, Â

]〉
. (5.260)

In the special case:

Â = Ĥ (5.261)

the second quantum Hamilton equation is:

d

dp

〈
Ĥ
〉

= − i
~

〈[
x̂, Ĥ

]〉
. (5.262)

However it is known that:〈[
x̂, Ĥ

]〉
= −~

i

〈x̂〉
dt

(5.263)

so the second quantum Hamilton equation is:

d

dp

〈
Ĥ
〉

=
d

dt
〈x̂〉 (5.264)

which reduces to its classical counterpart, the second quantum Hamilton
equation of classical dynamics, Q. E. D.:

dH

dp
=
dx

dt
. (5.265)

Note carefully that both the quantum Hamilton equations derive directly
from the familiar commutator (5.242) of quantum mechanics. Conversely
the Hamilton equations of 1833 imply the commutator (5.242) given only
the Schroedinger postulate in position and momentum representation re-
spectively. In the Hamilton equations of classical dynamics, x and p are
simultaneously observable, so they are also simultaneously observable in the
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quantized Hamilton equations of motion and in quantum mechanics in gen-
eral. This argument refutes Copenhagen straightforwardly, and the arbitrary
assertion that x and p are not simultaneously observable.

The anti commutator method of refuting Copenhagen was also devel-
oped in UFT 175 on www.aias.us and is based on the de�nition of the anti
commutator:

{x̂, p̂}ψ = (x̂ p̂+ p̂ x̂)ψ. (5.266)

In the position representation the anti commutator is:

{x̂, p̂}ψ = −i~
(
x
∂ψ

∂x
+

∂

∂x
(xψ)

)
= −i~

(
ψ + 2x

∂ψ

∂x

)
. (5.267)

Similarly the commutator of p̂2 and x̂2 is de�ned as:

[x̂2, p̂2]ψ =
(
[x̂2, p̂]p̂+ p̂([x̂2, p̂])

)
ψ. (5.268)

Now use the quantum Hamilton equations to �nd that:

[p̂, x̂2]ψ =− 2i~xψ, (5.269)

[x̂2, p̂]ψ =2i~xψ. (5.270)

It follows that:

[x̂2, p̂2]ψ = 2i~(p̂x̂+ x̂p̂)ψ. (5.271)

so the following useful equation has been proven in one dimension:

[x̂2, p̂2]ψ = 2i~ {x̂, p̂}ψ. (5.272)

In three dimensions the Schroedinger axiom in position representation is:

p̂ψ = −i~∇ψ (5.273)

and in three dimensions the relevant commutator is:

[r,p]ψ = −i~(r ·∇ψ −∇ · (rψ)) (5.274)

where in Cartesian coordinates:

r2 = X2 + Y 2 + Z2. (5.275)
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Therefore:

[r,p]ψ = −i~(r ·∇ψ − ψ∇ · r− r ·∇ψ) (5.276)

where:

∇ · (rψ) = ψ∇ · r + r ·∇ψ (5.277)

in which:

∇ · r = 3. (5.278)

So:

[r̂, p̂]ψ = 3i~ψ. (5.279)

In three dimensions:

[r̂2, p̂2]ψ =
(
[r̂2, p̂] · p̂ + p̂ · ([r̂2, p̂])

)
ψ (5.280)

where:

[r̂2, p̂]ψ = r2p̂ψ − p̂(r2ψ) = i~∇r2ψ (5.281)

and where:

∇r2 =
∂r2

∂X
i +

∂r2

∂Y
j +

∂r2

∂Z
k (5.282)

with:

r2 = X2 + Y 2 + Z2. (5.283)

So:

∇r2 = 2r (5.284)

and the three dimensional equivalent of Eq. (5.272) is:

[r̂2, p̂2]ψ = 2i~{r̂, p̂}ψ. (5.285)

The anti commutator in this equation is:

(r̂ · p̂ + p̂ · r̂)ψ = r̂ · p̂ψ + p̂ · (r̂ψ) = −i~(2r ·∇ψ + 3ψ) (5.286)
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where:

r ·∇ψ = X
∂ψ

∂X
+ Y

∂ψ

∂Y
+ Z

∂ψ

∂Z
(5.287)

so in Cartesian coordinates:

{r̂, p̂}ψ = −i~
(

2

(
X
∂ψ

∂X
+ Y

∂ψ

∂Y
+ Z

∂ψ

∂Z

)
+ 3ψ

)
. (5.288)

When considering the H atom the relevant anti commutator is:

{r̂, p̂r}ψ = −i~{r, ∂
∂r
}ψ. (5.289)

With these de�nitions some expectation values:〈
[r̂2, p̂2]

〉
= 2i~ 〈{r̂, p̂}〉 (5.290)

are worked out for exact solutions of the Schroedinger equation in the �fteen
calculational notes accompanying UFT 175 on www.aias.us. All expecta-
tion values were checked by computer algebra and tabulated. The result
is a de�nitive refutation of Copenhagen because expectation values can be
zero or non-zero depending on which solution of Schroedinger's equation is
used, as discussed already. So this method reduces Copenhagen to absurdity,
Q. E. D., a reductio ad absurdum refutation of the Copenhagen interpreta-
tion of quantum mechanics.

As an example we show various commutators and anti commutators for
the wave functions of atomic Hydrogen in Table 5.2. For example r2 com-
mutes with p2r but r does not commute with p. This means according to the
Copenhagen interpretation that r2 and p2r are known at the same time, but
r and pr are not, a reductio ad absurdum.

The force equation of quantum mechanics was �rst inferred in 2011 in
UFT 176 and UFT 177 on www.aias.us and has been very in�uential. It was
derived from the two quantum Hamilton equations:

i~
d

dq

〈
Ĥ
〉

=
〈

[Ĥ, p̂]
〉

(5.291)

and

i~
d

dp

〈
Ĥ
〉

= −
〈

[Ĥ, q̂]
〉

(5.292)
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l,m [r, pr] {r, pr} [r, p2r ] {r, p2r} [r2, pr] {r2, pr} [r2, p2r ] {r2, p2r}

0, 0 i~ 2i~ 0 1/(a0)~2 3ia0~ 3ia0~ 0 0

1, 0 i~ 2i~ 0 1/(a0)~2 12ia0~ 12ia0~ 0 3~2

1, 1 i~ 2i~ 0 1/(2a0)~2 10ia0~ 10ia0~ 0 ~2

2, 0 i~ 2i~ 0 1/(a0)~2 27ia0~ 27ia0~ 0 8~2

2, 1 i~ 2i~ 0 7/(9a0)~2 25ia0~ 25ia0~ 0 6~2

2, 2 i~ 2i~ 0 1/(3a0)~2 21ia0~ 21ia0~ 0 2~2

Table 5.2: Commutators for radial wave functions of the Hydrogen atom. a0
is the Bohr radius.

applied to canonical operators p̂ and q̂. By using the well known [1]- [10]:

d

dq

〈
Ĥ
〉

=

〈
dĤ

dq

〉
,

d

dp

〈
Ĥ
〉

=

〈
dĤ

dp

〉
(5.293)

these equations can be put into operator format as follows:

i~
dĤ

dq
ψ = [Ĥ, p̂]ψ (5.294)

and

i~
dĤ

dp
ψ = −[Ĥ, q̂]ψ (5.295)

where ψ is the wave function. If the hamiltonian is de�ned as:

H =
p2

2m
+ V (x) (5.296)

then:

dH

dx
=
dV

dx
(5.297)

because in the Hamilton dynamics x and p are independent, canonical vari-
ables. Therefore Eq. (5.293) is satis�ed automatically. Using the result:

[Ĥ, p̂]ψ = i~
dV

dx
ψ = −i~Fψ (5.298)
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where F is force, Eq. (5.291) gives the force equation of quantum mechanics:

−dĤ
dx

ψ = Fψ (5.299)

where the eigenoperator is de�ned by:

dĤ

dx
:= −~2 ∂

3

∂x3
+
dV (x)

dx
. (5.300)

In the classical limit, the corresponding principle of quantum mechanics
means that Eq. (5.299) becomes one of the Hamilton equations:

F =
dp

dt
= −dH

dx
. (5.301)

In the momentum representation Eq. (5.295) gives a second fundamental
equation of quantum mechanics:

dĤ

dp
ψ = vψ (5.302)

where the eigenvalues are those of quantized velocity. Here:

dH

dp
=

p

m
(5.303)

and:

dĤ

dp
ψ = vψ. (5.304)

Eq. (5.302) corresponds in the classical limit to the second Hamilton equa-
tion:

v =
dx

dt
=
dH

dp
. (5.305)

The general, or canonical, formulation of Eqs. (5.299) and (5.302) is as
follows:

−dĤ
dq

ψ = Fψ (5.306)

and

dĤ

dp
ψ = vψ (5.307)
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which reduce to the canonical Hamilton equations:

−dH
dq

=
dp

dt
(5.308)

and

dH

dp
=
dq

dt
. (5.309)

The rotational equivalent of Eq. (5.310) is:

i~
dĤ

dφ
ψ = [Ĥ, ĴZ ]ψ (5.310)

in which the canonical variables are:

q = φ, p̂ = ĴZ . (5.311)

For rotational problems in the quantum mechanics of atoms and molecules,
H commutes with ĴZ so

[Ĥ, ĴZ ] = 0 (5.312)

in which case:

dĤ

dφ
ψ = 0. (5.313)

In order for dĤ/dφ to be non-zero there must be a φ dependent potential
energy in the hamiltonian:

H =
J2

2I
+ V (φ) (5.314)

so the hamiltonian operator must be:

Ĥ = −~2

2I
Λ̂2 + V (φ) (5.315)

where Λ̂ is the lagrangian operator. In this case:

dĤ

dφ
= −~2

2I
Λ̂2 +

dV

dφ
(5.316)
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and Eq (5.310) gives the torque equation of quantum mechanics:

−dĤ
dφ

ψ = Tqψ = −dV
dφ

ψ (5.317)

where Tq are eigenvalues of torque.
There also exist higher order quantum Hamilton equations as discussed

in UFT 176, and quantum Hamilton equations for rotation in a plane.
Finally as shown in detail in the in�uential UFT 177 on www.aias.us

the force equation of quantum mechanics can be derived from the quantum
Hamilton equations and is:

(Ĥ − E)
dψ

dx
= Fψ (5.318)

where the force is de�ned by:

d

dx

〈
Ĥ
〉

=
dH

dx
=
dV

dx
= −F = −dp

dt
. (5.319)

In the force equation the hamiltonian operator acts on the derivative of
the Schroedinger wave function or in general on the derivative of a quantum
mechanical wave function obtained in any way, for example in computational
quantum chemistry, and this is a new method of general utility as developed
in UFT 175.

As some examples we show the radial quantum force component for some
orbitals of Hydrogen (Figs. 5.1 - 5.3). There are poles in the force, but only
at radial values where the wave functions are zero. This inhibits divergence
for the expectation values of force. In some cases there are zero crossing of the
force where the wave function has a minimum or maximum. This could mean
that charge is shifted to places of high probability density. For molecules
this could have to do with the fact that the same type of orbitals can be
binding or anti-binding, depending on the symmetry. The force eigenvalues
have the potential of giving new insight into chemical bonding and stability
mechanisms. There are more examples in UFT papers 177 and 178.
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Figure 5.1: Radial wave function and quantum force for H 3s orbital.

Figure 5.2: Radial wave function and quantum force for H 3p orbital.
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Figure 5.3: Radial wave function and quantum force for H 3d orbital.
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Chapter 6

Antisymmetry

6.1 Introduction

The concept of anti symmetry pervades ECE theory, and manifests itself
in several important ways. The theory is based on di�erential forms that
are anti symmetric [1]- [10] by de�nition, notably the torsion form. This is
a vector valued two form of di�erential geometry, and in another language
is an anti symmetric tensor with an upper a index signalling the fact that
electromagnetism in ECE theory has a fundamentally di�erent geometry that
is more complete than that of the Maxwell Heaviside theory. As explained
in chapter 1, the �rst and second Cartan Maurer structure equations de�ne
the anti symmetric torsion form and the anti symmetric curvature form, a
tensor valued two form of di�erential geometry. In a way, the entire ECE
theory is anti symmetric from the basics of geometry.

The fundamentally important achievement of Cartan geometry is to re-
duce everything to two fundamental objects, the torsion and curvature, which
are de�ned in terms of the tetrad and the spin connection in a very simple
way. The great elegance of the Cartan geometry is that it reduces very com-
plicated vector and tensor equations to simple form equations. However this
mathematical elegance can only be achieved at the expense of abstraction, as
is always the case in mathematics. However abstract a mathematical theory,
it must always reduce to well known but less elegant mathematics. If it does
not, or is not comprehensible, it is either self inconsistent or e�ectively useless
in natural philosophy. The less elegant vector format of the Cartan structure
equations has proven to be the most useful in the foregoing chapters, but
the structure equations show that everything is anti symmetric.

The reason for this is that the structure equations, when translated into
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tensorial language, are de�ned by the commutator of covariant derivatives.
It is important to note that the structure equations are precisely the same
fundamental de�nitions of geometry in all notations: di�erential form, tensor
and vector. As explained already in this book the commutator is anti sym-
metric by de�nition. It is loosely referred to as a round trip in a mathematical
space of any dimension. This round trip, or return journey, de�nes the two
structure equations of Cartan and Maurer in an elegant way and shows that
the two structure equations are not independent, they are always linked by
the commutator. This very fundamental property of mathematics can be
looked upon, loosely writing, as a reason for the existence of the Cartan
identity and the Evans identity of di�erential geometry. So the commutator
is the �most fundamental� object in geometry. It was unknown to pioneers
such as Riemann, Christo�el, Ricci, Levi-Civita and Bianchi, otherwise they
would have inferred torsion, (which they obviously did not), and would have
realized that the Christo�el connection is anti symmetric from the most fun-
damental type of reasoning in mathematics. This realization is the key to
the anti symmetry laws of ECE theory developed in this chapter. They are
powerful laws that refute the Maxwell Heaviside (MH) theory immediately,
showing that the MH theory is lacking in information and is self insu�cent
and inconsistent. This is a major advance in electromagnetism that was fully
realized in UFT 130 �. on www.aias.us. It is not clear whether Cartan and
Maurer inferred the commutator, it may be present in their work, but it is
not made clear. The commutator is present in Lie algebra however, and is
a fundamental concept there. To chemists its most well known manifesta-
tion is the commutator of Pauli matrices which gives another Pauli matrix,
de�ning the SU(2) basis used by Dirac.

The famous role of Albert Einstein in all this was to propose that non
Euclidean geometry is needed for the theory of gravitation. He �nally decided
in a paper published in late 1915 to use the second Bianchi identity known to
him. Naturally this was the second Bianchi identity without torsion, torsion
was unknown in 1915. The UFT paper 88 published about six or seven
years ago has been in�uential in showing that the second Bianchi identity
as used by Einstein is incorrect, so the Einsteinian era is over and we are
entering into a post Einsteinian era of thought. One cannot make a howler
in mathematics, however well intentioned, and expect to get away with it
for a century � unless of course one is Einstein, who cannot be wrong. This
is very familiar � human nature as distinct from nature, and human nature
is almost always wrong. So people are still busy proving the precision of
the Einstein theory knowing full well that it collapsed completely almost
sixty years ago when the velocity curve of a whirlpool galaxy was discovered
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experimentally. They are dogmatists because they ignore nature, they are
not Baconian scientists.

In historical fact, which is always brushed aside by dogmatists, Einstein
did not get away with it at all, he was criticised severely by Schwarzschild
in December 1915 in a letter which is now online and easily googled up,
placed there by A. A. Vankov as discussed already in this book. Vankov
has pointed out many more errors in the 1915 paper of Einstein, but UFT
88 destroyed his theory completely and replaced it with the correct second
Bianchi identity. UFT88 has been studied several thousand times in about
six years without any objection. So one would not like to be a dogmatist
any more. If Bianchi had had the commutator at his disposal he would have
inferred torsion, being the clear minded mathematician that he was. All the
details of the calculation are given in UFT 99, again a heavily studied paper,
again without a single objection. After Schwarzschild's untimely demise in
1916 there was a free for all, the main critic was gone. However, Bauer and
Schroedinger noted independently in 1918 that something was drastically
wrong with the Einstein �eld equation. They were brushed aside by human
nature, and the world was told that Eddington had proven general relativity.
The world did not know about torsion, or in fact anything about general
relativity. Eddington did not have anywhere approaching the precision to
prove anything. Almost a century later people are still trying to prove that
light bending is twice the Newtonian value, and their experiments are still
being criticised. The critics are still being brushed aside. This chant of
�twice the Newtonian value� is reminiscent of Golding's �Lord of the Flies�.
It is a ritual like any other. The data may or may not be precise but do not
prove a mathematical howler. They can be investigated however with the
post Einsteinian ECE theory and we can do our best to make sense of them.
That is Baconian science.

Cartan inferred his elegant geometry in the early twenties, in the middle
of the golden era of physics when profound discoveries had become common-
place. The only thing known about geometry at this time, when Einstein
suddenly became famous, was that the curvature is anti symmetric in its
last two indices. To the general public this meant absolutely nothing, but
the same general public regarded Einstein as an Idol of the Cave. This is a
metaphor, no disrespect to Einstein, who must have been intensely irritated
by his new found fame, especially as he was being harassed by a bee � Elie
Cartan � more irritating than any �y. Cartan had written to Einstein in the
most respectful terms pointing out that Einstein's geometry had half of it
missing. It contained curvature but no torsion, two wheels on the wagon,
which was listing badly and about to sink. There ensued a correspondence
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known only to a tiny group of scholars. It was always a polite correspon-
dence which made Einstein fully aware of torsion but the latter was not
incorporated into the theory of general relativity.

There is little purpose in going in to the details of this correspondence
because it was carried out at a time when the action of the commutator on
a vector was not clear. The relevant contemporary equation was given in
chapter 1 and is recounted here for ease of reference:

[Dµ, Dν ]V ρ = RρµνσV
σ − T λµνDλV

ρ (6.1)

Here T λµν is the torsion in tensor format [1]- [10] and Rρµνσ is the cur-
vature in tensor format. This equation is the essence of anti symmetry in
ECE theory. The commutator acts on a vector V ρ in any dimension in any
mathematical space. It is made up of the covariant derivatives de�ned by
Christo�el in the eighteen sixties:

DµV
ν = ∂µV

ν + ΓνµλV
λ (6.2)

using the Christo�el connection Γνµλ. It is the geometrical connection that
makes the space di�erent from that of Euclid, two thousand plus years ago.
The commutator formalism is valid in n dimensions, while Euclid thought
in three dimensions, without a geometrical connection.

The �rst thing to notice is that the commutator always produces the
torsion and curvature at the same time. It makes no sense to throw away
the torsion. This arbitrary procedure is equivalent to throwing away one of
the Cartan structure equations. No expert in di�erential geometry would
do that, only dogmatic physicists. Unfortunately, the curvature was known
before Eq. (6.1) was known. The early pioneers of geometry had guessed and
got it wrong, they had guessed that geometry could be described by curvature
and nothing else. This guess is entirely excusable, it is how knowledge works,
but it is entirely inexcusable to go on ignoring torsion once it is known. This
is exactly what happened in twentieth century relativity. The latter fell �at
on its face when the velocity curve of a whirlpool galaxy was discovered in
about 1958.

The second thing to notice is that when the connection is made zero, or
removed, the commutator of ordinary derivatives is zero:

[∂µ, ∂ν ]V ρ = 0 (6.3)

and this is a fundamental property of a space without a geometrical connec-
tion. In three dimensions such a space is that of Euclid. It has no torsion
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and no curvature. Notice that the curvature and torsion both vanish. It is
not possible for one to exist and the other not to exist. It is becoming clear
that the commutator is an elegant object of thought, it produces non Eu-
clidean geometry and shows that this type of geometry is always described
by only two types of tensor, the torsion and curvature, and that both always
coexist. They both vanish in Euclidean geometry and more generally in an
n dimensional space with no connection.

The most important thing to notice is that a commutator of any kind is
always anti symmetric. In the case of covariant derivatives it is de�ned from
the most fundamental principles of geometry as:

[Dµ, Dν ]V ρ = Dµ (DνV
ρ)−Dν (DµV

ρ) (6.4)

so interchanging µ and ν produces the opposite sign. This is what is meant
by anti symmetry. Any object with subscripts µ and ν changes sign under
the action of the commutator. So it is entirely obvious and long accepted
that torsion and curvature are anti symmetric:

T λµν = −T λνµ, , (6.5)

Rρµνσ = −Rρµσν . (6.6)

If these tensors were not anti symmetric, the commutator method could not
be used, and the Cartan Maurer structure equations would not be valid.
In the ninety years since they were proposed, they have never been refuted
logically.

The torsion tensor has been de�ned for ninety years by:

T λµν = Γλµν − Γλνµ (6.7)

and is the di�erence of two Christo�el connections. In the second connection
µ and ν are reversed. So the action of the commutator is:

[Dµ, Dν ]V ρ = −ΓλµνDλV
ρ + ... (6.8)

This equation has been written in such a way as to show that there is a
one to one correspondence between the commutator indices, µ and ν, and
the indices µ and ν of the connection. The commutator is antisymmetric by
de�nition, so the connection is anti symmetric from the most fundamental
principles of non Euclidean geometry:

Γλµν = −Γλνµ (6.9)
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This entirely obvious result refutes the Einsteinian general relativity imme-
diately, so although logical to geometry it is terminally dangerous to foggy
dogma or fogma. The truth is always dangerous and exciting. Argument is
vulgar and often convincing.

In the development of early non Euclidean geometry the metric was in-
ferred �rst by Riemann, then the connection by Christo�el, then the curva-
ture by Ricci and Levi Civita and �nally the identities known after Bianchi.
This took about forty years, from the eighteen sixties to about 1902. These
developments did not use the commutator, so there was no way of knowing
the symmetry of the lower two indices of the connection. It could be in-
ferred only that the connection was a matrix for each upper index λ. Clearly
this pure mathematical development never considered physics, so no fact of
nature was used to try to determine the symmetry of the connection. For
each λ the connection is a matrix in µ and ν. A matrix in general has no
symmetry, it is therefore described as asymmetric. The only thing that can
be inferred logically is that the Christo�el connection is asymmetric. It is
the sum of symmetric and anti symmetric components, as for any matrix.
However, the commutator always produces the anti symmetric part of the
connection, and at the same time produces the anti symmetric torsion and
anti symmetric curvature and at the same time produces the �rst and second
Cartan Maurer structure equations. So the entire Cartan geometry uses an
anti symmetric connection and the entire Cartan geomerty is produced by
the commutator. This is the essence of this chapter.

The fogma of the twentieth century ignored the commutator and asserted
that Christo�el had somehow managed to prove that the connection is sym-
metric. If the connection is symmetric, the commutator is symmetric and
vanishes. The torsion and curvature vanish, and with them the structure
equations of Cartan and Maurer. So the fogma led to the darkest recesses of
Plato's Cave, and we are emerging into the light with ECE theory.

6.2 Application of Antisymmetry to Electrodynam-
ics

On the U(1) level used in the standard model the commutator of covariant
derivatives acts on the gauge �eld [1]- [10], [24] ψ as follows:

[Dµ, Dν , ]ψ = −ig [∂µ, Aν ]ψ (6.10)
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where g is a constant and where Aν is the four potential on the U(1) level.
Now let:

µ→ ν, ν → µ (6.11)

then by de�nition:

[Dµ, Dν ]ψ = − [Dν , Dµ]ψ. (6.12)

The commutator is expanded with the Leibnitz Theorem as follows:

[∂µ, Aν ]ψ = ∂µ (Aνψ)−Aν (∂µψ) (6.13)

= (∂µAν)ψ +Aν (∂µψ)−Aν (∂µψ)

= (∂µAν)ψ.

Therefore:

[∂µ, Aν ]ψ = (∂µAν)ψ (6.14)

[∂ν , Aµ]ψ = (∂νAµ)ψ (6.15)

and Eq.(6.12) is:

(∂µAν)ψ = − (∂νAµ)ψ (6.16)

giving the antisymmetry law of ECE theory on the U(1) level in electrody-
namics. It was realized in UFT 130, a heavily studied paper, that Eq. (6.16)
profoundly changes the nature of electric and electronic engineering in all
their aspects. They have been inexplicably missed since Heaviside's time in
the late nineteenth century but are simple to derive. Eq. (6.16) immediately
shows that U(1) gauge symmetry is incorrect and self inconsistent. The basic
assertion of U(1) = O(2) gauge electromagnetism (�at electromagnetism) is
that there are only transverse states of radiation in vacuo. This patently
absurd assertion is necessitated by the early guess of Einstein that a particle
moving at c must have identically zero mass. As we have seen the correct
interpretation was given in July 1905 by Poincare, that c is not the speed of
light in vacuo but the constant of the Lorentz transformation.

So in �at electromagnetism the transverse vector potential is:

A =
A(0)

√
2

(ii + j) eiφ (6.17)

where the electromagnetic phase is:

φ = ωt− κZ. (6.18)
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Here ω is the angular frequency at instant t, κ is the wave vector magnitude
at position Z. Therefore:

∂AX
∂Z

= −iκAX = κ
A(0)

√
2
eiφ, (6.19)

∂AY
∂Z

= −iκAY = −iκA
(0)

√
2
eiφ. (6.20)

However the antisymmetry law (6.16) means that:

∂AZ
∂X

= −∂AX
∂Z

= −κA(0)e
i φ√

2 , (6.21)

∂AZ
∂Y

= −∂AY
∂Z

= iκA(0)e
i iφ√

2 ,

showing immediately that there is a longitudinal polarization AZ by anti
symmetry. It is immediately obvious that there is no Higgs boson, which rests
on �at electromagnetism, the U(1) sector symmetry of the theory behind the
Higgs boson. Using the de Moivre Theorem:

eiφ = cosφ+ i sinφ (6.22)

so:

∂AZ
∂X

= −κA
(0)

√
2

cosφ;
∂AZ
∂Y

= −κA
(0)

√
2

sinφ (6.23)

and (
∂AZ
∂X

)2

+

(
∂AZ
∂Y

)2

= κ2
A(0)2

2
. (6.24)

If cylindrical symmetry is used for the sake of simplicity it is found that:

AZ = ±1

2
XκA(0) (6.25)

and there are three senses of space like polarization. The Beltrami analysis
of chapter 3 shows the nature of longitudinal solutions very clearly and obvi-
ously. In a sense the standard model of physics has always been a �at world
fantasy. As soon as Proca developed his equations, U(1) gauge invariance
collapsed. That was in 1938, and it is still being rolled out today in standard
physics, but not in ECE physics.
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In the obsolete �at electromagnetism, the electric �eld strength E is
de�ned by the scalar and vector potentials by:

E = −∇φ− ∂A

∂t
(6.26)

and the magnetic �ux density by:

B = ∇×A. (6.27)

In the �at world of U(1) electromagnetism it is claimed that a static electric
�eld is de�ned by:

E = −∇φ (6.28)

and that for a static electric �eld:

∂A

∂t
= 0. (6.29)

The anti symmetry equations (6.16) immediately refute these assertions be-
cause:

∇φ =
∂A

∂t
= 0. (6.30)

The electric �eld is always de�ned by Eq. (6.30) in all situations in the
natural sciences and engineering.

Similarly in gravitational theory the Newtonian acceleration due to grav-
ity is always de�ned in the obsolete standard physics by:

g = −∇Φ (6.31)

but the anti symmetry argument shows that:

g = −∇Φ = −1

c

∂Φ

∂t
(6.32)

where Φ is the gravitational equivalent of the scalar potential φ and Φ is the
equivalent of the vector potential A in electromagnetism.

The anti symmetry law (6.16) leads to multiple di�culties for �at elec-
tromagnetism and standard physics. The law (6.16) can be expressed as two
equations:

∇φ =
∂A

∂t
(6.33)
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and

∂iAj = −∂jAi. (6.34)

From Eqs. (6.27) and (6.33):

∇×E = 0,
∂B

∂t
= 0 (6.35)

meaning that the magnetic �eld in �at electrodynamics cannot change with
time, an absurdity. This is a di�culty encountered at the most basic level
in the tensorial theory of electromagnetism. Apparently it was not realized
by Lorentz and Poincare because they did not infer the anti symmetry law
(6.16). The Faraday law of induction of the �at electromagnetism is:

∇×E +
∂B

∂t
= 0 (6.36)

so from Eq. (6.35):

∇×E = 0 (6.37)

which means that the electric �eld strength is also static, another absurd
result of assuming a zero photon mass. A static electric �eld on the U(1)
level is de�ned by:

A = 0 (6.38)

so it follows that:

B = ∇×A = 0 (6.39)

and that the magnetic �ux density vanishes. From the anti symmetry equa-
tion (6.33) it follows that:

∇φ =
∂A

∂t
= 0 (6.40)

and so:

E = −∇φ = 0. (6.41)

Anti symmetry therefore results in the complete collapse of U(1) electro-
magnetism, both E and B vanish as a result of anti symmetry in the �at
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world of U(1) electromagnetism. The ship falls o� the edge of the �at dog-
matic world. Anti symmetry proves straightforwardly that the notion of a
massless photon is empty dogma, and that the geometry used in MH theory
is woefully inadequate.

Note carefully that U(1) symmetry gauge theory itself, Eq. (6.10), has
been used to disprove the theory simply by using the anti symmetry of the
commutator, which acts on the gauge �eld [1]- [10], [24] as follows:

[Dµ, Dν ]ψ = [∂µ − igAµ, ∂ν − igAν ]ψ. (6.42)

The U(1) covariant derivative is de�ned as:

Dµ = ∂µ − igAµ (6.43)

where:

g =
e

~
=

κ

A(0)
(6.44)

as argued in previous chapters. The photon momentum in this theory is:

p = ~κ = eA(0), (6.45)

a minimal prescription. In Eq. (6.42):

[∂µ, ∂ν ] = 0 (6.46)

so:

[Dµ, Dν ]ψ = −ig ([∂µ, Aν ]− ig [Aµ, Aν ])ψ. (6.47)

The fundamental anti symmetry:

[Dµ, Dν ]ψ = − [Dν , Dµ]ψ (6.48)

means that:

[∂µ, Aν ]ψ = − [∂ν , Aµ]ψ (6.49)

so:

∂µAν = −∂νAµ (6.50)

and we obtain Eq. (6.16) irrefutably. The only alternative is to abandon
the commutator, but as argued already that means the abandonment of
geometry itself.
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The derivation of the anti symmetry law is so simple that it is almost
trivially evident from the commutator method. Yet the law is so powerful
that it can refute a century of dogma in a few lines, as we have just argued.

This catastrophe for the standard physics became evident a few years ago
in UFT 132. By now it is long known that �at electromagnetism is empty
dogma, and by implication the Higgs boson. The latter exists only because
the media can be used to propagate the idea. As in Einstein's era the general
public still has no idea of the meaning of commutator. This is an illustration
of human nature rather than that of nature. The scene is now set for the
entry of ECE theory and for the implementation of anti symmetry within
ECE theory.

6.3 Antisymmetry in ECE Electromagnetism

In ECE electrodynamics the electromagnetic �eld is de�ned by:

F aµν = ∂µA
a
ν − ∂νAaµ + ωaµbA

b
ν − ωaνbAbµ (6.51)

in which the antisymmetry law is determined by the antisymmetry of the
Chisto�el connection:

Γaµν = −Γaνµ. (6.52)

Using the tetrad postulate the Christo�el connection becomes:

Γaµν = ∂µq
a
µ + ωaµν (6.53)

so anti symmetry in Cartan geometry means that:

∂µq
a
ν + ωaµν + ∂νq

a
µ + ωaνµ = 0. (6.54)

As in chapter 2 this equation translates into the following anti symmetry
equation in electrodynamics:

∂µA
a
ν + ∂νA

a
µ +A(0)

(
ωaµν + ωaνµ

)
= 0. (6.55)

This was �rst derived in UFT 133 and UFT 134 and is a fundamental con-
straint on the �rst Cartan Maurer structure equation:

F aµν = ∂µA
a
ν − ∂νAaµ +A0

(
ωaµν − ωaνµ

)
. (6.56)

This is known as the Lindstrom constraint and is discussed in more detail
as follows, based on UFT 134.
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For a single polarization the ECE theory of electromagnetism reduces to
a format that is super�cially similar to the Maxwell Heaviside equations:

∇ ·B = 0 (6.57)

∇×E +
∂B

∂t
= 0 (6.58)

∇ ·E =
ρ

ε0
(6.59)

∇×B− 1

c2
∂E

∂t
= µ0J (6.60)

but the relation between the �elds and the potentials are as follows:

E = −∇φ− ∂A

∂t
− ω0A + ωφ, (6.61)

B = ∇×A− ω ×A. (6.62)

The electric component of the anti symmetry equation for a single polariza-
tion is:

∇φ− ∂A

∂t
− ω0A− ωφ = 0 (6.63)

and the magnetic anti symmetry relation restricted by the Lindstrom con-
straint is:

∇×A = −ω ×A. (6.64)

If we apply the anti symmetry equations (6.63) and (6.64) to the �eld inten-
sities E and B we see two independent de�nitions of E and a single de�nition
of B:

E = −2
∂A

∂t
− 2ω0A (6.65)

or

E = −2∇φ+ 2ωφ (6.66)

and

B = 2∇×A. (6.67)

So B is obviously compatible with the Gauss Law:

∇ ·B = 0. (6.68)
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Applying the two alternative equations (6.65) and (6.66) for E, and (6.67)
for B, to Faraday's Law, Eq. (6.58) gives for both cases:

∇×
(
φω +

∂A

∂t

)
= 0 (6.69)

and

∇× (ω0A) = 0. (6.70)

Take the curl of Eq. (6.63) and apply Eq. (6.70) to obtain Eq. (6.69),
meaning that Eq. (6.69) contains no new information that is not already
given by the electric component of the anti symmetry equations. Using the
anti symmetry relations the following equations can be obtained as in UFT
134:

∇× (ωφ)− ∂

∂t
(ω ×A) = 0, (6.71)

−∇2φ+ ∇ · (ωφ) =
ρ

2ε0
, (6.72)

−∇× (ω ×A)− 1

c2
∂

∂t
(∇φ− ωφ) =

µ0
2

J. (6.73)

Eq. (6.72) gives a resonant form of the Coulomb law which can be used to
produce resonant energy from spacetime as described in the next chapter.
Eqs. (6.62) to (6.65) give a set of seven equations in seven unknows as
described in UFT 134. However the Coulomb and Ampère Maxwell laws are
not independent. This can be shown for example by taking the divergence
of Eq. (6.73):

1

c2
∂

∂t

(
−∇2φ+ ∇ · (ωφ)

)
=

1

2
µ0∇ · J (6.74)

and integrating with respect to time to give:

−∇2φ+ ∇ · (ωφ) =
ρ

2ε0
(6.75)

with:

ρ =

∫
∇ · J dt. (6.76)
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Starting with Eqs. (6.65) and (6.67), Faraday's law becomes:

∇×
(
−2

∂A

∂t
− 2ω0A

)
+ 2

∂

∂t
(∇×A) = 0 (6.77)

which can be simpli�ed to:

∇× (ω0A) = 0 (6.78)

and is identical with Eq. (6.70). The Coulomb and Ampère Maxwell laws
take the form:

∇ · ∂A

∂t
+ ∇ · (ω0A) =

ρ

2ε0
, (6.79)

∇×∇×A +
1

c2
∂2A

∂t2
+

1

c2
∂

∂t
(ω0A) =

1

2
µ0J. (6.80)

Eq. (6.79) is compatible with Eq. (6.78) and shows that ω0A represents
a pure source �eld. Eqs. (6.79) and (6.80) represent four equations for
four variables. These equations are independent if the charge and current
density are chosen to be unrelated. Eq. (6.80) is a wave equation in three
dimensions with transverse and longitudinal solutions that go beyond MH
electrodynamics. Eq. (6.79) is a non linear di�usion equation, the non
linearity being caused by the spin connection, and indicating that there is a
�ow of potential present in addition to MH theory. This can be considered to
represent interaction with the surrounding vacuum or spacetime - the source
of energy in resonance e�ects.

It is possible to derive a third version of the equation set using Eq. (6.70):

ω0A = − ∂

∂t
(∇φ) . (6.81)

Substituting Eq. (6.66) and (6.68) into Eq. (6.59) and (6.60) gives:

∇ · ∂A

∂t
+ ∇ · (ω0A) = − ρ

2ε0
, (6.82)

∇×∇×A+
1

c2
∂2A

∂t2
+

1

c2
∂

∂t
(ω0A) =

1

2
µ0J, (6.83)

and using the vector identity:

∇×∇×A = ∇ (∇ ·A)−∇2A (6.84)
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time integrating Eq. (6.82) and substituting the expression for ∇ ·A Into
Eq. (6.83) gives:(

−∇2 +
1

c2
∂2

∂t2

)(
A +

∫
ω0A dt

)
=

1

2
µ0J +

1

2

∫ ∇ρ

ε0
dt. (6.85)

Using Eq. (6.81) this can be written more elegantly as:(
−∇2 +

1

c2
∂2

∂t2

)
(A−∇φ) =

1

2
µ0J +

1

2ε0

∫
∇ρ dt. (6.86)

By using Eq. (6.65):∫
E dt = −2A− 2

∫
ω0A dt = −2A + 2∇φ (6.87)

which appears in Eq. (6.86). Alternatively Eq. (6.86) is according to Eq.
(6.66):∫

E dt = −2

∫
∇φdt+ 2

∫
φω dt. (6.88)

Substituting this alternative form of Eq. (6.88) into Eq. (6.87) we obtain:(
−∇2 +

1

c2
∂2

∂t2

)(∫
∇φdt−

∫
φω dt

)
=

1

2
µ0J+

1

2ε0

∫
∇ρ dt (6.89)

and after taking the time derivative:(
−∇2 +

1

c2
∂2

∂t2

)
(∇φ− ωφ) =

1

2
µ0
∂J

∂t
+

1

2ε0
∇ρ. (6.90)

In total, Eqs. (6.81), (6.86) and (6.90) represent nine equations in nine un-
knowns:

ω0A = − ∂

∂t
(∇φ) (6.91a)(

−∇2 +
1

c2
∂2

∂t2

)
(A−∇φ) =

1

2
µ0J +

1

2ε0

∫
∇ρ dt, (6.91)(

−∇2 +
1

c2
∂2

∂t2

)
(∇φ− ωφ) =

1

2
µ0
∂J

∂t
+

1

2ε0
∇ρ. (6.92)

The equations are entirely independent and represent a balanced set.
Singularities occur in the solutions, giving plenty of opportunity for reso-

nance e�ects and obtaining energy from spacetime. For example if the cross

190



CHAPTER 6. ANTISYMMETRY

product is taken of the electric portion of the anti symmetry equation (6.63)
with A:

∇φ×A− ∂A

∂t
×A− ω0A×A− φω ×A = 0. (6.93)

Assuming that the time derivative of A is parallel to A:

∇φ×A = φω ×A (6.94)

and Eq. (6.64) can be used to remove ω:

∇×A = − 1

φ
∇φ×A. (6.95)

Singularities occur whenever φ is zero and ∇φ and A are not. Combined
with the driven resonances in Eqs. (6.91) and (6.92) a rich supply of non
linear solutions becomes available.

It is seen that the ECE anti symmetry equations are the only equations
of electrodynamics that are self consistent and are preferred over the MH
equations.

The Lindstrom magnetic constraint combined with a particular solution
of the electric constraint reduces the second model described above to MH
theory. Anti symmetry means that it is not possible to reduce ECE theory to
MH theory simply by removing the spin connection, because that procedure
produces:

E = −∂A

∂t
−∇φ, (6.96)

B = ∇×A. (6.97)

As shown already in this chapter these relations when used with anti sym-
metry generally invalidate MH theory, a major discovery of the evolution of
ECE theory. However, applying the following particular solutions of the anti
symmetry equations:

ωφ = −∂A

∂t
(6.98)

ω0A = ∇φ (6.99)

ω ×A = −∇×A (6.100)

the electric and magnetic �elds of the ECE theory become:

E = −2
∂A

∂t
− 2∇φ, (6.101)
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B = 2∇×A. (6.102)

The standard MH structure is:

B = ∇× a (6.103)

and comparing Eqs. (6.102) and (6.103):

a = 2A. (6.104)

Substituting Eq. (6.103) into the Faraday Law:

∇×E +
∂B

∂t
= 0 (6.105)

gives:

∇×E = −∇× ∂a

∂t
(6.106)

which has:

E = −∂a

∂t
−∇φ1 (6.107)

as the only solution. Comparing Eqs. (6.101) and (6.107) gives:

φ1 = 2φ (6.108)

which show that the theory designated II in the engineering model on www.aias.us
reduces to the MH theory given the restrictions (6.98) to (6.100).

Note carefully that this reduction is achieved by:

B = ∇× a = ∇×A− ω ×A = 2∇×A (6.109)

and not by discarding the spin connection. So the MH format achieved in this
way is still a theory of general relativity, making uni�cation with gravitation
possible.

6.4 Derivation of the Equivalence Principle from
Antisymmetry and Other Applications

The equivalence of inertial and gravitational mass is known as the weak
equivalence principle and has been tested experimentally with great preci-
sion. In this section the equivalence principle is derived from anti symmetry.
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It has been shown independently [1]- [10] by Moses, Reed and Evans that
any vector �eld in three dimensions may be expressed as the sum of three
vectors:

V = V(1) + V(2) + V(3) (6.110)

in the complex circular basis de�ned earlier in this book. Helmholtz showed
in the nineteenth century that any vector �eld can be written as the sum of
two vectors:

V = Vs + Vl (6.111)

where:

∇ ·Vs = 0, (6.112)

∇×Vl = 0. (6.113)

The use of the complex circular basis extends the Helmholtz equation as
follows:

Vs = V(1) + V(2), (6.114)

Vl = V(3). (6.115)

The most fundamental components are therefore components of V(1), V(2),
V(3). Examples of these fundamental components are shown below, for ex-
ample a vector potential. In the �rst papers on ECE theory these components
were identi�ed as the objects known as tetrads in Cartan geometry. Such an
identi�cation had also been made indirectly by Reed. In Cartan's original
de�nition of the tetrad the a index is the upper index of a four dimensional
Minkowski spacetime at point P to a four dimensional manifold indexed µ.
Each of the three dimensional vectors de�ned in Eq. (6.110) is the space like
component of the following four dimensional vectors:

V (i)
µ =

(
V

(i)
0 ,−V(i)

)
, i = 1, 2, 3. (6.116)

The complete four dimensional vector is the sum of these three vectors:

Vµ = V (1)
µ + V (2)

µ + V (3)
µ . (6.117)

So there exist three time like components and the complete time like com-
ponent is their sum:

V0 = V
(1)

0 + V
(2)

0 + V
(3)

0 . (6.118)
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In four dimensions the a index is:

a = (0), (1), (2), (3) (6.119)

so in general there also exists the component V (0)
0 . These fundamental

elements may always be expressed as tetrad elements and de�ned as a 4 x 4
matrix as follows:

Xa = V a
µ X

µ. (6.120)

It follows that any four dimensional vector can be de�ned as a scalar valued
quantity multiplied by a Cartan tetrad:

V a
µ = V qaµ. (6.121)

Therefore Cartan's di�erential geometry may be applied to any four dimen-
sional vector. Normally it is applied to the tetrad and the �rst Cartan
structure equation de�nes the Cartan torsion from the tetrad. The latter
is the fundamental building block because it consists of fundamental com-
ponents of the complete vector �eld. The Heaviside Gibbs vector analysis
restricts consideration to V only, but the tetrad analysis realizes that V has
an internal structure.

In four dimensions therefore de�ne the fundamental vectors:

V (0)
µ =

(
V

(0)
0 ,0

)
, (6.122)

V (i)
µ =

(
V

(i)
0 ,−V(i)

)
, i = 1, 2, 3. (6.123)

Eq. (6.122) means that the space like components of V (0)
µ are zero by

de�nition because the superscript (0) is time like by de�nition. There are no
space like components of a time like property. On the other hand a vector
such as V (1)

µ is a four vector, so V (0)
0 in general is its non-zero time like

component. In general the Cartan tetrad is de�ned by:

Xa = qaµX
µ (6.124)

where X denotes any vector �eld. Therefore Cartan geometry extends the
Heaviside Gibbs analysis and this �nding can be applied systematically to
physics, notably dynamics. The Heaviside Gibbs analysis was restricted to
three dimensional space with no connection, i.e. a Euclidean space. Using
Cartan's di�erential geometry the analysis can be extended to any space of
any dimension by use of the Cartan spin connection. Using this procedure
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all the equations of physics can be derived automatically within a uni�ed
framework, thus producing the �rst successful uni�ed �eld theory.

Now apply this method to the concept of velocity in dynamics. The
velocity tetrad is:

V a
µ = vqaµ (6.125)

where v is the scalar magnitude of velocity, i.e. the speed. The gravitational
potential is de�ned as:

Φa
µ = cvaµ = Φqaµ. (6.126)

In analogy the electromagnetic potential is also de�ned in terms of the tetrad
in ECE theory:

Aaµ = A(0)qaµ. (6.127)

The electromagnetic �eld is de�ned in terms of the Cartan torsion:

F aµν = A(0)T aµν (6.128)

and also the gravitational �eld:

gaµν = Φ(0)T aµν . (6.129)

The acceleration due to gravity in ECE theory is therefore part of the torsion,
so in general the acceleration in electrodynamics is also part of the torsion,
de�ned conveniently as:

aaµν = cvT aµν . (6.130)

In vector notation Eq. (6.129) splits in to two equations:

aa = −∂va

∂t
− c∇va0 − cωa0bvb + cvb0ω

a
b (6.131)

and

Ωa = ∇× va − ωab × vb. (6.132)

The spin connection is de�ned as:

ωaµb = (ωa0b,−ωab) . (6.133)
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In tensor notation the relation between acceleration and velocity in generally
covariant dynamics is:

aaµν = c
(
∂µv

a
ν − ∂νvaµ + v

(
ωaµν − ωaνµ

))
. (6.134)

So Eqs. (6.131) and (6.132) may be simpli�ed to:

aa = −∂va

∂t
+ c∇Φa + cvωaorb (6.135)

and:

Ωa = ∇× va + vωaspin (6.136)

where:

ωaorb = (ωa01 − ωa10) i + (ωa02 − ωa20) j + (ωa03 − ωa30) k (6.137)

and

ωaspin = (ωa32 − ωa23) i + (ωa13 − ωa31) j + (ωa21 − ωa12) k (6.138)

and where:

vωaorb = −ωaobvb + vb0ω
a
b (6.139)

and

vωaspin = −ωab × vb. (6.140)

Equations (6.139) and (6.140) are Coriolis type accelerations due to or-
bital and spin torsion. Eq. (6.135) shows that acceleration is due to the rate
of change of velocity and also the gradient of the potential. If the inertial
frame of Newtonian dynamics is de�ned as �at space time then in the inertial
frame:

aa = −∂va

∂t
−∇Φa. (6.141)

The equivalence principle assumes that:

−∂va

∂t
= −∇Φa (6.142)

which is the direct result of the ECE anti symmetry law:

∂µv
a
ν = −∂νvaµ (6.143)
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when

µ = 0, ν = 1, (6.144)

Q. E. D.
Force is de�ned by mass multiplied by acceleration, so

Fa = −m∂va

∂t
= −m∇Φa (6.145)

which is a generalization of the weak equivalence principle assumed by New-
ton but not proven by him. ECE theory shows that the equivalence principle
has a geometrical origin.
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Chapter 7

Energy from Space Time and
Low Energy Nuclear Reactions

7.1 Introduction

These phenomena when viewed as experimental data completely refute the
standard model of physics, which is still unable to deal with them. There are
many devices available that take energy from space time (www.et3m.net) in
a reproducible and repeatable manner. These devices are being used rou-
tinely in the best industry. Low energy nuclear reactors (LENR) are about
to be mass produced, but the old physics still cannot explain them. A plau-
sible qualitative explanation for such devices has been given by ECE theory
through the use of Euler Bernoulli resonance [1]- [10] in equations containing
the spin connection. The �rst example found was spin connection resonance
(SCR) in the Coulomb Law, and after that several other mechanisms were
found. The theory has been greatly developed independently by Eckardt and
Lindstrom. This chapter aims to explain the simple basics of spin connection
resonance.

For over a hundred years there have been many reports of devices pro-
ducing more electric power than inputted to a given device. Many of these
reports were not reproducible and repeatable, but in the past thirty years
or so the subject has become more scienti�c, with more details becoming
available of circuit design. Some of the reports were of surges or spikes of
power which could not be explained conventionally. Some of these were too
large to be artifacts. The subject has been hampered greatly by pseudo-
science and charlatans, so from the beginning ECE set out to give a rigorous
explanation of such phenomena. A qualitative or plausible explanation was
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sought based on data that were likely to be reproducible and repeatable and
to be free of artifact. Conventional electric resonance must be eliminated
carefully before a source of energy from space time can be considered as a
possible explanation.

In addition to these requirements of Baconian science the circuit design
must preferably be made available as the scienti�c apparatus, in the usual
manner of a scienti�c experiment, but very often no details of apparatus were
available. Possibly this may have been due to inventors who were careful to
protect patent rights. So scientists have been reluctant to approach these
important subject areas in an open minded, scienti�c, manner. This is a
pity because they are of great potential importance to humankind. If there is
any chance whatsoever of obtaining energy from spacetime, then that chance
should be exploited to the hilt. A coherent theory for such phenomena was
not formulated until spin connection resonance was proposed. The Maxwell
Heaviside (MH) theory has no explanation for energy from space time, so
there has been a historical tendency to dismiss all such data as artifact, or
being indicative of a lack of knowledge of basic principles such as conservation
of energy. In the past there has been a widespread belief that energy from
space time means energy from nothing. This absurd lack of understanding
delayed the acceptance of the subject for many years.

In about 2005 one of the authors of this book (MWE) was asked to give
an explanation of a very intense resonance peak in apparatus demonstrated
to the U. S. Navy by Alex Hill and colleagues (www.aias.us) whose work was
�rst drawn to the attention of MWE by Albert Collins. John Shelburne,
a civilian working for the Navy in Florida, asked MWE to give a plausible
explanation in terms of the then new ECE theory. The resonance peak was
demonstrated to the U. S. Navy by the Alex Hill group, and the Naval civilian
sta� were satis�ed that the e�ect was free of artifact. There was an intense
resonance of electric power which could not be explained by conventional
electric resonance theory, based on Euler Bernoulli theory. Subsequently
the Alex Hill group developed devices which are now used in Fortune Fifty
industry. Observers are allowed to see the devices in operation in Fortune
Fifty industry.
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7.2 Spin Connection Resonance from the Coulomb
Law

In the simplest instance the Coulomb law in ECE theory is given by:

∇ ·E =
ρ

ε0
(7.1)

where:

E = − (∇ + ω)φ (7.2)

where φ is the scalar potential in volts, ω is the spin connection vector in
inverse metres, E is the electric �eld strength in volts m−1, ρ is the charge
density in Cm−3 and ε0 is the S. I. vacuum pemittivity:

ε0 = 8 · 854× 10−12J−1C2m−1. (7.3)

Thus:

∇ · ((∇ + ω)φ) = − ρ
ε0

(7.4)

i.e.:

∇2φ+ ω ·∇φ+ (∇ · ω)φ = − ρ
ε0

(7.5)

which is an equation capable of giving resonant solutions from the spin con-
nection vector. The Poisson equation does not give resonant solutions. In
one Z dimension Eq. (7.5) becomes:

∂2φ

∂Z2
+ ωZ

∂φ

∂Z
+

(
∂ωZ
∂Z

)
φ = − ρ

ε0
. (7.6)

The spin connection in Eq. (7.6) must be:

ωZ =
2

Z
(7.7)

in order to recover the standard Coulomb law o� resonance. This is because:

φ = − e

4πε0Z
,

∂φ

∂Z
=

e

4πε0Z2
= −ωZ

2
φ (7.8)

in the o� resonant condition, giving Eq. (7.7). In the o� resonant condition
the role of the spin connection is to change the sign of the electric �eld
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according to Eq. (7.8). The way in which the �eld and potential are related is
changed, but this has no experimental e�ect because E is e�ectively changed
by −E. With the spin connection (7.7), Eq. (7.6) becomes:

∂2φ

∂Z2
+

2

Z

∂φ

∂Z
− 2

Z2
φ = − ρ

ε0
. (7.9)

Now assume that the charge density is initially oscillatory:

ρ = ρ(0) cos (κZ) (7.10)

where κ is a wave number. Thus:

∂2φ

∂Z2
+

2

Z

∂φ

∂Z
− 2

Z2
φ = −ρ(0) cosκZ. (7.11)

The partial derivatives can be changed to total derivatives to give an ordinary
di�erential equation:

d2φ

dZ2
+

2

Z

dφ

dZ
− 2

Z2
φ = −ρ(0) cosκZ. (7.12)

Using the well known Euler method this equation can be reduced to an
undamped oscillator equation that has resonant solutions, and this was the
earliest attempt at developing the theory of spin connection resonance in
UFT63.

This was the �rst plausible explanation of the Alex Hill devices (www.et3m.net)
which have been observed over the years by invited experts, the types of de-
vice used by Fortune Fifty companies are power saving devices in induction
motors, described on the www.et3m.net site, and energy saving devices in
lighting. These types of devices can be mass marketed so no better proof
of the presence of energy from space time can be given. Initially, this type
of energy was known as energy from the vacuum, but such a nomenclature
lent itself to misrepresentation and misunderstanding, notably to absurd al-
legations of perpetual motion. These came about because the vacuum was
confused with �nothingness�, so that presumably these advocates of perpet-
ual motion thought that no energy can be transferred from nothing to a
device. On the contrary, the vacuum of general relativity contains energy,
de�ned by the in�nitesimal of proper time and the dynamic metric. This
has been known for a century. So transfer of energy occurs from space time
to a device. Total energy is conserved.

Therefore the nomenclature of �energy from space time� was adopted and
when the request came in from the U. S. Navy to devise an explanation, one
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was found by using the spin connection and looking for equations with the
structure of an Euler Bernoulli equation. It would then be possible for a small
driving force to produce a large resonance in output electric power. This
theory is the same in structure as conventional electric resonance theory, but
the driving force originates in spacetime. The vacuum structure of spacetime
has been greatly developed during the evolution of ECE theory by Eckardt
and Lindstrom. When �rst asked to devise a theory the relevant author
(MWE) had no details of circuit design, and was given only a qualitative
account of the results. So spin connection resonance was devised to provide
a qualitative description.

Subsequently it was found that spin connection resonance occurs in mag-
netostatics (UFT 65). The ECE equations of magnetostatics can be written
as:

∇ ·Ba = 0 (7.13)

∇×Ba = µ0J
a (7.14)

Ba = ∇×Aa − gAb ×Ac (7.15)

and in this case spin connection resonance is de�ned by the simultaneous
equations:

∇×
(
∇×Aa − gAb ×Ac

)
= µ0J

a (7.16)

and:

∇ ·Ab ×Ac = 0 (7.17)

Eq. (7.16) can be developed with the vector identities:

∇×∇×Aa = −∇2Aa + ∇ (∇ ·Aa) (7.18)

and:

∇×
(
Ab ×Ac

)
= Ab∇·Ac−Ac∇·Ab+(Ac ·∇) Ab−

(
Ab ·∇

)
Ac. (7.19)

To simplify the problem for the sake of illustration, assume that the vector
potential has no divergence:

∇ ·Aa = ∇ ·Ab = ∇ ·Ac = 0 (7.20)

and assume that Ac is space independent so that:(
Ab ·∇

)
Ac = 0. (7.21)
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Eq. (7.16) becomes:

∇2Aa + g (Ac ·∇) Ab = −µ0Ja (7.22)

which can be reduced to:

∂2AaZ
∂X2

+ κ 2
0 A

a
Z = µ0J

a
Z (0) cos (κX) (7.23)

as in UFT 65. This has the resonant solution:

AaZ →∞ (7.24)

at:

κ = κ0 =

(
g

(
∂AZ
∂X

)) 1
2

. (7.25)

Spin connection resonance can also occur in the Faraday law of induction
if it as assumed that there is a magnetic current density:

∇×Ea +
∂Ba

∂t
= µ0j

a. (7.26)

UFT 65 assumed that there was no scalar potential and that the electric
�eld is de�ned by:

Ea = −∂Aa

∂t
(7.27)

leading to another example of spin connection resonance. Subsequently, UFT
74 led to spin connection resonance in magnetic motors (M. W. Evans and
H. Eckardt, Physica B, 400, 175 - 179 (2007)). In UFT 92 the theory was
developed for the Coulomb law in radial coordinates. The most in�uential of
these early papers of ECE theory is UFT 107, which applied spin connection
resonance to the Faraday disk generator using the concept of rotating space-
time. It was shown that at resonance the vector potential goes to in�nity,
and this seemed to give a plausible qualitative explanation of experimentally
observed resonance in a variable frequency Faraday disk generator.

In these early papers the antisymmetry laws of ECE theory had not yet
been inferred, but several types of spin connection resonance were de�ned.
As explained already in this book the antisymmetry laws give the possibil-
ity of many more resonances and in�nities, thus giving plenty of support
for the experimental data of the Alex Hill group (www.et3m.net). Subse-
quently the subject of spin connection resonance was developed by Eckardt
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and Lindstrom, and an account of these developments is given later in this
chapter. The essential point in all these developments is that spin connection
resonance occurs only in a theory of general relativity applied to electromag-
netism.

The theory continued to develop until it reached the stage described in
UFT 259, in which charge current density had been given a geometrical
meaning and in which the antisymmetry laws could be incorporated to give
spin connection resonance in a simpler way than in the early papers. This is
typical of the development of ECE theory, the theory simpli�ed and clari�ed
during the course of 260 papers to date. The latest stages of development
are summarized conveniently in the analysis of the Coulomb law using the
electric charge density de�ned by:

ρa = ε0

(
ωab ·Eb − cAb ·Ra

b (orb)
)

(7.28)

where ε0 is the vacuum permittivity, ωab is the spin connection vector, Eb

is the electric �eld strength, c is the universal constant known as the speed
of light, and Ra

b is the orbital part of the curvature vector. As explained
already in this book the electric �eld strength is:

Ea = −c∇Aa0 −
∂Aa

∂t
− cωa0bAb + cAb0ω

a
b (7.29)

where the 4-potential is de�ned by:

Aaµ = (Aa0,−Aa) =

(
φa

c
,−Aa

)
(7.30)

where φa is the scalar potential. The electric current density is de�ned by:

Ja = ε0c
(
ωa0bE

b − cAb0Ra
b (orb) + cωab ×Bb − cAb ×Ra

b (spin)
)
(7.31)

where Ra
b (spin) is the spin part of the curvature vector and where Bb is the

magnetic �ux density.
As discussed in UFT 259 the equations of electrostatics in ECE theory

are

∇ ·Ea = ωab ·Eb (7.32)

ωa0b ·Eb = φbRa
b (orb) (7.33)

ωab ×Eb + φbRa
b (spin) = 0 (7.34)

Ea = −∇φa + φbωab (7.35)
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In order to obtain spin connection resonance Eq. (7.32) must be extended
to:

∇ ·Ea = ωab ·Eb − cAb (vac) ·Ra
b (orb) (7.36)

where Ab is a vacuum potential of ECE theory. The static electric �eld is:

Ea = −∇φa + φbωab (7.37)

so from Eqs. (7.36) and (7.37) :

∇2φa+
(
ωab · ωbc

)
φc = ∇·

(
φbωab

)
+ωab·∇φb+cAb (vac)·Ra

b (orb) . (7.38)

The ECE anti symmetry law means that:

−∇φa = φbωab (7.39)

leading to the Euler Bernoulli resonance equation:

∇2φa +
(
ωab · ωbc

)
φc =

1

2
cAb (vac) ·Ra

b (orb) (7.40)

and undamped spin connection resonance. The left hand side contains the
Hooke's law term and the right hand side the driving term originating in a
vacuum potential. However tiny this term may be it can be ampli�ed greatly
by undamped resonance, con�rming the Alex hill result in another way. This
is the most complete theory of Coulomb law resonance to date.

Denoting:

ρa (vac) =
ε0c

2
Ab (vac) ·Ra

b (orb) (7.41)

the equation becomes:

∇2φa +
(
ωab · ωbc

)
φc =

ρa (vac)

ε0
. (7.42)

The left hand side is a �eld property and the right hand side is a property
of the ECE vacuum. In the simplest case:

∇2φ+ ω2
0φ =

ρ (vac)

ε0
(7.43)

and produces undamped resonance if the driving term is oscillatory as al-
ready described in this book.
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7.3 Low Energy Nuclear Reactions (LENR)

This is a most promising source of new energy, the most well known device
being the Rossi reactor recently purchased for commercialization. Again
the standard model of electromagnetism has no coherent explanation for the
phenomenon, in which nuclear fusion occurs in simple apparatus with release
of useful heat. Some of the devices used to produce this heat are well known
and available in all detail. The technique has been subject to numerous
independent assessments and checks for repeatability and reproducibility.
Initially it was known as cold fusion, famously discovered by Pons and Fleis-
chman in the University of Utah. Their discoveries were supported initially
by the State of Utah. It was di�cult initially to prove that cold fusion was
reproducible and repeatable, so there ensued a very long debate which is
still going on. However the LENR technique is being commercialized, and
subject to control of the heat produced, will be available for domestic use.

LENR devices are already being used for military and other applications
and have been subjected to the usual testing and certifying. Some academic
departments are also dedicated to LENR, and many conferences, journals
and newsletters dedicated to the subject. In the economics department in
the University of Utah, models are being developed to research the e�ect
of LENR on future economies. The availability of cheap and clean energy
is a pre-requisite for economic growth. Stephen Bannister for example is
currently preparing a Thesis on this topic in the University of Utah's De-
partment of Economics, a Thesis which compares the �rst industrial revo-
lution in Britain with the second industrial revolution expected to occur as
the result of the energy techniques described in this chapter. During one
such conference approximately a year and a half ago one of the authors of
this book (MWE) was asked to devise a theoretical explanation for low en-
ergy nuclear reactions in terms of ECE theory in order to devise a solid and
coherent framework for its development within the scope of a uni�ed �eld
theory. There are many theories of LENR but no consensus as to the origins
of the energy needed to cause a nuclear reaction in simple apparatus in the
laboratory.

The initial response to this request was UFT 226 on www.aias.us, in
which a general theory of particle collisions was developed. This is overviewed
brie�y in this section. Consider two particles of 4-momenta pµ and pµ1 :

pµ =

(
E

c
,p

)
, pµ1 =

(
E1

c
,p1

)
. (7.44)

In the minimal prescription on the semi classical level the collision of these
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particles is described by:

pµ → pµ + pµ1 (7.45)

E → E + E1 (7.46)

p→ p + p1 (7.47)

where E is the relativistic energy

E = γmc2 (7.48)

and p the relativistic momentum:

p = γmv. (7.49)

The Lorentz factor is de�ned by:

γ =

(
1− v2

c2

)− 1
2

(7.50)

where v is the velocity of a particle of mass m and where c is the speed of
light in vacuo. Eq. (7.49) implies the Einstein �eld equation:

E2 = p2c2 +m2c4 (7.51)

which can be written as:

E2 −m2c4 =
(
E −mc2

) (
E +mc2

)
= c2p2. (7.52)

From Eqs. (7.45 ) and (7.51 ):

(E + E1)
2 = c2 (p+ p1)

2 +m2c4 (7.53)

which is the classical relativistic description of particle interaction in the
minimal prescription. From Eq. (7.53):

(E + E1)
2 −m2c4 = c2 (p+ p1)

2 (7.54)

so the relativistic kinetic energy is:

T = E + E1 −mc2 =
c2 (p+ p1)

2

E + E1 +mc2
. (7.55)

This kinetic energy is a limit of the ECE fermion equation, which is de-
rived from the Cartan geometry used in this book. The concepts of particle
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mass m and m1 are limits of the more general R factor of the ECE wave
equation described in UFT 181 and UFT 182. After a series of approxima-
tions described in UFT 226, and similar to those used in the derivation of
the fermion equation described already in this book, the energy E can be
expressed as:

E =
c2 (p+ p1)

2

2mc2 + E1
+mc2 (7.56)

and the kinetic energy as:

T = E + E1 −mc2 ∼ E −mc2. (7.57)

In order to quantize the theory the fermion equation is used as described
in UFT 226 to give the hamiltonian operator:

Hψ = (H1 +H2)ψ (7.58)

where:

H1ψ =
1

2m
(σ · (−i~∇ + p1)σ · (−i~∇ + p1))ψ (7.59)

and

H2ψ =

(
−σ · (−i~∇ + p1)

E1

4m2c2
(−i~∇ + p1)

)
ψ. (7.60)

In Eq. (7.58):

σ·(p + p1)σ·(p + p1) = p2+p 2
1 +p1·p+p·p1+iσ·(p1 × p + p× p1) (7.61)

so the �rst type of hamiltonian becomes:

H1 = − ~2

2m
∇2 +

p 2
1

2m
+
i~
2m

(p1 ·∇ + ∇ · p1)+
~

2m
σ · (p1 ×∇ + ∇× p1)

(7.62)

and operates on the wave function to give energy eigenvalues. As described
in UFT 226 the hamiltonian operator may be simpli�ed to give:

H1 = − ~2

2m
∇2 +

p 2
1

2m
+

i~
2m

(∇ · p1 + 2p1 ·∇) +
~

2m
σ ·∇× p1. (7.63)

209



7.3. LOW ENERGY NUCLEAR REACTIONS (LENR)

In the generally covariant format of this theory the concept of mass is
generalized to curvature R using the Hamilton Jacobi equation:

(pµ − ~κµ) (pµ − ~κµ) = m 2
0 c

2 (7.64)

as in UFT 182 on www.aias.us. Eq. (7.64) may be written as:

pµpµ = ~2R1 +m 2
0 c

2. (7.65)

Using this theory it is possible to consider the four momentum pµ1 of particle
1 interacting with a matter wave 2 de�ned by the wave vector κµ2. Particle
1 is also a matter wave:

pµ1 = ~κµ1. (7.66)

In UFT 182 it was shown that the interaction is described by:(
� +R2 +

(m10c

~

)2)
ψ1 = 0 (7.67)

where the R2 parameter is:

R2 =
(m2c

~

)2
(7.68)

and where the concept of interacting mass is de�ned as:

m2 =
~
c

(
2
(ω1ω2

c2
− κ1κ2

)
−
(
ω 2
2

c2
− κ 2

2

)) 1
2

. (7.69)

Therefore in this general ECE theory it is possible to think of a quantum
of space time energy being absorbed during a LENR reaction. This idea
generalizes the Planck concept of photon energy to particle energy.

A low energy nuclear reaction can be exempli�ed as follows:

64Ni + p =63 Cu + 2 n. (7.70)

Here, 64Ni has 36 neutrons and 28 protons, and 63Cu has 34 neutrons and 29
protons. So 64Ni is transmuted into 63Cu with release of two neutrons. The
theory must explain why this nuclear reaction occurs. Nickel is transmuted
to copper with the release of usable heat and this reaction can be made
to occur in simple apparatus in the laboratory. It does not need the vast
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amount of expenditure of conventional nuclear fusion research. Using the
theory of this section the interacting mass is:

m =
~
c

(
ω2

c2
− κ2

) 1
2

(7.71)

and the total mass of the nickel atom during interaction increases to:

M =
(
m2 +m 2

0

) 1
2 (7.72)

with concomitant energy:

E0 = Mc2 (7.73)

so that a nuclear reaction occurs, a LENR reaction.
This is a simple �rst theory, which is a plausible explanation of LENR.

In UFT 227 a more general theory was considered to develop an expression
for the mass M of a fused nucleus when reactants 1 and 2 produce products
3 and 4. Total energy momentum is conserved as follows:

pµ1 + pµ2 = pµ3 + pµ4. (7.74)

As shown in UFT 227 this equation can be expressed as:

(E1 + E2)
2 − (p1 + p2) · (p1 + p2) = M2c4 (7.75)

where:

M2 = m 2
1 +m 2

2 + 2m1m2

(
γ1γ2 −

(
γ 2
1 − 1

) 1
2
(
γ 2
2 − 1

) 1
2 cos θ

)
(7.76)

in which the angle θ is de�ned as

(p1 + p2) · (p1 + p2) = p21 + p22 + 2p1p2 cos θ. (7.77)

In the non relativistic limit:

v1 � c, v2 � c (7.78)

Eq. (7.76) becomes:

M2 = m 2
1 +m 2

2 + 2m1m2 = (m1 +m2)
2 (7.79)

so in this limit M is the sum of m1 and m2. Otherwise there is a mass
discrepancy or di�erence:

∆m =
(
m 2

1 +m 2
2 −M2

) 1
2 (7.80)
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which gives rise to the energy released in nuclear fusion as heat and light.
This classical relativistic theory was quantized in UFT 227 using the

fermion equation for the fusion of two atoms 1 and 2. The attractive nuclear
strong forces are denoted V1 and V2, their sum being:

V = V1 + V2. (7.81)

The total relativistic energy of nuclei 1 and 2 is:

E = E1 + E2 (7.82)

and their fused mass is M . The vector sum of their relativistic momenta is:

p = p1 + p2. (7.83)

The fermion equation for this nuclear fusion reaction is:

((E − V ) + cσ · p)φL = Mc2φR (7.84)

((E − V ) + cσ · p)φR = Mc2φL (7.85)

which can be developed as the Schroedinger type equation:

Hψ = Eψ (7.86)

where the hamiltonian operator is:

H = H1 +H2 (7.87)

where:

H1 = Mc2 + V − ~2∇2

2m
(7.88)

and:

H2 =
1

4M2c2
σ · pV σ · p (7.89)

giving the nuclear energy levels.
In UT 227 the well known Woods Saxon potential was used to model Eq.

(7.86). It is described by:

V = −V0
(

1 + exp

(
r −R
a

))−1
(7.90)
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where V0 is the potential well depth, a is the surface thickness of the nucleus,
and R is the nuclear radius. It can be approximated roughly by the harmonic
oscillator potential:

V =
1

2
kr2 − V0 (7.91)

where k is the spring constant of Hooke's law, so Eq. (7.86) becomes:

H1ψ =

(
−~2∇2

2m
+

1

2
kr2 +Mc2 − V0

)
ψ. (7.92)

The nuclear energy levels of the fused nucleus in this approximation are the
well known energy levels of the harmonic oscillator:

E =

(
n+

1

2

)
~ω (7.93)

where:

n = 0, 1, 2, . . . (7.94)

and where:

ω =

(
k

M

) 1
2

. (7.95)

In a rough approximation as described in UFT 227 the attractive nuclear
strong force can be written as:

FN ∼
1

4a

(
1− r −R

a

)
er (7.96)

and the spin orbit energy from the nuclear fermion equation (7.86) is:

Hsoψ =
~

16M2c2a2
σ · Lψ. (7.97)

The spin orbit energy can be used to explain many features of nuclear physics
and is its most important property.

The energy levels of the fused nucleus are in excited states, and the
nucleus disintegrates to give products 3 and 4 accompanied by energy:

∆E0 = (m1 +m2 −M) c2 (7.98)
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In UFT 228 quantum tunnelling theory was introduced by writing the
Einstein energy equation:

E2 = p2c2 +m2c4 (7.99)

as

E = γmc2 =
1

γm

(
p2 +m2c2

)
. (7.100)

Eq. (7.100) becomes a Schroedinger equation:

Hψ = Eψ (7.101)

with the hamiltonian:

H =
1

γm

(
p2 +m2c2

)
(7.102)

and energy levels:

E = γmc2. (7.103)

It follows that:

p2ψ = −~2∇2ψ = m2c2
(
γ2 − 1

)
ψ. (7.104)

The four momentum is de�ned by:

pµ = i~∂µ = ~κµ (7.105)

where:

pµ =

(
E

c
,p

)
, (7.106)

∂µ =

(
1

c

∂

∂t
,−∇

)
, (7.107)

κµ =
(ω
c
,κ
)
. (7.108)

Here ω is the frequency of the matter wave, and κ the wave number. There-
fore:

p2ψ = ~2κ2ψ = m2c2
(
γ2 − 1

)
ψ =

(
E2

c2
−m2c2

)
ψ. (7.109)
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For a free wave / particle:

κ =
mc

~
(
γ2 − 1

) 1
2 . (7.110)

For the purposes of the development of quantum tunnelling theory denote:

k =
mc

~
(
γ2 − 1

) 1
2 (7.111)

In the presence of potential energy V the operator (7.102) becomes:

H =
1

γm

(
p2 +m2c2

)
+ V (7.112)

so:

p2ψ =
(
γm (E − V )−m2c2

)
ψ (7.113)

and

κ2 =
1

~2
(
γm (E − V )−m2c2

)
. (7.114)

In quantum tunnelling theory E < V, so

E − V < 0. (7.115)

De�ne:

κ =
1

~
(γm (V − E))

1
2 . (7.116)

Denoting the rest wave number as:

κ0 =
mc

~
(7.117)

we arrive at the de�nition:

κ2 + κ20 =
γm

~2
(V − E) . (7.118)

Eq. (7.111) can be written as:

κ2 + κ20 = γ2
(mc

~

)2
(7.119)

so:

p2

2m
ψ =

mc2

2

(
γ2 − 1

)
ψ. (7.120)
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In the non-relativistic quantum limit, as shown in UFT 228:

∇2ψ = −
(

2mE

~2

)
ψ (7.121)

giving the transmission coe�cient:

T = 8κ2k2
((
k2 + κ2

)
cosh (4κa)−

(
κ4 + k4 − 6κk

))−1
, (7.122)

for a potential of type:

V = 0, x < −a, (7.123)

V = V0, −a < x < a,

V = 0, x > a,

E < V0,

in which:

k2 = 2mE/~2, E = mc2
γ2 − 1

2
, (7.124)

κ2 = 2m (V0 − E) /~2, E = mc2
γ2 − 1

2
.

In a graphical analysis the transmission coe�cient T of Eq. (7.122) has
been calculated for the rectangular barrier (7.123). The coe�cient depends
on wave vectors k and κ and barrier half-width a. In Fig. 7.1 both a and
k have been varied. It can be concluded that T is at maximum when ka
as as well as κ are minimal; this corresponds to quantum waves with lowest
energy.

Since k and κ depend on the energy E and height of the potential well
V0 (see Eq. (7.124)), it is more conclusive to study the dependence on these
parameters. For a special parameter combination, T is quite high in the
�forbidden� region, showing the quantum mechanical tunneling behaviour.
This is graphed in Fig. 7.2 in a 3D representation.

The tunnelling probability decreases drastically with slightly enhanced
masses. Mass is a very sensitive parameter. This can be seen from Fig. 7.3
where we have graphed the mass dependence of T with relativistic velocity
ratio v/c as a curve parameter. For v → c the transmission coe�cient
degenerates to a delta function at m = 0.

It is found using this analysis that the single most important factor is the
mass of the incoming particle. The extra ingredient given by ECE theory
is the possibility of augmenting the standard quantum tunnelling theory by
resonant absorption of quanta of space time energy - energy from space time.
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Figure 7.1: Transmission coe�cient T (k, a) for �ve values of κ.

Figure 7.2: Transmission coe�cient T (E, a) for m = ~ = 1, V0 = 10.
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Figure 7.3: Mass dependence of the realtivistic transmission coe�cient T (m)
for electron-electron tunneling, electrom mass is m = 1.
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Chapter 8

ECE Cosmology

8.1 Introduction

Astronomy is one of the oldest of the sciences and has become a precise
subject area. Cosmology began to develop as a subject when the observations
of the orbit of Mars by Tycho Brahe were analyzed by Johannes Kepler to
give three planetary laws reduced by Newton to universal gravitation and
the equivalence of gravitational and inertial mass. The famous Newtonian
dynamics were developed to include rotational motions in non inertial frames
by Euler, Bernoulli, Coriolis and others, and Laplace developed his elegant
celestial mechanics. Lagrange developed the subject of dynamics from a
di�erent perspective, and using more general concepts which were taken
up by Hamilton to produce the Hamilton equations and the idea of the
Hamiltonian. The latter became the basis of quantum mechanics. Orbital
theory can be developed elegantly with the idea of the Lagrangian and the
Euler Lagrange equations. For example, conservation of angular momentum
and the Euler Lagrange equations can be used to show that if the orbit of a
massm around a massM is observed to be an ellipse, then the force between
m and M is inversely proportional to the square of the distance r between
m and M � the famous inverse square law as inferred by Newton. The same
method also gives the three Kepler laws of planetary motion. However the
Lagrangian method is more general than that of Newton because it can give
the force law for any orbit.

In the eighteenth and early nineteenth centuries the orbits of all massesm
around a mass M were thought to be ellipses to an excellent approximation,
withM at one focus of the ellipse, so the subject was thought to be complete,
and m travelled on the ellipse. The orbits of planets could be observed
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with precision, and objects such as galaxies were unknown. So the famous
Newtonian concept of universal gravitation was thought to be as near to
perfection as human intellect could devise. Newtonian dynamics worked for
astronomy and also back on the ground. The apocryphal apple was governed
by the acceleration due to gravity g of the earth. The apple and the moon
were governed by the same law, universal gravitation.

The gods however are o�ended by human pretence to perfection, the or-
bit of a planet precesses, a point of the ellipse such as its perihelion moves
forward a little every orbit. In the Newtonian dynamics the elliptical or-
bit does not move forward if one considers only m and M and the force
between them. From precise astronomical observations of orbits by ancient
astronomers the precession of the perihelion had been known well before
Newton's time. In Newton's time, the seventeenth century, it was thought
to be caused by the gravitational pull of other planets. It is a very tiny
e�ect so was not thought to be due to any �aw in Newton's universal grav-
itation. When the human intellect contrives something that it thinks to be
perfect, no data are allowed to stand in the way, and it is human nature to
hang on to a theory even though the data show that the theory is not quite
right. Sometimes the theory is totally wrong and always gave an illusion of
the truth. The precession of planetary orbits can indeed be explained to a
large extent by Newtonian concepts, but there seems to be a tiny part of the
precession that cannot be explained.

Following the Michelson Morley experiment the entire subject of dynam-
ics was changed and the concept of special relativity introduced as described
in chapter 1 of this book. The Newtonian and Lagrangian dynamics were re-
covered as limits of special relativity. However, special relativity is restricted
to the Lorentz transform and a constant inter frame velocity. In order to
consider acceleration and similar e�ects a new relativity was needed. An-
other profound change in thought occurred when Einstein and others decided
to base dynamics on geometry. This was also Kepler's idea, and went back
to the ancient Greeks, who thought of geometry as beauty itself, or perfect
beauty. E�ectively this means that the Lorentz transform becomes the gen-
eral coordinate transform. It is not in any way clear to the human intuition
that space should become part of time, that the familiar three dimensions
should be abandoned, and that the familiar concepts of Euclid should be
replaced by a di�erent geometry. The very idea of a di�erent geometry had
been considered only by a few mathematicians up to about 1905.

Among the �rst to consider such as geometry was Riemann in the early
nineteenth century, followed in the eighteen sixties by Christo�el. These two
prominent mathematicians devised the concept of metric and connection.
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The metric is a symmetric object by de�nition, but the connection has no
particular symmetry in the lower two of its three indices. About forty years
later Ricci and Levi-Civita devised the concept of curvature of space of any
dimension, including four dimensional spacetime, that of special relativity.
In physics concomitant progress was being made by Noether, who linked the
conservation laws of physics to symmetry laws. The subject of physics intro-
duced the canonical energy momentum tensor, which is also symmetric in its
indices. In mathematics, in about 1900, Levi-Civita de�ned the Christo�el
connection as being symmetric. This was an axiom, or hypothesis, not a
rigorous proof. In 1900 it was not known that there existed a fundamental
property of any mathematical space in any dimension, the torsion.

In 1902 Bianchi inferred an identity in which a well de�ned cyclic sum
of curvature tensors vanishes. This is known as the �rst Bianchi identity,
from which the second Bianchi identity can be inferred. The two Bianchi
identities were also inferred in ignorance of the existence of torsion, and using
a symmetric connection. The ingredients available to Einstein from 1905 to
1915 were therefore the second Bianchi identity and the Noether Theorem,
thought to be fundamental principles of geometry and physics. Proceeding
on the ancient basis that geometry gives physics, Einstein attempted for
a decade to arrive at a �eld equation linking the two concepts. This was
�nally published in 1915 and asserts that the second Bianchi identity is
proportional to the covariant derivative of the canonical energy momentum
tensor. With the bene�t of hindsight this is an over complicated procedure.
By Ockham's Razor a simpler theory is preferred, and that theory is ECE
theory. In addition the Einstein �eld equation was arrived at in ignorance
of torsion. So it was bound to fail qualitatively, and has indeed done so.
The velocity curve of a whirlpool galaxy shows that the Einstein theory is
incorrect qualitatively, or completely. The proof of this is given later in this
chapter.

At �rst the �eld equation of Einstein seemed to be logical, but on closer
inspection it contains an assumption made a priori, i. e. guesswork. This
is the assumption of the symmetric connection made by Levi-Civita �fteen
years before the �eld equation appeared. The second Bianchi identity used
by Einstein relies on a symmetric connection, so is true if and only if the
torsion is zero. This was of course unknown to Einstein and also unknown
to Levi-Civita and Ricci. The procedure used in deriving the Einstein �eld
equation is to reduce the second Bianchi identity to the covariant derivative of
the Einstein tensor, which is symmetric in its lower two indices, and which is
made up of a combination of the Ricci tensor and the Ricci scalar. Unknown
to Einstein and all his contemporaries this procedure is true if and only if
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the torsion is zero. If the torsion is �nite it fails completely as explained in
UFT 88 on www.aias.us.

The �eld equation was criticized immediately and severely by Schwarz-
schild in a letter to Einstein of December 1915 as explained earlier in this
book. Apart from the assumption of a symmetric connection, there are
other �aws in the attempted �rst solution of the �eld equation by Einstein.
Schwarzschild solved the equation using a metric which does not contain a
singularity. So it was known as early as 1915 that there are no black holes
and big bang, concepts which were ridiculed by Einstein and Hoyle indepen-
dently. The cold truth is that these concepts are just mathematical �aws.
Experimental data have shown many times over that there was no big bang,
and black holes have never been discovered. They are simply asserted to
exist by dogmatists. The confusion was greatly compounded by the intro-
duction of a metric that was attributed falsely to Schwarzschild. This metric
contains singularities or in�nities, so by de�nition should be rejected as a
valid solution of the Einstein �eld equation. The Schwarzschild metrics, true
(1915), and false, fail completely in whirlpool galaxies. This fact has been
known for sixty years. A plethora of such metrics have been inferred in a
century of work on the Einstein �eld equation but all fail completely in view
of the failure of the �eld equation in whirlpool galaxies and in view of the
fact that they all neglect torsion (M. W. Evans, S. J. Crothers, H. Eckardt
and K. Pendergast, �Criticisms of the Einstein Field Equation� referred to
in chapter 1).

The existence of torsion is a fundamental building block of ECE theory,
which set out in 2003 to rebuild general relativity using a rigorously cor-
rect geometry, one which does not contain guesswork. So it is essential to
prove that torsion cannot be discarded in any valid geometry. In the Car-
tan geometry used in ECE theory the torsion is de�ned by the �rst Maurer
Cartan structure equation, inferred in the twenties. This procedure has been
explained earlier in this book and the basis of ECE cosmology and uni�ed
�eld theory is that torsion and curvature are identically non zero in any
valid geometry. The reason is that they are both generated by the com-
mutator of covariant derivatives acting on any tensor in any space of any
dimension. They are always produced simultaneously, and the commutator
always produces the two structure equations of Cartan simultaneously. The
commutator always produces the torsion tensor as the di�erence of two anti
symmetric connections, so the anti symmetry of the connection is the anti
symmetry of the commutator.

A symmetric connection produces a symmetric commutator which van-
ishes, and a symmetric connection means that the torsion vanishes. This
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means that the curvature vanishes if the torsion vanishes because torsion
and curvature are always produced simultaneously by the commutator. A
null commutator means both a null torsion and null curvature, so a symmet-
ric connection means a null torsion AND a null curvature.

The incorrect procedure used by the Einsteinian general relativity is to
omit the torsion tensor, and to assume that the commutator produces only
the curvature. This is mathematical nonsense that has become dogma. The
fact that the torsion always exists means that the �rst and second Bianchi
identities are changed completely in structure. The �rst Bianchi identity
becomes the Cartan identity and the second Bianchi identity becomes the
equation given in chapter 1. These mathematical �aws are obvious in retro-
spect, and were compounded greatly through the illusion of accuracy of the
Einstein theory in the solar system. In chapter 8.2 the correct explanation
for light de�ection by gravitation is given in terms of the spin connection
of ECE theory, which is also capable of giving a satisfactory explanation of
the velocity curve of a whirlpool galaxy. Currently both the ECE and the
Einsteinian theories are in�uential in science, but obvious and drastic �aws
in geometry cannot remain inde�nitely without being remedied. The funda-
mental aim of ECE theory is to improve on the ideas used by Einstein and
his contemporaries, ideas which go back to Kepler and to ancient times.

8.2 ECE Theory of Light De�ection due to Gravi-
tation

Consider as in UFT 215 the linear orbital velocity in cylindrical polar coor-
dinates (r, θ):

v = ṙer + rθ̇eθ (8.1)

where er and eθ are the unit vectors of the cylindrical polar system. The
velocity squared is:

v2 = ṙ2 + r2θ̇2. (8.2)

The precession of an elliptical orbit can be described by the equation:

r =
α

1 + ε cos(xθ)
(8.3)

when x is near to unity. In this equation, α is the half right latitude and ε is
the eccentricity. When x becomes large, some very interesting mathematical
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results are obtained, the subject area of precessing conical sections which
show fractal behaviour as described and illustrated in the UFT papers on
www.aias.us. However in astronomy the factor x is close to unity for all
types of precessing orbits, in the solar system and in binary systems which
exhibit the largest precessions. When x is exactly one, the subject of conical
sections is recovered, for example static ellipse, the static hyperbola and so
on.

Elementary kinematics of plane polar coordinates produce the accelera-
tion:

a =
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ. (8.4)

This is a well known general result described in several UFT papers. From
the equation (8.3) of precessing conical sections

dr

dθ
=
xε

α
r2 sin(xθ). (8.5)

From lagrangian dynamics the conserved orbital angular momentum is well
known to be:

L = mr2θ̇ = mr2
dθ

dt
. (8.6)

Therefore:

ṙ =
dr

dt
=
dr

dθ

dθ

dt
=
xLε

mα
sin(xθ) (8.7)

and from Eq. (8.6):

θ̇ =
L

mr2
. (8.8)

The second derivatives are:

r̈ =
x2L2ε

m2αr2
cos(xθ) (8.9)

and:

θ̈ = − 2L2xε

m2r3α
sin(xθ) (8.10)

and the angular dependent part of the acceleration vanishes:

rθ̈ + 2ṙθ̇ = 0. (8.11)
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The radial part is given by:

r̈ − rθ̇2 =
x2L2ε

m2αr2
cos(xθ)− L2

m2r3
. (8.12)

From Eq. (8.3):

cos(xθ) =
1

ε

(α
r
− 1
)

(8.13)

and the acceleration of an object in orbit is:

a =

(
L

m

)2
((

x2 − 1
)

r3
− x2

αr2

)
er. (8.14)

The force is de�ned conventionally as:

F = ma. (8.15)

If there is no precession then:

x = 1 (8.16)

and the force law reduces to the inverse square law:

F = − L2

mαr2
er. (8.17)

This is the Newtonian inverse square law if:

α =
L2

m2MG
. (8.18)

The same force law is obtained elegantly from Lagrangian dynamics,
which gives the following equation for any orbit:

d2

dθ2

(
1

r

)
+

1

r
= −mr

2

L
F (r). (8.19)

From Eqs. (8.3) and (8.19):

F (r) =
L2

m

((
x2 − 1

)
r3

− x2

αr2

)
(8.20)

which is the same as Eq. (8.14).
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The square of the orbital velocity can therefore be expressed as:

v2 =

(
L

mα

)2 [2x2α

r
− x2

(
1− ε2

)
+
α2

r2
(
1− x2

)]
(8.21)

and when

x = 1 (8.22)

the Keplerian equation for orbital linear velocity is obtained:

v2 −−→
x=1

(
L

mα

)2 [2α

r
−
(
1− ε2

)]
(8.23)

thus checking that the theory is correct and self consistent. At the distance
R0 of closest approach of m to M in an orbit:

R0 =
α

1 + ε
(8.24)

so Eq. (8.21) becomes:

v2 =
L2

m2R0

[
x2

α
(1 + ε)−

(
x2 − 1

)
R0

]
(8.25)

and solving for the eccentricity ε gives:

ε =
m2αR0

x2L2

(
v2 − L2

m2

(
x2 − 1

R0

))
− 1. (8.26)

This equation can be used in the problem of determining the angle of
de�ection of a hyperbolic orbit of m around M .

The total de�ection for a hyperbola, as in UFT 216, is 2ψ:

∆ψ = 2ψ = 2 sin−1
1

ε
(8.27)

where

ψ = tan−1
a

b
(8.28)

where a and b are the major and minor semi axes. Therefore:

∆ψ = 2 sin−1
1

ε
= 2 tan−1

a

b
(8.29)
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where the eccentricity is de�ned by:

ε =

(
1 +

b2

a2

)1/2

. (8.30)

The half right latitude is de�ned by:

α =
b2

a
. (8.31)

At the distance of closest approach of m to M in a hyperbolic orbit:

R0 =
α

1 + ε
(8.32)

so:

cos(xθ) = 1 (8.33)

as in Eq. (8.24).
For very small angles of de�ection such as that observed in the de�ection

of light from a distant source by the sun:

sinψ ∼ ψ =
1

ε
=

[
m2αR0

x2L2

(
v2 − L2

m2

(
x2 − 1

R2
0

))
− 1

]−1
. (8.34)

If v could be measured experimentally, m can be found. For light v is very
close to c and m is the mass of the photon. Theoretically, photon mass can
be obtained in this way. In the Newtonian limit:

x = 1 (8.35)

and

sinψ ∼ ψ =
1

ε
=

[
m2αR0v

2

L2
− 1

]−1
(8.36)

in which the Newtonian half right latitude is:

α =
L2

m2MG
. (8.37)

So the well known Newtonian theory of the orbital de�ection is recovered:

sinψ ∼ ψ =
1

ε
=

(
R0v

2

MG
− 1

)−1
. (8.38)
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Note that m cancels out of the calculation in the Newtonian limit, but does
not cancel in the rigorous equation (8.34). If the photon velocity is assumed
to be c for all practical purposes, i. e. to be very close to c, then

∆ψ = 2ψ =
2MG

R0c2
(8.39)

to an excellent approximation. This is the famous Newtonian value for light
de�ection by gravitation.

The experimentally observed value is always:

∆ψ = 2ψ =
4MG

R0c2
(8.40)

to high precision, for electromagnetic radiation grazing any object of mass
M . This is twice the Newtonian value.

The reason for this famous result cannot be found in the deeply �awed
Einsteinian theory, but a straightforward explanation can be found using the
principles of this book.

Consider the vector format of the �rst Maurer Cartan structure equation
given here in the notation of chapter one:

Ta(orb) = −∇qa0 −
∂qa

∂t
− ωa0bqb + qb0ω

a
b (8.41)

and

Ta(spin) = ∇× qa − ωab × qb. (8.42)

The fundamental ECE hypothesis was devised for electromagnetism and de-
�nes the electromagnetic potential in terms of the tetrad:

Aaµ = A(0)qaµ. (8.43)

Now de�ne the linear momentum tetrad:

paµ = p(0)qaµ (8.44)

in an analogous manner, using the minimal prescription:

paµ → paµ + eAaµ. (8.45)

It follows from Eqs. (8.41 and (8.44) that the orbital force of ECE theory is:

Fa(orb) = −∇φa0 −
∂pa

∂t
− ωa0bpb + φb0ω

a
b (8.46)
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and that the spin force is:

Fa(spin) = ∇× pa − ωab × pb. (8.47)

In the simpli�ed single polarization theory:

F(orb) = −∇φ− ∂p

∂t
− ω0p + φω (8.48)

and:

F(spin) = ∇× p− ω × p. (8.49)

In the non relativistic limit the spin connection vanishes and:

F(orb) = −∇φ− ∂p

∂t
. (8.50)

The famous equivalence of inertial and gravitational mass is recovered from
Eq. (8.50) using the anti symmetry law of ECE theory described earlier in
this book. So:

−∂p

∂t
= −∇φ (8.51)

and:

φ = −mMG

r
(8.52)

where φ is the gravitational potential. This is de�ned in direct analogy to
the electromagnetic scalar potential φe as follows:

paµ =

(
φa

c
,−pa

)
(8.53)

and

Aaµ =

(
φae
c
,−Aa

)
. (8.54)

In Newtonian dynamics:

φ = −mMG

r
(8.55)

so the force is:

F = −mMG

r2
(8.56)
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and the acceleration due to gravity is:

g = −MG

r2
. (8.57)

This powerful and precise result of ECE theory was �rst inferred in UFT 141.
The ECE theory is therefore precise to one part in ten to the power seventeen,
the precision of the experimental proof of the equivalence of gravitational and
inertial mass. The equivalence is due to Cartan geometry.

The calculation of light de�ection due to gravitation proceeds by applying
the ECE anti symmetry law to Eq. (8.48) to �nd that:

−∇φ+ ωφ = −dp
dt
− ω0p (8.58)

in which it has been assumed that:

dp

dt
=
∂p

∂t
. (8.59)

So the force is:

F = 2

(
−dp
dt
− ω0p

)
= −2 (∇φ− ωφ) . (8.60)

The factor two in Eq. (8.60) can be eliminated without a�ecting the physics
by assuming that:

paµ =
p(0)

2
qaµ (8.61)

so the orbital force becomes:

F = −dp
dt
− ω0p = −∇φ− ωφ (8.62)

an equation which gives the equivalence principle (8.51) for vanishing spin
connection. Now de�ne:

p = prer, (8.63)

ω = ωrer (8.64)

and compare Eqs. (8.20) and (8.62) to �nd that:

F = −∂φ
∂r

+ φωr = −kx
2

r2
−
k
(
1− x2

)
α

r3
. (8.65)
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For small deviations from a Newtonian orbit as in planetary precession or
any observable precession in astronomy:

−∂φ
∂r

= −kx
2

r2
(8.66)

i. e.:

x ∼ 1 (8.67)

to an excellent approximation. From Eqs. (8.63) and (8.64):

φωr = −kα
r3
(
1− x2

)
(8.68)

in an almost Newtonian approximation. In this approximation the gravita-
tional potential is well known to be:

φ = −k
r

(8.69)

so the spin connection can be expressed in terms of x as follows:

ωr =
(
1− x2

) α
r

=
(
1− x2

) b2

ar2
. (8.70)

Using Eq. (8.70), the correction needed to produce Eq. (8.40) from Eq. (8.39)
is:

R0c
2

MG
→ R0c

2

MG
+

α

R0

(
1− x2

x2

)
. (8.71)

Using Eq. (8.32) it is found that:

2ψ = 2
R0c

2

MG
+ 2 (1 + ε)

(
1− x2

x2

)
. (8.72)

Experimentally:

(1 + ε)

(
1− x2

x2

)
=
R0c

2

MG
(8.73)

and using Eq. (8.27):

1

ε
= sin

(
∆ψ

2

)
. (8.74)
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For small de�ections:

1

ε
∼ ∆ψ

2
(8.75)

so to an excellent approximation:(
1 +

2

∆ψ

)(
1− x2

x2

)
=
R0c

2

MG
. (8.76)

However by experiment:

∆ψ =
4R0c

2

MG
, (8.77)

x ∼ 1,

so using Eq. (8.70):

ωr =
∆ψ

4

(
1 +

2

∆ψ

)−1 α
r2
. (8.78)

From Eq. (8.32):

α = R0 (1 + ε) = R0

(
1 +

2

∆ψ

)
(8.79)

and from Eqs. (8.78) and (8.79):

ωr =
∆ψ

4

R0

r2
. (8.80)

This is a universal spin connection that describes all electromagnetic de�ec-
tions from any relevant object M in the universe. This spin connection also
describes planetary precession through its relation to x, Eq. (8.70). An ex-
ample on a cosmic scale is the precession of the Hulse-Taylor pulsar, Fig. 8.1.
The procedure used to derive this result also gives the equivalence principle.
Finally at distance of closest approach:

ωr =
∆ψ

4R0
(8.81)

a very simple result that can be tabulated in astronomy for any relevant
object of mass M .
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Figure 8.1: Calculated orbit of the Hulse-Taylor pulsar
(α = 1.207718 · 109 m, ε = 0.617131, x = 1.0117).

8.3 The Velocity Curve of a Whirlpool Galaxy

Whirlpool galaxies are familiar objects in cosmology and are very complex
in structure. However there is one feature that makes them useful for the
study of the fundamental theories of cosmology such as those of Newton and
Einstein, and ECE, and that is the velocity curve, the plot of the velocity
of a star orbiting the centre of a galaxy versus the distance between the
star and the centre. It was discovered experimentally in the late �fties that
the velocity becomes constant as r goes to in�nity. The �rst part of this
section will give the basic kinematics of the orbit and will show that both
the Newton and Einstein theories fail completely to describe the velocity
curve. The second part will describe how ECE theory gives a plausible
explanation of the velocity curve without the use of random empiricism such
as dark matter. It appears that the theory of dark matter has been refuted
experimentally, leaving ECE cosmology as the only explanation.

Consider the radial vector in the plane of any orbit:

r = rer (8.82)

where er is the radial unit vector. The velocity of an object of mass m in
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orbit is de�ned as:

v =
dr

dt
=
dr

dt
er + r

der
dt

(8.83)

because in plane polar coordinates the unit vector er is a function of time
so the Leibnitz theorem applies. In the Cartesian system the unit vectors i
and j are not functions of time. The unit vectors of the plane polar system
are de�ned by:

er = cos θ i + sin θ j (8.84)

eθ = − sin θ i + cos θ j (8.85)

and it follows that:

der
dt

=
dθ

dt
eθ = ωeθ (8.86)

as described in UFT 236. The velocity in a plane is therefore:

v =
dr

dt
er + ωreθ

=
dr

dt
er + ω × r (8.87)

in which the angular velocity vector:

ω =
dθ

dt
k (8.88)

is the Cartan spin connection as proven in UFT 235 on www.aias.us. There-
fore this spin connection is related to the universal spin connection inferred
in Section 8.2 giving a coherent cosmology for the solar system and whirlpool
galaxies. As we shall prove, the Newton and Einstein theories fail completely
to do so.

Using the chain rule:

dr

dt
=
dr

dθ

dθ

dt
(8.89)

it is found that the velocity is de�ned for any orbit by:

v2 = ω2

((
dr

dθ

)2

+ r2

)
(8.90)
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and is therefore de�ned by the angular velocity or spin connection magnitude:

ω =
dθ

dt
. (8.91)

The orbit itself is de�ned by dr/dθ, because any planar orbit is de�ned by
r as a function of θ. The angular momentum of any planar orbit is de�ned
by:

L = r× p = mr× v (8.92)

and its magnitude is:

L = mr2ω. (8.93)

Therefore for any planar orbit:

v2 =

(
L

mr

)2

+

(
L

mr2

(
dr

dθ

))2

(8.94)

and as r becomes in�nite:

r →∞ (8.95)

the velocity reaches the limit:

dr

dθ
=
(mv∞

L

)
r2 (8.96)

where v∞ is the velocity for in�nite r. In whirlpool galaxies v∞ is a constant
by experimental observation. Therefore:

dθ

dr
=

(
L

mv∞

)
1

r2
(8.97)

and

θ =
L

mv∞

∫
dr

r2
= −

(
L

mv∞

)
1

r
(8.98)

which is the equation of a hyperbolic spiral orbit. In UFT 76 on www.aias.us
this hyperbolic spiral orbit was compared with the observed M101 whirlpool
galaxy (see Fig. 8.2). So the essentials of galactic dynamics can be under-
stood from the simple �rst principles of kinematics, de�ning the angular
velocity as the spin connection of ECE theory.
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Figure 8.2: Sprial galaxy M101 with hyperbolic spirals �ttet to galaxy arms.

Newtonian dynamics fails completely to describe this result because it
produces a static conical section:

r =
α

1 + ε cos θ
(8.99)

with an inverse square law of attraction. From Eq. (8.99):

dr

dθ
=
εr2

α
sin θ (8.100)

and using this result in Eq. (8.90):

v2 = ω2r2
(

1 +
(εr
α

)2
sin2 θ

)
(8.101)

where:

sin2 θ = 1− cos2 θ = 1− 1

ε2

(α
r
− 1
)2
. (8.102)

So the Newtonian velocity is:

v2 = ω2r2
(

2α

r
−
( r
α

)2 (
1− ε2

))
. (8.103)
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The semi major axis of an elliptical orbit is de�ned by:

a =
α

1− ε2
(8.104)

so Newtonian dynamics produces:

v2 =
1

α

(
L

m

)2(2

r
− 1

a

)
. (8.105)

Using the Newtonian half right latitude:

α =
L2

m2MG
(8.106)

gives:

v2 = MG

(
2

r
− 1

a

)
. (8.107)

Note that:

1

a
=

1− ε2

α
=

1

r
(1 + ε cos θ)

(
1− ε2

)
(8.108)

so the Newtonian velocity is:

v2(Newton) =
MG

r

(
2−

(
1− ε2

)
(1 + ε cos θ)

)
. (8.109)

It follows that:

v(Newton) −−−→
r→∞

0 (8.110)

so the theory fails completely to describe the velocity curve of a whirlpool
galaxy.

The Einstein theory does no better because it produces a precessing
ellipse, Eq. (8.3), from which:

dr

dθ
=
xεr2

α
sin(xθ). (8.111)

Using Eq. (8.111) in Eq. (8.90) gives:

v2 =

(
L

mr

)2
(

1 +

(
xε sin(xθ)

1 + ε cos(xθ)

)2
)

(8.112)
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and again it is found that:

v(Einstein) −−−→
r→∞

0 (8.113)

and the Einstein theory fails completely to describe the dynamics of a whirl-
pool galaxy. This leaves ECE theory as the only correct and general theory of
cosmology. The latter can be developed by considering again the acceleration
in plane polar coordinates

a =
dv

dt
=
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ. (8.114)

As shown in UFT 235 this can be expressed as:(
r̈ − rθ̇2

)
er =

d2r

dt2
er + ω × (ω × r) (8.115)

and (
rθ̈ + 2ṙθ̇

)
eθ =

dω

dt
× r + 2ω × ṙ. (8.116)

Eq. (8.116) is the Coriolis acceleration and ω × (ω × r) is the centrifugal
acceleration. In the UFT papers it is shown that the Coriolis acceleration
vanishes for all planar orbits (see Eq. (8.11)). Using the chain rule it can be
shown as in the UFT papers that:

d2r

dt2
=

(
L

mr

)2(dr
dθ

)
d

dr

(
1

r2
dr

dθ

)
. (8.117)

The centrifugal acceleration is de�ned by:

ω × (ω × r) = −ω2rer = − L2

m2r3
er (8.118)

so the total acceleration is de�ned by:

a =

(
L

mr

)2 [(dr
dθ

)
d

dr

(
1

r2
dr

dθ

)
− 1

r

]
er (8.119)

for all planar orbits.
In this equation:

d

dr

(
1

r2
dr

dθ

)
=
dθ

dr

d

dθ

(
1

r2
dr

dθ

)
(8.120)
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so:

a =

(
L

mr

)2 [ d
dθ

(
1

r2
dr

dθ

)
− 1

r

]
er. (8.121)

Now note that:

d

dθ

(
1

r

)
=

d

dr

(
1

r

)
dr

dθ
(8.122)

so:

d

dθ

(
1

r2
dr

dθ

)
=

1

r2
d

dθ

(
dr

dθ

)
= − d2

dθ2

(
1

r

)
. (8.123)

Therefore the acceleration is:

a = −
(
L

mr

)2( d2

dθ2

(
1

r

)
+

1

r

)
er (8.124)

and using the de�nition of force:

F = ma (8.125)

which is Eq (8.19) derived from lagrangian dynamics. This analysis of any
planar orbit is therefore rigorously self consistent.

The Lagrangian method of deriving Eq. (8.125) sets up the Lagrangian:

L =
1

2
mv2 − U (8.126)

in which the velocity is de�ned by:

v2 =

(
dr

dt

)2

+ r2
(
dθ

dt

)2

. (8.127)

The force is derived from the potential energy as follows:

F = −∂U
∂r

. (8.128)

The two Euler Lagrange equations are:

∂L

∂θ
=

d

dt

(
∂L

∂θ̇

)
,
∂L

∂r
=

d

dt

(
∂L

∂ṙ

)
(8.129)
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and the angular momentum is de�ned by the lagrangian to be a constant of
motion:

L =
∂L

∂θ̇
= mr2

dθ

dt
= constant. (8.130)

Eq. (8.124) is the result of pure kinematics in a plane, and is also an equa-
tion of Cartan geometry. It is the result of the fundamental expression for
acceleration in a plane. Eq. (8.124) is also an equation of Cartan geometry
because the spin connection is the angular velocity.

The covariant derivative of Cartan may be de�ned for use in classical
kinematics in three dimensional space. For any vector V the covariant deriva-
tive is:

DV

dt
=

(
dV

dt

)
axes �xed

+ ω ×V (8.131)

where the spin connection vector is the angular velocity ω. In plane polar
coordinates de�ne:

V = V er (8.132)

for simplicity of development. The velocity is then de�ned by:

v =
Dr

dt
=
dr

dt
+ ω × r (8.133)

where:

dr

dt
=

(
dr

dt

)
axes �xed

. (8.134)

By de�nition:

Dr

dt
=
D

dt
(rer) =

dr

dt
er + r

der
dt

(8.135)

so: (
dr

dt

)
axes �xed

=

(
dr

dt

)
er (8.136)

and

ω × r = r
der
dt
. (8.137)
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The acceleration is de�ned by:

a =
Dv

dt
=
dv

dt
+ ω × v (8.138)

where:

dv

dt
=

(
dv

dt

)
axes �xed

. (8.139)

From fundamental kinematics as described above:

a =
dv

dt
+ ω × v =

(
r̈ − ω2r

)
er +

(
r
dω

dt
+ 2

dr

dt
ω

)
eθ (8.140)

where the unit vectors of the plane polar coordinates system are de�ned by:

er × eθ = k, (8.141)

k× er = eθ, (8.142)

eθ × k = er. (8.143)

Therefore:

dv

dt
+ω× v =

d2r

dt2
er +ω× (ω × r) +

dω

dr
× r + 2ω×

(
dr

dt
er

)
. (8.144)

From Eq. (8.133)

v =
dr

dt
+ ω × r (8.145)

so in Eq. (8.138):

a =
d2r

dt2
er+

dω

dt
×r+ω×

(
dr

dt

)
axes �xed

+ω× dr
dt

er+ω×(ω × r) . (8.146)

In this equation:

ω ×
(
dr

dt

)
axes �xed

= ω × dr

dt
er (8.147)

so:

a =
d2r

dt2
er + ω × (ω × r) +

dω

dt
× r + 2ω ×

(
dr

dt
er

)
(8.148)
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which is Eq. (8.144), Q. E.D.
The covariant derivatives used in these calculations are examples of the

Cartan covariant derivative:

DµV
a = ∂µV

a + ωaµbV
b. (8.149)

The well known centripetal acceleration:

a = ω × (ω × r) (8.150)

and the Coriolis acceleration:

a =
dω

dt
× r + 2ω ×

(
dr

dt
er

)
(8.151)

are produced by the plane polar system of coordinates. These accelerations
do not exist in the Cartesian system and depend entirely on the existence of
the spin connection of Cartan. As shown already the Coriolis acceleration
vanishes for all closed planar orbits and the acceleration simpli�es to:

a =
(
r̈ − ω2r

)
er =

d2r

dt2
er + ω × (ω × r) . (8.152)

For example the acceleration due to gravity is:

g =
d2r

dt2
er + ω × (ω × r) (8.153)

and includes the centripetal acceleration:

ω × (ω × r) = −ω2rer. (8.154)

The acceleration due to gravity in the plane polar system is the sum of
g in the Cartesian system:

g(Cartesian) =
d2r

dt2
er (8.155)

and the centripetal acceleration. To make this point clearer consider the
acceleration of an elliptical orbit or closed elliptical trajectory in the plane
polar system. It is:

a = − L2

m2r2α
er (8.156)
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where the angular momentum is a constant of motion and de�ned by:

L = |L| = |r× p| = mr2ω. (8.157)

The acceleration due to gravity of the elliptical motion of a mass m is:

g = − L2

m2r2α
er (8.158)

in plane polar coordinates. The Newtonian result is recovered using the half
right latitude:

α =
L2

m2MG
(8.159)

so:

g = −MG

r2
er. (8.160)

The only force present in the plane polar system of coordinates is:

F = mg = −mMG

r2
er (8.161)

which is the equivalence principle, Q. E.D.
The acceleration in the Cartesian system of coordinates from Eq. (8.153)

is:

a(Cartesian) = g − ω × (ω × r) (8.162)

in which the centrifugal acceleration is:

−ω × (ω × r) = ω2rer. (8.163)

Therefore in the Cartesian system the acceleration produced by the same
elliptical trajectory is:(

d2r

dt2

)
Cartesian

er =

(
− L2

m2r2α
+ ω2r

)
er. (8.164)

It generalizes the Newtonian theory to give:(
d2r

dt2

)
Cartesian

er =

(
−MG

r2
+

L2

m2r3

)
er (8.165)
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and the familiar force:

F = m

(
d2r

dt2

)
Cartesian

er =

(
−mMG

r2
+

L2

mr3

)
er (8.166)

of the textbooks. From a comparison of Eqs. (8.161) and (8.166) the forces in
the plane polar and Cartesian systems are di�erent. If the frame of reference
is static with respect to the observer the force is Eq (8.166). If the frame
of reference is rotating with respect to the observer the force is de�ned by
Eq. (8.161).

The easiest way to approach this analysis is always to calculate the ac-
celeration �rstly in plane polar coordinates and to realize that one term of
the resultant expression is the acceleration in the Cartesian system. For an
observer on earth orbiting the sun, the relevant expression is that in the
Cartesian frame, because the latter is also �xed on the earth and does not
move with respect to the observer. In other words the observer is in his own
frame of reference. For an observer on the sun the relevant expression is
that in the plane polar system of coordinates, because the earth rotates with
respect to the observer �xed on the sun.

The observer on the earth experiences the centrifugal acceleration:

−ω × (ω × r) = ω2rer (8.167)

directed outwards from the earth. This is the origin of the everyday centrifu-
gal force. The observer on the sun experiences the centripetal acceleration:

ω × (ω × r) = −ω2rer (8.168)

directed towards the sun and towards the observer. The entire analysis rests
on the spin connection and on the fact that in the plane polar system the
frame itself is rotating and thus generates the spin connection by de�nition.

8.4 Description of Orbits with the Minkowski Force
Equation

In UFT 238 on www.aias.us an entirely new approach to orbital theory was
taken using the Minkowski force equation. This is a course that relativity
theory could have taken, but cosmology followed the use of Einstein's �awed
geometry, a subject that became known as general relativity. The Minkowski
force equation is the Newton force equation with proper time τ replacing
time t. This equation was inferred by Minkowski shortly after Einstein's
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introduction of the idea of relativistic momentum. A completely general
kinematic theory of orbits can be developed in this way. It reduces to the
Newtonian theory but never to the Einsteinian theory. Newtonian dynamics
does not give any of the forces that are generated as discussed in Section
8.3 using plane polar coordinates and a system of rotating coordinates. It
turns out that the space part of the Minkowski 4-force produces new and
unexpected orbital properties that can be tested experimentally.

The relativistic force law and relativistic orbits of the Minkowski equa-
tion can be derived by considering the relativistic velocity in plane polar
coordinates:

v =
dr

dτ
= γ

dr

dt
(8.169)

where τ is the proper time and γ the Lorentz factor:

γ =

(
1− v2

c2

)−1/2
. (8.170)

The relativistic acceleration is:

a =
d

dτ

(
dr

dτ

)
=

d

dτ

(
γ
dr

dt

)
= γ

d

dt

(
γ
dr

dt

)
. (8.171)

Using the Leibnitz Thoerem:

a = γ

(
dγ

dt

dr

dt
+ γ

d

dt

(
dr

dt

))
. (8.172)

The velocity v appearing in the Lorentz factor is de�ned by the in�nitesimal
line element:

ds2 = c2dτ2 = c2dt2 − dr · dr (8.173)

where:

dr · dr = v2dt2. (8.174)

Therefore

c2dτ2 =
(
c2 − v2

)
dt2 (8.175)

and the Lorentz factor is:

γ =
dt

dτ
=

(
1− v2

c2

)−1/2
. (8.176)
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In plane polar coordinates:

dr · dr = dr2 + r2dθ2. (8.177)

Therefore:

v2 =

(
dr

dt

)2

+ r2
(
dθ

dt

)2

. (8.178)

The radial vector in plane polar coordinates is:

r = rer (8.179)

therefore the non relativistic velocity is:

v =
d

dt
(rer) =

dr

dt
er + r

der
dt

=
dr

dt
er + ωreθ

=
dr

dt
er + ω × r =

(
L0

m

)(
1

r
eθ −

d

dθ

(
1

r

)
er

)
. (8.180)

For a particle of mass m in an orbit, its relativistic momentum is:

p = γm
dr

dt
= m

dr

dτ
, (8.181)

an equation which can be rearranged as follows:

p2c2 = γ2m2c4
(v
c

)2
= γ2m2c4

(
1− 1

γ2

)
= γ2m2c4 −m2c4 (8.182)

giving the Einstein energy equation:

E2 = c2p2 +m2c4 (8.183)

in which

E = γmc2 (8.184)

is the total energy and

E0 = mc2 (8.185)

is the rest energy. The relativistic total angular momentum is:

L = mr2
dθ

dτ
= γL0. (8.186)
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The concept of Minkowski force equation uses acceleration, so this is a
plausible new approach to all orbits. The Einstein energy equation can be
derived from the in�nitesimal line element (8.173) and developed as:

mc2 = mc2
(
dt

dτ

)2

−
(
dr

dτ

)2

− r2
(
dθ

dτ

)2

= γ2mc2 −

((
dr

dτ

)2

+ r2
(
dθ

dτ

)2
)

=
E2

mc2
− p2

c2
. (8.187)

So

E2 = c2p2 +m2c4 (8.188)

Q.E.D. The relativistic linear momentum in Eq. (8.187) is:

p2 = m2

((
dr

dτ

)2

+ r2
(
dθ

dτ

)2
)

(8.189)

which is Eq. (8.181), Q. E.D. The de�nition of relativistic acceleration is

a =
d

dτ

(
dr

dτ

)
= γ

(
dγ

dt

dr

dt
+ γ

d

dt

(
dr

dt

))
(8.190)

in which:

dr

dt
=
dr

dt
er + ω × r (8.191)

and:

d

dt

(
dr

dt

)
=
d2r

dt2
er +

dω

dt
× r + 2ω × dr

dt
er + ω × (ω × r) . (8.192)

Using the chain rule:

dγ

dt
=
dγ

dv

dv

dt
(8.193)

where v is the velocity of the Lorentz factor de�ned in Eq. (8.176). Therefore:

dγ

dv
=

d

dv

(
1− v2

c2

)−1/2
= γ3

v

c2
(8.194)
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and in plane polar coordinates:

a = γ4
v

c2
dv

dt

dr

dt
+ γ2

d

dt

(
dr

dt

)
=

(
dγ

dτ

dr

dt
+ γ2

d2r

dt2

)
er + γ2ω × (ω × r) +

dγ

dτ
ω × r

+ γ2
(
dω

dt
× r + 2ω × dr

dt
er

)
. (8.195)

In static Cartesian coordinates on the other hand;

a =
d

dτ

(
γ
dr

dt

)
= γ

dγ

dt

dr

dt
+ γ2

d

dt

(
dr

dt

)
(8.196)

so:

a(Cartesian) =

(
γ
dγ

dt

dr

dt
+ γ2

d2r

dt2

)
er (8.197)

in which:

v =
dr

dt
,
d2r

dt2
=
dv

dt
,
dγ

dv
= γ3

v

c2
(8.198)

and

dγ

dt
=
dγ

dv

dv

dt
=
γ3v

c2
dv

dt
. (8.199)

Therefore:

a(Cartesian) =

(
γ4
v2

c2
+ γ2

)
dv

dt
er (8.200)

in which:

v2

c2
= 1− 1

γ2
. (8.201)

Therefore the Cartesian acceleration is:

a(Cartesian) = γ4
d2r

dt2
er. (8.202)

Using Eq. (8.202) in Eq. (8.195):

a(plane polar) = γ4
d2r

dt2
er + γ2ω × (ω × r)

+
dγ

dτ
ω × r + γ2

(
dω

dt
× r + 2ω × dr

dt
er

)
(8.203)
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which is the expression for relativistic acceleration in plane polar coordinates.
It can be proven as follows that the relativistic Coriolis acceleration van-

ishes for all planar orbits. The general expression for relativistic Coriolis
acceleration is:

a(Coriolis) = γ2
(
r
d

dt

dθ

dt
+ 2

dr

dt

dθ

dt

)
eθ (8.204)

in which the total non relativistic angular momentum is:

L0 = mr2
dθ

dt
. (8.205)

It follows that:

d

dt

(
dθ

dt

)
=

d

dt

(
L0

mr2

)
=

d

dr

(
L0

mr2

)
dr

dt
= − 2L0

mr3
dr

dt
(8.206)

so:

a(Coriolis) =

(
− 2L0

mr2
dr

dt
+

2L0

mr2
dr

dt

)
eθ = 0 (8.207)

Q.E.D.
Therefore the relativistic acceleration for all planar orbits is:

a = γ4
d2r

dt2
er + γ2ω × (ω × r) +

dγ

dτ
ω × r. (8.208)

The relativistic centripetal component of this orbit is:

a(centripetal) = γ2ω × (ω × r) = − L2

m2r3
er. (8.209)

In Eq. (8.208):

dγ

dτ
= γ

dγ

dv

dv

dt
=
γ4

c2
v
dv

dt
=
γ4

c2
dr

dt

d2r

dt2
(8.210)

and therefore the acceleration becomes:

a = γ4
d2r

dt2
er −

L2

m2r3
er +

γ4

c2
dr

dt

d2r

dt2
ωreθ (8.211)

in which the relativistic total angular momentum is

L = γL0 = mr2
dθ

dτ
= γmr2ω. (8.212)
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The relativistic force law is therefore the massmmultiplied by the relativistic
acceleration:

a =

(
γ4
d2r

dt2
− L2

m2r3

)
er +

γ4

c2
dr

dt

d2r

dt2
ω × r (8.213)

in which:

ω × r = ωreθ. (8.214)

This equation can be transformed into a format where the relativistic force
can be calculated from the observation of any planar orbit. The result is the
relativistic generalization of Eq. (8.124).

Consider the relativistic acceleration:

a = γ4
d2r

dt2
er + γ2ω × (ω × r) +

dγ

dτ
ω × r (8.215)

in which the relativistic momentum is:

p = m
dr

dτ
. (8.216)

It follows that:

d2r

dt2
= −

(
L

γmr

)2 d2

dθ2

(
1

r

)
(8.217)

and that:

a = −

((
γL

mr

)2 d2

dθ2

(
1

r

)
+

L2

m2r3

)
er +

γ4

c2
dr

dt

d2r

dt2
ωreθ. (8.218)

It also follows as in UFT 238 that:

dr

dt
= − L

mγ

d

dθ

(
1

r

)
(8.219)

so the required relativistic generalization of Eq. (8.124) is:

a = −
(
L

mr

)2(
γ2

d2

dθ2

(
1

r

)
+

1

r

)
er+

L4

m4c2r3
d

dθ

(
1

r

)
d2

dθ2

(
1

r

)
eθ. (8.220)

For the purposes of graphics and animation it is convenient to express
the Lorentz factor in terms of the angle θ. The result as derived in UFT 238
is:

v2 =

(
L0

mα

)2 (
1 + ε2 + 2ε cos θ

)
. (8.221)

250



CHAPTER 8. ECE COSMOLOGY

In summary, the relativistic force for any planar orbit is de�ned by:

F = − L2

mr2

(
γ2

d2

dθ2

(
1

r

)
+

1

r

)
er +

L4

m4c2r3
d

dθ

(
1

r

)
d2

dθ2

(
1

r

)
eθ (8.222)

in which the Lorentz factor is:

γ = 1−
(
L0

mc

)2
(

1

r2
+

(
d

dθ

(
1

r

))2
)−1/2

(8.223)

and in which the relativistic total angular momentum is:

L = γL0 = γmr2
dθ

dτ
= γmr2ω. (8.224)

In Figs. 8.3 and 8.4 the radial and angular force component of a precessing
ellipse are graphed for two values of angular momentum L. The preces-
sion factor was x = 1.1. The angular force component, non existing in the
Newtonian case, is much smaller than the radial component. The angular
component takes both signs, leading to zero crossings and a di�erent angu-
lar dependency than the radial component. The asymmetry of the radial
component increases with L.
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Figure 8.3: Radial force component of a precessing ellipse, polar plot.

Figure 8.4: Angular force component of a precessing ellipse, polar plot.
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Chapter 9

Relativistic Cosmology and
Einstein's �Gravitational
Waves�

9.1 Introduction

The LIGO Scienti�c Collaboration and Virgo Collaboration have announced
[38] that on the 14th of September 2015, at 09:50:45 UTC, they detected a
transient Einstein gravitational wave, designated GW150914, produced by
two merging black holes forming a single black hole. Not so long ago similar
media excitement surrounded the announcement by the BICEP2 Team of
detection of primordial gravitational waves imprinted in B-mode polarisa-
tions of a Cosmic Microwave Background, which proved to be naught. The
two black holes that merged are reported to have been at a distance of some
1.3 billion light years from Earth, of ≈29 solar masses and ≈36 solar masses
respectively, the newly formed black hole at ≈62 solar masses, radiating
away ≈3 solar masses as Einstein gravitational waves. The insurmountable
problem for the credibility of the LIGO-Virgo Collaboration claims is the
falsity of the theoretical assumptions upon which they are based.

The reported detection was obtained, not during an observation run of
LIGO, but during an engineering test run, prior to the �rst scheduled obser-
vation run on 18 September 2015.

�In the early morning hours of September 14, 2015 - during an
engineering run just days before o�cial data-taking started - a
strong signal, consistent with merging black holes, appeared si-

253



9.1. INTRODUCTION

multaneously in LIGO's two observatories, located in Hanford,
Washington and Livingston, Louisiana.� Conover [39]

�The eighth engineering run (ER8) began on 2015 August 16 at
15:00 and critical software was frozen by August 30. The rest of
ER8 was to be used to calibrate the detectors, to carry out di-
agnostic studies, to practice maintaining a high coincident duty
cycle, and to train and tune the data analysis pipelines. Cali-
bration was complete by September 12 and O1 was scheduled to
begin on September 18. On 2015 September 14, cWB reported
a burst candidate to have occurred at 09:50:45 with a network
signal-to-noise ratio (S/N) of 23.45 . . . � Abbott et al. [40]

Magnitudes with error margins have been presented by the LIGO-Virgo
Collaborations for the masses of the black holes, along with other related
source quantities, in their TABLE I [38], reproduced herein as Figure 9.1.

Figure 9.1: Reproduced from Abbott, B.P. et al., Observation of Gravita-
tional Waves from a Binary Black Hole Merger, PRL 116, 061102 (2016),
DOI: 10.1103/PhysRevLett.116.061102

There are two ways by which the LIGO report can be analysed: (a)
examination of the LIGO interferometer operation and data acquisition, and
(b) consideration of the theories of black holes and gravitational waves upon
which all else relies. Only theoretical considerations are considered herein,
as there is no need to analyse the LIGO apparatus and its signal data to
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understand that the claim for detection of Einstein gravitational waves and
black holes is built upon theoretical fallacies and conformational bias.

9.2 Gravitational waves, black holes and big bangs
combined

Presumably the gravitational waves reported by LIGO-Virgo are present
inside some big bang expanding universe as there has been no report that
big bang cosmology has been abandoned. Of the gravitational wave detection
the LIGO-Virgo Collaborations have stated,

�It matches the waveform predicted by general relativity for the
inspiral and merger of a pair of black holes and the ringdown of
the resulting single black hole.� Abbott et al. [38]

All purported black hole equations are solutions to corresponding speci�c
forms of Einstein's nonlinear �eld equations. Gravitational waves on the
other hand are obtained from a linearisation of Einstein's nonlinear �eld
equations, combined with a deliberate selection of coordinates that produce
the assumed aforehand propagation at the speed of light in vacuo. Because
General Relativity is a nonlinear theory, the Principle of Superposition does
not hold.

�In a gravitational �eld, the distribution and motion of the
matter producing it cannot at all be assigned arbitrarily - on the
contrary it must be determined (by solving the �eld equations for
given initial conditions) simultaneously with the �eld produced by
the same matter.� Landau & Lifschitz [41]

�An important characteristic of gravity within the framework
of general relativity is that the theory is nonlinear. Mathemat-
ically, this means that if gab and γab are two solutions of the
�eld equations, then agab + bγab (where a, b are scalars) may not
be a solution. This fact manifests itself physically in two ways.
First, since a linear combination may not be a solution, we can-
not take the overall gravitational �eld of the two bodies to be the
summation of the individual gravitational �elds of each body.�
McMahon [42]

Let X be some black hole universe and Y be some big bang universe.
Then the linear combination (i.e. superposition) X + Y is not a universe.
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Indeed, X and Y pertain to completely di�erent sets of Einstein �eld equa-
tions and so they have absolutely nothing to do with one another. The same
argument holds if X and Y are both black hole universes, be they the same
or not, and if X and Y are big bang universes, be they the same or not.
Consequently, a black hole universe cannot co-exist with any other black
hole universe or with any big bang universe.

All black hole universes:

1. are spatially in�nite

2. are eternal

3. contain only one mass

4. are not expanding (i.e. are not non-static)

5. are asymptotically �at (or, even more exotically, asymptotically curved).

All big bang universes:

1. are either spatially �nite (1 case; k = 1) or spatially in�nite (2 di�erent
cases; k = −1, k = 0)

2. are of �nite age (≈13.8 billion years)

3. contain radiation and many masses

4. are expanding (i.e. are non-static)

5. are not asymptotically anything.

Note also that no black hole universe even possesses a big bang universe
k-curvature. It is clearly evident that black holes and big bang universes
cannot co-exist by their very de�nitions.

All the di�erent black hole `solutions' are also applicable to stars, planets
and the like. Thus, these equations do not permit the presence of more than
one star or planet in the universe. In the case of a body such as a star,
the only signi�cant di�erence is that its spacetime does not bend to in�nite
curvature at the star because there is no singularity and no event horizon in
this case. Newton's theory on the other hand, places no restriction on the
number of masses that can be present.

Since a black hole universe is a solution to a speci�c set of Einstein's non-
linear �eld equations it is not possible to extract from it any gravitational
waves that are produced from linearised �eld equations. No gravitational
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waves can in fact be extracted from Einstein's nonlinear �eld equations [43].
Superposing solutions obtained from the nonlinear system with those from
the linearised system violates the mathematical structure of General Relativ-
ity. Accordingly, contrary to the report of the LIGO-Virgo Collaborations,
gravitational waves cannot exist in any black hole universe. Neither can
they exist in any big bang universe because all big bang models are in fact
single mass universes by mathematical construction [43,44]. Nonetheless the
LIGO-Virgo Collaborations superpose everything [38], depicted in Figure 9.2
herein.

Figure 9.2: �Top: Estimated gravitational-wave strain amplitude from
GW150914 projected onto H1. This shows the full bandwidth of the wave-
forms, without the �ltering used for Fig. 1. The inset images show numerical
relativity models of the black hole horizons as the black holes coalesce. Bot-
tom: The Keplerian e�ective black hole separation in units of Schwarzschild
radii (RS = 2GM/c2) and the e�ective relative velocity given by the post-
Newtonian parameter v/c = (GMπf/c3)1/3, where f is the gravitational-
wave frequency calculated with numerical relativity and M is the total mass
(value from Table I).� Reproduced from Abbott, B.P. et al., Observation of
Gravitational Waves from a Binary Black Hole Merger, PRL 116, 061102
(2016), DOI: 10.1103/PhysRevLett.116.061102
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Superposition where superposition does not hold is a standard method
of cosmologists.

�From what I have said, collapse of the kind I have described
must be of frequent occurrence in the Galaxy; and black-holes
must be present in numbers comparable to, if not exceeding, those
of the pulsars. While the black-holes will not be visible to ex-
ternal observers, they can nevertheless interact with one another
and with the outside world through their external �elds.

�In considering the energy that could be released by interac-
tions with black holes, a theorem of Hawking is useful. Hawking's
theorem states that in the interactions involving black holes,

the total surface area of the boundaries of the black holes

can never decrease; it can at best remain unchanged (if the
conditions are stationary).

�Another example illustrating Hawking's theorem (and consid-
ered by him) is the following. Imagine two spherical (Schwarzschild)
black holes, each of mass 1

2M , coalescing to form a single black
hole; and let the black hole that is eventually left be, again, spher-
ical and have a mass M . Then Hawking's theorem requires that

16πM
2 ≥ 16π

[
2

(
1

2
M

)2
]2

or

M ≥ M√
2

�Hence the maximum amount of energy that can be released in
such a coalescence is

M

(
1− 1√

2

)
c2 = 0.293Mc2�

Chandrasekhar [45]

�Also, suppose two black holes collided and merged together to
form a single black hole. Then the area of the event horizon of
the �nal black hole would be greater than the sum of the areas of
the event horizons of the original black holes.� Hawking [46]
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�Hawking's area theorem: in any physical process involving a
horizon, the area of the horizon cannot decrease in time. . . .This
fundamental theorem has the result that, while two black holes
can collide and coalesce, a single black hole can never bifurcate
spontaneously into two smaller ones.

�Black holes produced by supernovae would be much harder
to observe unless they were part of a binary system which sur-
vived the explosion and in which the other star was not so highly
evolved.� Schutz [47]

�The extreme RN in isotropic coordinates is

ds2 = V −2dt2 + V 2
(
dρ2 + ρ2dΩ2

)
where

V = 1 +
M

ρ

This is a special case of the multi black hole solution

ds2 = V −2dt2 + V 2d~x · d~x

where d~x · d~x is the Euclidean 3-metric and V is any solution of
∇2V = 0. In particular

V = 1 + ΣN
i=1

Mi∣∣~x− ~x∣∣
yields the metric for N extreme black holes of masses Mi at po-
sitions xi.� Townsend [48]

�We not only accept the existence of black holes, we also
understand how they can actually form under various circum-
stances. Theory allows us to calculate the behavior of material
particles, �elds or other substances near or inside a black hole.
What is more, astronomers have now identi�ed numerous objects
in the heavens that completely match the detailed descriptions
theoreticians have derived. These objects cannot be interpreted
as anything else but black holes. The `astronomical black holes'
exhibit no clash whatsoever with other physical laws. Indeed, they
have become rich sources of knowledge about physical phenomena
under extreme conditions. General Relativity itself can also now
be examined up to great accuracies.� 't Hooft [49]
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�Black holes can be in the vicinity of other black holes.� 't
Hooft [43]

Much of the justi�cation for the notion of irresistible gravitational col-
lapse into an in�nitely dense point-mass `physical' singularity where space-
time is in�nitely curved, and hence the formation of a black hole, is due to
Oppenheimer and Snyder [50].

�In an idealized but illustrative calculation, Oppenheimer and
Snyder . . . showed in 1939 that a black hole in fact does form in
the collapse of ordinary matter. They considered a `star' con-
structed out of a pressureless `dustball'. By Birkhof's Theorem,
the entire exterior of this dustball is given by the Schwarzschild
metric . . . . Due to the self-gravity of this `star', it immediately
begins to collapse. Each mass element of the pressureless star fol-
lows a geodesic trajectory toward the star's center; as the collapse
proceeds, the star's density increases and more of the spacetime
is described by the Schwarzschild metric. Eventually, the surface
passes through r = 2M . At this point, the Schwarzschild exte-
rior includes an event horizon: A black hole has formed. Mean-
while, the matter which formerly constituted the star continues
collapsing to ever smaller radii. In short order, all of the origi-
nal matter reaches r = 0 and is compressed (classically!) into a
singularity4.� Hughes [51]

�4 Since all of the matter is squashed into a point of zero size, this

classical singularity must be modi�ed in a complete, quantum descrip-

tion. However, since all the singular nastiness is hidden behind an

event horizon where it is causally disconnected from us, we need not

worry about it (at least for astrophysical black holes).�

Note that the `Principle of Superposition' has again been incorrectly
applied by Oppenheimer and Snyder, from the outset. They �rst assume
a relativistic universe in which there are multiple mass elements present
a priori, where the `Principle of Superposition' however, does not apply.
Then mass elements �collapse� into a central point (zero volume, �nite mass,
in�nite density), due to `self-gravity'. But the `collapse' cannot be due to
Newtonian gravitation, because gravity is not a force in General Relativity,
and with the resulting black hole, which does not occur in Newton's theory
of gravitation. A Newtonian universe cannot collapse into a non-Newtonian
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universe. Neither can a non-Newtonian universe collapse into a Newtonian
universe. Furthermore, the black hole so formed is in an empty universe,
since the `Schwarzschild black hole' relates to Rµν = 0, a spacetime that
by construction contains no matter. Nonetheless, Oppenheimer and Snyder
permit, within the context of General Relativity, the presence of and the
gravitational interaction of many mass elements, which coalesce and collapse
into a point of zero volume to form an in�nitely dense point-mass singularity,
when there is no demonstrated general relativistic or Newtonian mechanism
by which any of this can occur. Moreover, nobody has ever observed a body,
celestial or otherwise, undergo irresistible gravitational collapse, and there is
no laboratory evidence whatsoever for the existence of such a phenomenon.

In the `self-gravity' of a star the cosmologists invoke Newtonian gravita-
tional forces.

�Assume that it obeys an equation of state. If, according to
this equation of state, the pressure stays su�ciently low, one
can calculate that this ball of matter will contract under its own
weight.� 't Hooft (see [43])

�One must ask what happens when larger quantities of mass
are concentrated in a small enough volume. If no stable soution
(sic) exists, this must mean that the system collapses under its
own weight.� 't Hooft (see [43])

Weight is a force due to gravity, but in General Relativity gravity is not
a force. Contrary to the practice of cosmologists, Newton's gravitational
forces cannot be invoked in General Relativity, because there are none.

�In Einstein's new theory, gravitation is of a much more fun-
damental nature: it becomes almost a property of space. . . .Gravitation
is thus, properly speaking, not a `force' in the new theory.� de
Sitter [52]

9.3 Gravitational wave propagation speed and the
linearisation game

The LIGO-Virgo Collaborations opened the Introduction to their paper with
the following:

�In 1916, the year after the �nal formulation of the �eld equa-
tions of general relativity, Albert Einstein predicted the existence
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of gravitational waves. He found that the linearized weak-�eld
equations had wave solutions: transverse waves of spatial strain
that travel at the speed of light, generated by time variations of
the mass quadrupole moment of the source.� Abbott et al. [38]

The impression given here that the speed of propagation of Einstein's
gravitational waves is uniquely that of light in vacuo is false. Propagation
speed of Einstein's gravitational waves is arbitrary, because it is coordinate
dependent. That Einstein's waves seem to travel uniquely at the speed of
light in vacuo is simply because this speed was deliberately selected in order
to conform to the presupposition. The method employed to determine the
wave equation for Einstein's gravitational waves is the weak-�eld `lineari-
sation' of his �eld equations and concomitant selection of a speci�c set of
coordinates.

Maxwell's electromagnetic theory predicts sinusoidal electromagnetic-
wave propagation in vacuo at the unique speed v, given by,

v =
1

√
εoµo

= c (9.1)

The speed of light changes according to the permittivity and permeability
of the dielectric medium in which it travels,

v =
1
√
εµ

=
c

√
κκm

(9.2)

wherein κ and κm are the dielectric constant and relative permeability re-
spectively of the medium. Note that the speed of electromagnetic wave prop-
agation in vacuo is not arbitrary. Since the speed of light `in vacuo' plays a
central role in Einstein's Relativity Theory, the motive for choosing coordi-
nates in order to make gravitational waves, emerging from the linearisation
game1, travel at the speed of light `in vacuo', is abundantly clear.

Einstein's gravitational waves are extracted from his linearisation of his
nonlinear �eld equations. Accordingly the metric tensor is written as,

gµν = ηµν + hµν (9.3)

where the hµν << 1 and ηµν represents the Galilean values (1,−1,−1,−1).
In the linearisation game the hµν slightly perturb the �at Minkowski space-
time gµν = ηµν from its �atness, and so su�xes are raised and lowered on the

1�The rules of the `linearization game' are as follows: (a) hµν together with its �rst
derivatives hµν, ρ and higher derivatives are small, and all products of these are ignored;
(b) su�xes are raised and lowered using ηµν and ηµν , rather than gµν and gµν .� Foster &
Nightingale [53]
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hµν by the ηµν . Here the hµν and their �rst derivatives ∂hµν/∂xσ ≡ hµν, σ,
and higher derivatives, are small, and all products of them are neglected.
Since the ηµν are constants, the derivatives of Eq.(9.3) are gµν, σ = hµν, σ.
The validity of the linearisation game is merely taken on trust because it
leads to the desired result.

The selection of a speci�c coordinate system in order to ensure that
gravitational waves propagate at the presupposed speed of light c = 2.998×
108m/s is exposed by the approximation of the Ricci tensor Rµν , in accor-
dance with Eq.(9.3). The Ricci tensor can be �rst written in the following
form by a contraction on the Riemann-Christo�el curvature tensor Rρµνσ,
as follows,

Rµν = gσρ
[

1

2
(gσρ, µν − gνρ, σµ − gµσ, νρ + gµν, σρ) + ΓβρσΓβµν − ΓβρνΓβµσ

]
(9.4)

Since the last two terms of Eq.(9.4) are products of the components of
the metric tensor gµν and their �rst derivatives, by the linearisation game
they are neglected, so that the Ricci tensor reduces to,

Rµν = gσρ
[

1

2
(gσρ, µν − gνρ, σµ − gµσ, νρ + gµν, σρ)

]
(9.5)

which can be broken into two parts,

Rµν =
1

2
gσρgµν, σρ +

1

2
gσρ [(gσρ, µν − gνρ, σµ − gµσ, νρ)] (9.6)

If the coordinates xα are chosen so that the second part of Eq.(9.6) vanishes,
the Ricci tensor reduces further as follows,

Rµν =
1

2
gσρgµν, σρ =

1

2
gσρ

∂2gµν
∂xρ∂xσ

(9.7)

gσρ (gσρ, µν − gνρ, σµ − gµσ, νρ) = 0 (9.8)

According to Eq.(9.3), gµν, β = hµν, β and so on for higher derivatives. Hence,

Rµν =
1

2
ησρhµν, σρ =

1

2
ησρ

∂2hµν
∂xρ∂xσ

(9.9)

ησρ (hσρ, µν − hνρ, σµ − hµσ, νρ) = 0 (9.10)

(remembering that su�xes on the kernel h are raised and lowered by ηµν

according to tensor type). Contracting Eq.(9.9) yields the Ricci scalar,

R = ηνµRµν =
1

2
ηνµησρ

∂2hµν
∂xρ∂xσ

=
1

2
ηρσ

∂2h

∂xσ∂xρ
(9.11)
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Einstein's �eld equations (without cosmological constant) are,

Rµν −
1

2
Rgµν = −κTµν (9.12)

In terms of hµν these become, using Eq.(9.9) and Eq.(9.11),

ησρ
∂2hµν
∂xρ∂xσ

− 1

2
ησρ

∂2h

∂xσ∂xρ
ηµν = −2κTµν (9.13)

The d'Almbertian operator is de�ned by,

� ≡ −ηµν ∂

∂xµ
∂

∂xν
(9.14)

Recalling that ηµν represents the Galilean values and that hence ηµν = 0
when µ 6= ν, Eq.(9.14) gives,

� =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
= ∇2 − 1

c2
∂2

∂t2
(9.15)

where ∇ is the di�erential operator del (or nabla), de�ned as,

∇ ≡
〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
(9.16)

Taking the dot product of del with itself gives the Laplacian operator ∇2,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(9.17)

Setting x0 = ct, x1 = x, x2 = y, x3 = z, Eq.(9.13) can be written as,

�

(
hµν −

1

2
δµνh

)
= −2κTµν (9.18)

These are the linearised �eld equations. They are subject to the condition
Eq.(9.8), which can be condensed to the following condition [54],

∂

∂xα

(
hαµ −

1

2
δαµh

)
= 0 (9.19)

Using Eq.(9.14), Eq.(9.9) can be written as,

�hµν = 2Rµν (9.20)
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For empty space this becomes,

�hµν = 0 (9.21)

which by Eq.(9.15) describes a wave propagating at the speed of light in
vacuo.

However, the crucial point of the foregoing mathematical development
is that Einstein's gravitational waves do not have a unique speed of prop-
agation. The speed of the waves is coordinate dependent, as the condition
at Eq.(9.8) attests. It is the constraint at Eq.(9.8) that selects a set of
coordinates to produce the propagation speed c. A di�erent set of coordi-
nates yields a di�erent speed of propagation, as Eq.(9.5) does not have to
be constrained by Eq.(9.8). Einstein deliberately chose a set of coordinates
that yields the desired speed of propagation at that of light in vacuum (i.e.
c = 2.998× 108m/s) in order to satisfy the presupposition that propagation
is at speed c. There is no a priori reason why this particular set of coordi-
nates is better than any other. The sole purpose for the choice is to obtain
the desired and presupposed result.

�All the coordinate-systems di�er from Galilean coordinates
by small quantities of the �rst order. The potentials gµν pertain
not only to the gravitational in�uence which has objective reality,
but also to the coordinate-system which we select arbitrarily. We
can `propagate' coordinate-changes with the speed of thought ,
and these may be mixed up at will with the more dilatory prop-
agation discussed above. There does not seem to be any way of
distinguishing a physical and a conventional part in the changes
of gµν .

�The statement that in the relativity theory gravitational waves
are propagated with the speed of light has, I believe, been based en-
tirely upon the foregoing investigation; but it will be seen that it is
only true in a very conventional sense. If coordinates are chosen
so as to satisfy a certain condition which has no very clear geo-
metrical importance, the speed is that of light; if the coordinates
are slightly di�erent the speed is altogether di�erent from that of
light. The result stands or falls by the choice of coordinates and,
so far as can be judged, the coordinates here used were purposely
introduced in order to obtain the simpli�cation which results from
representing the propagation as occurring with the speed of light.
The argument thus follows a vicious circle.� Eddington [54]
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9.4 A black hole is a universe

Each and every black hole is an independent universe by its very de�nition,
no less than the big bang universes are independent universes, because the
black hole universe is not contained within its event horizon. Its spacetime
extends inde�nitely far from its singularity. All types of black hole uni-
verses are spatially in�nite and eternal, and are either asymptotically �at
or, in more esoteric cases, asymptotically curved. There is no bound on
asymptotic, for otherwise it would not be asymptotic. Thus every type of
black hole constitutes an independent in�nite and eternal universe; bearing
in mind also that each di�erent type of black hole universe pertains to a dif-
ferent set of Einstein �eld equations and therefore have nothing to do with
one another. Without the asymptotic condition the black hole equations
do not result, and one can then write as many non-asymptotic solutions to
the corresponding Einstein �eld equations for the supposed di�erent types
of black holes as one pleases [43,55], none of which produces a black hole.

�Black holes were �rst discovered as purely mathematical solu-
tions of Einstein's �eld equations. This solution, the Schwarzschild
black hole, is a nonlinear solution of the Einstein equations of
General Relativity. It contains no matter, and exists forever in
an asymptotically �at space-time.� Dictionary of Geophysics, As-
trophysics and Astronomy [56]

�The Kerr-Newman solutions . . . are explicit asymptotically
�at stationary solutions of the Einstein-Maxwell equation (λ = 0)
involving just three free parameters m , a and e. . . . the mass,
as measured asymptotically, is the parameter m (in gravitational
units). The solution also possesses angular momentum, of mag-
nitude am . Finally, the total charge is given by e. When a=e=0
we get the Schwarzschild solution.� Penrose [57]

�The charged Kerr metrics are all stationary and axisymmetric
. . .They are asymptotically �at . . . � Wald [58]

All the di�erent black hole equations are also applicable to stars and
planets. Thus, these equations do not permit the presence of more than one
star or planet in the universe. In the case of a body such as a star, the only
signi�cant di�erence is that the spacetime does not go to in�nite curvature
at the star, because there is no singularity and no event horizon in the case
of a star (or planet).
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9.5 Black hole gravity

Cosmology maintains that the �nite mass of a black hole is concentrated
at its `singularity', where volume is zero, density is in�nite, and spacetime
curvature is in�nite. There are two types of black hole singularity proposed
by cosmologists, according to whether or not the black hole is rotating. In
the case of no rotation the singularity is a point, adorned with mass: a
`point-mass'. In the case of rotation the singularity is the circumference of
a circle, adorned with mass: a circumference-mass. Cosmologists call them
`physical singularities'. These and other mathematical singularities of black
hole equations are rei�ed so as to contain the masses of black holes and
to locate their event horizons2. Singularities are actually only places in an
equation where the equation is unde�ned, owing for example, to a division by
zero. Although they have been construed as such by cosmology, singularities
are not in fact physical entities. A singularity also occurs in Newton's theory;
it is called the centre of gravity or the centre of mass. The centre of gravity
of a body is not a physical object, rather a mathematical arti�ce.

�Let me be more precise as to what one means by a black hole.
One says that a black hole is formed when the gravitational forces
on the surface become so strong that light cannot escape from it.

�. . .A trapped surface is one from which light cannot escape
to in�nity.� Chandrasekhar [45]

There are forces in General Relativity but gravity is not one of them,
because it is spacetime curvature. It immediately follows that according
to cosmologists, gravity is in�nite at a black hole singularity. In�nities of
density, spacetime curvature, and gravity are claimed to be physically real.

�The work that Roger Penrose and I did between 1965 and
1960 showed that, according to general relativity, there must be
a singularity of in�nite density and space-time curvature, within
the black hole. This is rather like the big bang at the beginning of
time . . . � Hawking [97]

�Once a body of matter, of any massm, lies inside its Schwarz-
schild radius 2m it undergoes gravitational collapse . . . and the
singularity becomes physical, not a limiting �ction.� Dodson and
Poston [59]

2An event horizon is also called `a trapped surface' or `a Schwarzschild sphere'.
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�A nonrotating black hole has a particularly simple structure.
At the center is the singularity, a point of zero volume and in�nite
density where all of the black hole's mass is located. Spacetime
is in�nitely curved at the singularity. . . .The black hole's singu-
larity is a real physical entity. It is not a mathematical artifact
. . . � Carroll and Ostlie [60]

�As r decreases, the space-time curvature mounts (in proportion
to r−3), becoming theoretically in�nite at r = 0.� Penrose [57]

�One says that `r = 0 is a physical singularity of spacetime.' �
Misner, Thorne & Wheeler [61]

�Black holes, the most remarkable consequences of Einstein's
theory, are not just theoretical constructs. There are huge num-
bers of them in our Galaxy and in every other galaxy, each being
the remnant of a star and weighing several times as much as the
Sun. There are much larger ones, too, in the centers of galaxies.�
Rees [62]

�We not only accept the existence of black holes, we also
understand how they can actually form under various circum-
stances. Theory allows us to calculate the behavior of material
particles, �elds or other substances near or inside a black hole.
What is more, astronomers have now identi�ed numerous objects
in the heavens that completely match the detailed descriptions
theoreticians have derived.� 't Hooft [63]

�We've got the black holes cornered.� Stern [64]

However, no �nite mass possesses zero volume, in�nite density, or in�nite
gravity, anywhere.

9.6 The mathematical theory of black holes

The LIGO-Virgo Collaborations have invoked a binary black hole system,
merging to cause emission of their reported gravitational waves.

�The basic features of GW150914 point to it being produced by
the coalescence of two black holes-i.e., their orbital inspiral and
merger, and subsequent �nal black hole ringdown. Over 0.2s,
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the signal increases in frequency and amplitude in about 8 cycles
from 35 to 150 Hz, where the amplitude reaches a maximum.
The most plausible explanation for this evolution is the inspiral
of two orbiting masses, m1 and m2, due to gravitational-wave
emission.� Abbott et al. [38]

In the Introduction of their paper the LIGO-Virgo Collaborations incor-
rectly attribute the black hole to K. Schwarzschild.

�Also in 1916, Schwarzschild published a solution for the �eld
equations [41] that was later understood to describe a black hole
[42, 43], and in 1963 Kerr generalized the solution to rotating
black holes [43].� Abbott et al. [38]

The resultant black hole type is identi�ed in [38].

�A pair of neutron stars, while compact, would not have the
required mass, while a black hole neutron star binary with the de-
duced chirp mass would have a very large total mass, and would
thus merge at much lower frequency. This leaves black holes as
the only known objects compact enough to reach an orbital fre-
quency of 65 Hz without contact. Furthermore, the decay of the
waveform after it peaks is consistent with the damped oscillations
of a black hole relaxing to a �nal stationary Kerr con�guration.�
Abbott et al. [38]

All the black holes are identi�ed in [65].

�Here we perform several studies of GW150914, aimed at de-
tecting deviations from the predictions of GR. Within the limits
set by LIGO's sensitivity and by the nature of GW150914, we �nd
no statistically signi�cant evidence against the hypothesis that,
indeed, GW150914 was emitted by a binary system composed of
two black holes (i.e., by the Schwarzschild [53] or Kerr [55] GR
solutions), that the binary evolved dynamically toward merger,
and that it formed a merged rotating black hole consistent with
the GR solution.� Abbott et al. [65]

Note the invalid superposition of the two `Schwarzschild' or `Kerr' black
holes, due to violation of their asymptotic �atness (each encounters in�nite
spacetime curvature i.e. in�nite gravity, at the singularity of the other). The
Kerr con�guration subsumes the Schwarzschild con�guration and so depends
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upon the existence of the latter. The Schwarzschild solution has no physical
meaning because it is the solution to a set of physically meaningless equations
(see �6 and �7 below). Furthermore, all black hole equations are obtained
by violations of the rules of pure mathematics, which will now be proven.

Satisfaction of the Einstein �eld equations is a necessary but insu�cient
condition for determination of Einstein's gravitational �eld. Einstein's �eld
equations �in the absence of matter � [66] are,

Rµν = 0 (9.22)

To determine his gravitational �eld in the absence of matter, Einstein
prescribed the following conditions:

1. the solution must be static

2. it must be spherically symmetric

3. it must satisfy the �eld equations

4. it must be asymptotically �at.

Consider Schwarzschild's [67] actual solution to Eq.(9.22), which is not
the solution that has been assigned to him by cosmologists:

ds2 =
(

1− α

R

)
dt2 −

(
1− α

R

)−1
dR2 −R2

(
dθ2 + sin2 θ dϕ2

)
R =

(
r3 + α3

) 1
3 , 0 ≤ r

(9.23)

Here α is a positive real-valued constant and r =
√
x2 + y2 + z2. The speed

of light in vacuo is set to unity, i.e. c = 1. Eq.(9.23) is singular (i.e.
unde�ned) only at r = 0 (i.e. when x = y = z = 0). Contrast this with the
so-called `Schwarzschild solution' attributed to Schwarzschild but actually
due to the German mathematician D. Hilbert [68]- [70],

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2

(
dθ2 + sin2 θ dϕ2

)
0 ≤ r

(9.24)

Here c = 1, Newton's gravitational constant G = 1, and M is claimed to
be the mass that produces the gravitational �eld. Note that prima facie
Eq.(9.24) is singular (i.e. unde�ned) at r = 2M and at r = 0. Eq.(9.24) is
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not equivalent to Eq.(9.23) owing to 0 ≤ r in Eq.(9.24). If they are equivalent
then in Eq.(9.23) it must be that −α ≤ r =

√
x2 + y2 + z2.

Eq.(9.24) is somewhat deceptive. Rewriting it explicitly with c and G is
much more informative,

ds2 = c2
(

1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1
dr2 − r2

(
dθ2 + sin2 θ dϕ2

)
0 ≤ r

(9.25)
In Eq.(9.24) the so-called `Schwarzschild radius' is rs = 2M . From Eq.(9.25)
the Schwarzschild radius rs is easily identi�ed in full,

�This value is known as the Schwarzschild radius. In terms of
the mass of the object that is the source of the gravitational �eld,
it is given by

rs =
2GM

c2

�For ordinary stars, the Schwarzschild radius lies buried deep in
the stellar interior.� McMahon [42]

�Remarkably, as we shall see this is exactly the modern formula
for the radius of a black hole in general relativity . . . � Schutz [47]

According to cosmologists, the Schwarzschild radius (or `gravitational
radius') is the radius of the event horizon of a black hole. That r is incor-
rectly treated as the radius by cosmologists is most clearly evident by the
very `Schwarzschild radius', which for stars, � lies buried deep in the stellar
interior � [42].

�The Schwarzschild radius for the Earth is about 1.0 cm and that
of the Sun is 3.0 km.� d'Inverno [71]

�For example, a Schwarzschild black hole of mass equal to that
of the Earth, ME = 6× 1026g, has rs = 2GME/c

2 ≈ 1 cm. . . .A
black hole of one solar mass has a Schwarzschild radius of only
3km.� Wald [58]

�. . . `ordinary' stars and planets contain matter (Tµν = 0)
within a certain radius r > 2M , so that for them the validity of
the Schwarzschild solution stops there.� 't Hooft [49]

271



9.6. THE MATHEMATICAL THEORY OF BLACK HOLES

In relation to Hilbert's solution, the cosmologists Celotti, Miller and
Sciama [72], make the following assertion:

�The `mean density' ρ of a black hole (its mass M divided by
4
3πr

3
s) is proportional to 1/M2� [72]

where rs is the `Schwarzschild radius'. However, the expression 4
3πr

3 gives
the volume of a Euclidean sphere where r is the radius of the sphere. It does
not give the volume of the non-Euclidean sphere within Hilbert's solution,
where the volume is in fact given by [73]- [85],

V =

∫ π

0
sin θ dθ

∫ 2π

0
dϕ

∫ r

2M

r2 dr√
1− 2M

r

= 4π

∫ r

2M

r2 dr√
1− 2m

r

(9.26)

which is a particular case of the general expression [73]- [74],

V =

∫ π

0
sin θ dθ

∫ 2π

0
dϕ

∫ r

ro

R2
c (r)√

1− α
Rc(r)

dRc
dr

dr = 4π

∫ r

ro

R2
c (r)√

1− α
Rc(r)

dRc
dr

dr

(9.27)
wherein the value of the real number ro, although arbitrary, a�ects the form
of Rc (r).

Cosmology confounds the quantity r as radial distance, which ultimately
gives rise to the `Schwarzschild radius' rs. It is variously and vaguely called
the `areal radius', the `Schwarzschild r-coordinate', the `distance', `the ra-
dius', the `radius of a 2-sphere', the `radial coordinate', the `reduced circum-
ference', the `radial space coordinate', the `coordinate radius', and even �a
gauge choice: it determines the coordinate r� 't Hooft [43]. None of these
mere labels correctly identi�es the geometric signi�cance of the quantity r
in Hilbert's solution.

Cosmologists maintain that the Schwarzschild radius r = rs is a `coordi-
nate' or `apparent' or `removable' singularity, and that r = 0 is a `physical
singularity' (because it is endowed with the fantastic physical properties in
�5 above).

The quantity R in Schwarzschild's solution and the quantity r in Hilbert's
solution can be replaced by any analytic real-valued function Rc (r) of the
real variable r without violating Rµν = 0 or spherical symmetry. However,
not simply any analytic function of r is permissible. Satisfaction of the �eld
equations is a necessary but insu�cient condition for determination of Ein-
stein's `gravitational �eld'. For example, replace Hilbert's r with Rc (r) = er.
The resulting metric is singular only at r = ln(2M). At r = 0 nothing special
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happens; on the unproven assumption that 0 ≤ r ≤ ln(2M) is permissible.
But Rc (r) = er is forbidden because the resulting metric is not asymptot-
ically �at. The in�nite equivalence class of permissible analytic functions
Rc (r) must be ascertained.

Let r′ be the radius of a Euclidean sphere. It is routinely claimed for
Eq.(9.24) and Eq.(9.25) that r = r′ =

√
x2 + y2 + z2 (Einstein [85]), from

which the black hole was constructed. This is incorrect [43,44,55], [73]- [85]
because here,

r =
√
x2o + y2o + z2o +

√
(x− xo)2 + (y − yo)2 + (z − zo)2 = ro + r′ (9.28)

where

ro =
√
x2o + y2o + z2o =

2GM

c2
(9.29)

Notwithstanding, r is neither the radius nor even a distance in any black
hole equation [43, 44, 55], [73]- [85]; a mathematical fact which subverts the
entire theory of black holes. The reader is referred to [43, 44, 55], [73]- [85]
for all the mathematical details, which I only summarise herein.

Geometrically speaking Eq.(9.25) means that the black hole is the result
of unwittingly moving a sphere, initially centred at the origin of coordinates,
to some other place, but leaving its centre behind. Analytically this is re-
vealed by,

ds2 =

(
1− α

Rc

)
dt2 −

(
1− α

Rc

)−1
dR2

c −R2
c

(
dθ2 + sin2 θ dϕ2

)
Rc = (|r − ro|n + αn)

1
n , r, ro ∈ <, n ∈ <+

(9.30)

Eqs.(9.30) satisfy Einstein's prescription, and constitute an in�nite equiva-
lence class because every element of the class describes the very same metric
space.

The radius Rp for Eq.(9.30) is,

Rp =

∫
dRc√
1− α

Rc

=
√
Rc (Rc − α) + α ln

(√
Rc +

√
Rc − α√
α

)
(9.31)

Note that Rc (ro) = α ∀ro ∀n and Rp (ro) = 0 ∀ro ∀n. The constants ro and
n are arbitrary. Setting ro = 0, n = 3, ro ≤ r yields Schwarzschild's actual
solution [53]. Setting ro = 0, n = 1, ro ≤ r yields Brillouin's solution [73].
Setting ro = α, n = 1, ro ≤ r yields Droste's solution [73]. Hilbert's solution
is not an element of the in�nite equivalence class. Note that Hilbert's solution
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is an alleged `extension' of Droste's solution to 0 ≤ r, for an `event horizon'
at `the radius' r = α and a `physical singularity' at `the origin' r = 0.
Although r = 0 denotes the origin of a coordinate system, it does not denote
the centre of spherical symmetry of Eq.(9.24) and Eq.(9.25), as Eq.(9.30)
reveals. The centre of spherical symmetry is at r = ro. When a sphere
initially centred at the origin of coordinates is moved, it takes its centre with
it, and the position of the sphere is speci�ed by the coordinates of its centre
(x0, y0, z0) so that whereupon the radius r′ of the sphere is no longer given

by r = r′ =
√
x2 + y2 + z2, but by r′ =

√
(x− x0)2 + (y − y0)2 + (z − z0)2.

The intrinsic geometry of a sphere is not altered by changing its position
and so its radius does not change with a change of position. When Hilbert
set r2 as the coe�cient of

(
dθ2 + sin2 θ dϕ

)
in the derivation of his solution,

he unwittingly shifted the centre of Schwarzschild's Euclidean sphere from
r = ro = 0 to the coordinates (x0, y0, z0) at the distance r = 2m from the
origin of coordinates, mistakenly thinking the centre of that sphere still at
r = 0. Hilbert shifted Schwarzschild's Euclidean sphere but left its centre
behind. The result was fantastic. David Hilbert had separated the Euclidean
sphere from its centre and even placed its centre outside the sphere!

Owing to equivalence, if any element of the in�nite equivalence class
determined by Eq.(9.30) cannot be extended then none can be extended,
owing to equivalence. It is immediately apparent that none can be extended
because |r − ro|n ≥ 0. This is ampli�ed by the case ro = 0, n = 2, in which
case Eq.(9.30) is de�ned for all real values of r except r = ro = 0. In this
case the black hole requires that,

−α2 ≤ r2 =
(
x2 + y2 + z2

)
(9.32)

Thus, the `Schwarzschild' black hole is invalid because it violates the
rules of pure mathematics - it requires the square of a real number to be less
than zero. In general, the mathematical theory of black holes requires that
the positive power of the absolute value of a real number must take on values
less that zero. The same violation of the rules of pure mathematics produces
all the black hole universes [43, 44, 55] [73]- [84]. All purported means of
extending Droste's solution to Hilbert's are consequently invalid [43,83,84].
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Schwarzschild spacetime can be written in the `isotropic coordinates'.
The in�nite equivalence class in this case is given by [43,44,86], [41,43,71]3,

ds2 =

(
4Rc − α
4Rc + α

)2

dt2 −
(

1 +
α

4Rc

)4 [
dR2

c +R2
c

(
dθ2 + sin2 θ dϕ2

)]
Rc =

[
|r − ro|n +

(α
4

)n] 1
n
, r, ro ∈ <, n ∈ <+

(9.33)
and the radius is,

Rp =

∫ (
1 +

α

4Rc

)2

dRc = Rc +
α

2
ln

(
4Rc
α

)
− α2

8Rc
+
α

4
(9.34)

Note that Rc (ro) = α/4 ∀ro ∀n and Rp (ro) = 0 ∀ro ∀n. Once again it is
evident that no black hole is possible without a violation of the rules of pure
mathematics, as the case ro = 0, n = 2 again ampli�es.

The Kerr-Newman solution adds charge q and angular momentum a
to the `Schwarzschild solution'4. The in�nite equivalence class for Kerr-
Newman spacetime is given by [43,55,77],

ds2 = −∆

ρ2
(
dt− a sin2 θ dϕ

)2
+

sin2 θ

ρ2
[(
R2
c + a2

)
dϕ− adt

]2
+
ρ2

∆
dR2

c + ρ2dθ2

∆ = R2
c − αRc + a2 + q2, ρ2 = R2

c + a2 cos2 θ

Rc = (|r − ro|n + ζn)
1
n , r, ro ∈ <, n ∈ <+

ζ =
α+

√
α2 − 4q2 − 4a2 cos2 θ

2
, a2 + q2 <

α2

4
(9.35)

The in�nite equivalence class for Kerr spacetime is obtained from Eqs.(9.35)
by setting q = 0. Similarly, the in�nite equivalence class for Reissner-
Nordström spacetime is obtained from Eqs.(9.35) by setting a = 0. Set-
ting a = 0 and q = 0 in Eqs.(9.35) yields the in�nite equivalence class for
Schwarzschild spacetime. No black hole is possible without a violation of the
rules of pure mathematics, as the case ro = 0, n = 2 yet again ampli�es.

3Here c = 1.
4The pronumeral a is called `the angular momentum parameter': a = J/M where J

is angular momentum and M is the mass of the source of a `gravitational �eld' (i.e. the
mass of a star or a black hole).
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Black hole `escape velocity'

On the one hand, cosmologists assign an escape speed to the black hole.
At the event horizon it is the speed of light. Rearranging the `Schwarzschild
radius' for c gives,

c =

√
2GM

rs
(9.36)

which is immediately recognised as the Newtonian expression for escape
speed. Although only one term for mass appears in this expression (i.e. M),
it is an implicit two-body relation: one body `escapes' from another body.
Consequently, the Newtonian expression for escape speed cannot rightly ap-
pear in a solution for a one-body problem. The Schwarzschild solution is
supposedly for a one-body problem. It is by this incorrect insinuation of the
Newtonian expression for escape speed that cosmologists assign the black
hole an escape speed, especially at its `event horizon'.

�black hole A region of spacetime from which the escape ve-
locity exceeds the velocity of light. In Newtonian gravity the es-
cape velocity from the gravitational pull of a spherical star of mass
M and radius R is

vesc =

√
2GM

R
,

where G is Newton's constant. Adding mass to the star (in-
creasing M), or compressing the star (reducing R) increases vesc.
When the escape velocity exceeds the speed of light c, even light
cannot escape, and the star becomes a black hole. The required
radius RBH follows from setting vesc equal to c:

RBH =
2GM

c2
.

�. . . In General Relativity for spherical black holes (Schwarzschild
black holes), exactly the same expression RBH holds for the sur-
face of a black hole. The surface of a black hole at RBH is a
null surface, consisting of those photon trajectories (null rays)
which just do not escape to in�nity. This surface is also called
the black hole horizon.� Dictionary of Geophysics, Astrophysics
and Astronomy [56]

�black hole A massive object so dense that no light or any
other radiation can escape from it; its escape velocity exceeds the
speed of light.� Collins Encyclopaedia of the Universe [87]
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�A black hole is characterized by the presence of a region in
space-time from which no trajectories can be found that escape
to in�nity while keeping a velocity smaller than that of light.� 't
Hooft [63]

On the other hand, nothing can even leave the event horizon of a black
hole, not even light.

�The problem we now consider is that of the gravitational col-
lapse of a body to a volume so small that a trapped surface forms
around it; as we have stated, from such a surface no light can
emerge.� Chandrasekhar [45]

�It is clear from this picture that the surface r = 2m is a one-
way membrane, letting future-directed timelike and null curves
cross only from the outside (region I) to the inside (region II).�
d'Inverno [71]

�Things can go into the horizon (from r > 2M to r < 2M),
but they cannot get out; once inside, all causal trajectories (time-
like or null) take us inexorably into the classical singularity at
r = 0. . . .The de�ning property of black holes is their event
horizon. Rather than a true surface, black holes have a `one-way
membrane' through which stu� can go in but cannot come out.�
Hughes [51]

�Einstein predicts that nothing, not even light, can be suc-
cessfully launched outward from the horizon . . . and that light
launched outward EXACTLY at the horizon will never increase
its radial position by so much as a millimeter.� Taylor and
Wheeler [88]

�In the exceptional case of a ∂v photon parametrizing the pos-
itive v axis, r = 2M , though it is racing `outward' at the speed
of light the pull of the black hole holds it hovering at rest. . . .No
particle, whether material or lightlike, can escape from the black
hole.� O'Neill [89]

�Thus we cannot have direct observational knowledge of the
region r < 2m. Such a region is called a black hole, because
things can fall into it (taking an in�nite time, by our clocks, to
do so) but nothing can come out.� Dirac [90]
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�The most obvious asymmetry is that the surface r = 2m
acts as a one-way membrane, letting future-directed timelike and
null curves cross only from the outside (r > 2m) to the inside
(r < 2m).� Hawking and Ellis [91]

�It turned out that, at least in principle, a space traveller could
go all the way in such a `thing' but never return. Not even light
could emerge out of the central region of these solutions. It was
John Archibald Wheeler who dubbed these strange objects 'black
holes'.� 't Hooft [63]

Escape speed however means that things can either leave or escape from
some other body, depending upon initial speed at the place of departure.
It does not mean that nothing can leave. To escape from some body, the
escapee must achieve the escape speed. If it fails to do so it can leave, but
not escape, unless its initial speed is precisely 0 m/s, in which case it neither
leaves nor escapes, because its does not move. If it achieves the escape speed
it can leave and escape. Escape speed does not mean that nothing can leave.
The black hole event horizon has an escape speed, the speed of light c, yet
nothing, not even light, can leave (light hovers forever at the event horizon
as it tries to `escape'). As the foregoing citations attest, cosmologists assert
that the black hole event horizon has the unique property of having and
not having an escape speed simultaneously at the same place. However,
no material body can have and not have an escape speed simultaneously,
anywhere.

�A black hole is, ah, a massive object, and it's something
which is so massive that light can't even escape. . . . some objects
are so massive that the escape speed is basically the speed of light
and therefore not even light escapes. . . . so black holes themselves
are, are basically inert, massive and nothing escapes.� Bland-
Hawthorn [92]

If the escape speed at the event horizon of a black hole is the speed of
light, and light travels at the speed of light, then, by the very de�nition of
escape speed, light must escape. Cosmologists however assert the opposite;
that the escape speed at the event horizon is the speed of light, so light
cannot escape! In fact, light cannot even leave the event horizon, hovering
there instead, forever. In other words, the speed of light at the event horizon
along a radially outward direction is c = 0 m/s and thereby light cannot
either leave or escape, because light is not moving. On the other hand,
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the speed of light at the event horizon, the `escape' speed, according to
the cosmologists, is c = 2.998 × 108m/s =

√
2GM/rs, Einstein's `speed of

light in vacuo'. Thus, the speed of light at the black hole event horizon
has a split personality; two di�erent values at the same place, in vacuo.
Furthermore, if the escape speed is zero, any speed greater than zero must
ensure leaving and escape. Presumably, no physical object can even achieve
the escape speed c = 0, because, according to the cosmologists, nothing at
all can even leave the event horizon, let alone escape from it. In Relativity
Theory the speed of any material body is always restricted to values less
than that of c = 2.998 × 108m/s, not to c = 0 m/s. If the escape speed at
the event horizon is 0 m/s, this contradicts the escape speed obtained from

the `Schwarzschild radius': vesc =
√

2GM
rs

= c = 2.998 × 108m/s which is
> 0. In fact, the `Schwarzschild radius' is itself obtained by setting vesc =
c = 2.998× 108m/s in the Newtonian expression for escape speed. Thus, on
the one hand, according to the cosmologists, the escape speed at the event
horizon of a black hole is the speed of light c = 2.998× 108m/s.

By various mathematical approaches which amount to the same thing,
the cosmologists on the other hand claim that the escape speed at the event
horizon (the speed of light) is 0m/s. One of their means is to set θ = const.
and ϕ = const. in Hilbert's solution to yield for `radial motion'. For light
ds = c dτ = 0, because the so-called `proper time' τ = 05. Hence,

0 = c2
(

1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1
dr2 (9.37)

Rearrangement for what cosmologists call `the radial velocity' [93,94] gives,

v =
dr

dt
= ±c

(
1− 2GM

c2r

)
(9.38)

�The + sign is for a light ray heading outwards i.e. r increas-
ing with time, and the − is for a light ray heading inwards, i.e.
r decreasing with time.� Rennie [94]

At the event horizon r = rs = 2GM/c2 (the `Schwarzschild radius').
Putting this value into Eq.(9.38) yields,

v = vesc =
dr

dt
= ±c

(
1− 2GM

c2
c2

2GM

)
= 0 (9.39)

Thus, according to the cosmologists, the speed of light at the event horizon
is zero for light travelling either outward or inward.

5The motion of light is `light-like', or `null': hence ds = 0.
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�We �nd that the velocity of light at the event horizon is zero.�
Rennie [94]

This is the other cosmologist `escape speed' (here the outward radial
speed for the + sign) at the black hole event horizon. Consequently, light
cannot leave or escape because it is unable to even move. Contrast this
with the `escape speed' at the black hole event horizon obtained from the

`Schwarzschild radius': vesc =
√

2GM
rs

= c = 2.998× 108m/s. A body freely
falling from rest `at in�nity' along a radial line acquires a speed equal to
that of the escape speed, according to the `Schwarzschild radius' rs, because
rs is obtained from the Newtonian relation for escape speed. Note that in
Eq.(9.39) the cosmologists give the speed of light two di�erent values: the
escape speed c = 2.998 × 108m/s by rs = 2GM/c2 and the escape speed 0
m/s by means of dr/dt = 0. The speed of light (the `escape speed') cannot
have two di�erent values in the one equation. This logical absurdity however
does not stop cosmologists.

The proof that the Newtonian relation for escape speed is a two-body
relation is elementary. According to Newton's theory,

Fg = −GMm

r2
= ma = m

dv

dt
= mv

dv

dr
(9.40)

where G is the gravitational constant and r is the distance between the centre
of mass of m and the centre of mass ofM . A centre of mass is not a physical
object; merely a mathematical arti�ce. Although Newton's Fg is singular at
r = 0, this does not produce a `physical singularity'. Separating variables
and integrating gives,∫ 0

v
mv dv = lim

rf→∞

∫ rf

R
−GMm

dr

r2
(9.41)

whence,

v =

√
2GM

R
(9.42)

where R is the radius of the mass M . Thus, although Eq.(9.42) contains
only one mass term (M), escape speed necessarily involves two bodies: m
and M .

In any event, contrary to cosmology, the Newtonian implicit two-body
escape speed relation cannot be involved because the black hole pertains
to a universe that contains only one mass (that of the black hole itself)
by hypothesis. The impossible duality of cosmology's black hole `escape
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velocity' is now clear. The black hole event horizon has an escape speed
and no escape speed simultaneously at the same place. But, contrary to
cosmology, nothing can have and not have an escape speed simultaneously
at the same place. Furthermore, according to Einstein, no material body
can move with a speed that is equal to or greater than the speed of light
in vacuo, i.e. c = 2.998 × 108m/s, but can certainly move with a speed v
such that 0 < v < c = 2.998× 108m/s. Cosmologists, with an escape speed
vesc = c = 0 do not permit any material object to have a speed greater
than zero at their event horizon, contrary to Einstein's fundamental tenet,
because, they say, no material body can move at or greater than the speed
of light. In other circles this is called `an each-way bet'.

Since Hilbert's solution is utilised by cosmologists, 0 ≤ r. Therefore, if
0 < r < 2M the escape speed from Eq.(9.38) becomes negative and hence
is no longer an escape speed. Beneath the event horizon, say cosmologists,
the `escape velocity' is greater than that of light. Cosmologists have an ad-
ditional and equally bizarre interpretation for this: time-convergence �inex-
orably into the classical singularity at r = 0� [51], into the black hole's `phys-
ical singularity', because Hilbert's metric changes its signature and becomes
time-dependent (i.e. non-static). Eqs.(9.30) maintain a �xed signature,
(+,−,−,−). It is not possible for the signature to change to (−,+,−,−), for
instance. Cosmologists admit that when 0 < r < 2m in Hilbert's Eq.(9.24),
the roles of t and r are interchanged. This produces a non-static solution to
a static problem, i.e. a solution that is time-dependent for a problem that
is time-independent. To further illustrate this violation, when 2m < r the
signature of Eq.(9.24) is (+,−,−,−); but if 0 < r < 2m in Eq.(9.24), then

goo =

(
1− 2M

r

)
is negative, and g11 = −

(
1− 2M

r

)−1
is positive.

(9.43)
So the signature of Eq.(9.24) changes from (+,−,−,−) to (−,+,−,−).

Thus the roles of t and r are exchanged. According to Misner, Thorne and
Wheeler, who use the spacetime signature (−,+,+,+) instead of (+,−,−,−),

�The most obvious pathology at r = 2M is the reversal there
of the roles of t and r as timelike and spacelike coordinates. In
the region r > 2M , the t direction, ∂/∂t, is timelike (gtt < 0)
and the r direction, ∂/∂r, is spacelike (grr > 0); but in the re-
gion r < 2M , ∂/∂t, is spacelike (gtt > 0) and ∂/∂r, is timelike
(grr < 0).

�What does it mean for r to `change in character from a space-
like coordinate to a timelike one'? The explorer in his jet-powered
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spaceship prior to arrival at r = 2M always has the option to turn
on his jets and change his motion from decreasing r (infall) to
increasing r (escape). Quite the contrary in the situation when
he has once allowed himself to fall inside r = 2M . Then the fur-
ther decrease of r represents the passage of time. No command
that the traveler can give to his jet engine will turn back time.
That unseen power of the world which drags everyone forward
willy-nilly from age twenty to forty and from forty to eighty also
drags the rocket in from time coordinate r = 2M to the later time
coordinate r = 0. No human act of will, no engine, no rocket,
no force (see exercise 31.3) can make time stand still. As surely
as cells die, as surely as the traveler's watch ticks away `the un-
forgiving minutes', with equal certainty, and with never one halt
along the way, r drops from 2M to 0.

�At r = 2M , where r and t exchange roles as space and time
coordinates, gtt vanishes while grr is in�nite.� Misner, Thorne
and Wheeler [61]

Note that at r = 2M , grr = (1− 2M/r)−1 is not in fact in�nite. At
r = 2M , grr = 1/0, which is unde�ned. Similarly, if r = 0, 2M/r = 2M/0
which is unde�ned. Contrary to the cosmologists, division by zero does not
produce `in�nity', it is actually unde�ned, and in�nity is not even a number6.

�There is no alternative to the matter collapsing to an in�-
nite density at a singularity once a point of no-return is passed.
The reason is that once the event horizon is passed, all time-
like trajectories must necessarily get to the singularity: `all the
King's horses and all the King's men' cannot prevent it.� Chan-
drasekhar [45]

�This is worth stressing; not only can you not escape back to
region I, you cannot even stop yourself from moving in the direc-
tion of decreasing r, since this is simply the timelike direction.
(This could have been seen in our original coordinate system; for
r < 2GM , t becomes spacelike and r becomes timelike.) Thus
you can no more stop moving toward the singularity than you
can stop getting older.� Carroll [60]

�For r < 2GM/c2, however, the component goo becomes nega-
tive, and grr, positive, so that in this domain, the role of time-like

6Cantor's theory of `trans�nite numbers' has no relevance here either.
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coordinate is played by r, whereas that of space-like coordinate by
t. Thus in this domain, the gravitational �eld depends signif-
icantly on time (r) and does not depend on the coordinate t.�
Vladmimirov, Mitskiévich and Horský [95]

To amplify this, set t = r∗ and r = t∗. Then for 0 < r < 2M , Eq.(9.24)
becomes,

ds2 =

(
1− 2M

t∗

)
dr∗2 −

(
1− 2M

t∗

)−1
dt∗2 − t2

(
dθ2 + sin2 θ dϕ2

)
0 ≤ t∗ < 2M

(9.44)
It now becomes quite clear that this is a time-dependent metric since

all the components of the metric tensor are functions of the timelike t∗.
Therefore this metric bears no relationship to the original time-independent
problem to be solved. In other words, this metric is a non-static solution to
a static problem (see also Brillouin [96]).

In�nite densities

The `in�nite density' of the black hole's `physical singularity' produced by
irresistible `gravitational collapse' violates Special Relativity. The singularity
of big bang cosmology is also in�nitely dense. Yet according to Special
Relativity, in�nite densities are forbidden because their existence implies that
a material object can acquire the speed of light c in vacuo i.e. 2.998×108m/s
(or equivalently, the existence of in�nite kinetic energy), thereby violating
the very basis of Special Relativity.

�Eventually when a star has shrunk to a certain critical radius,
the gravitational �eld at the surface becomes so strong that the
light cones are bent inward so much that the light can no longer
escape. According to the theory of relativity, nothing can travel
faster than light. Thus, if light cannot escape, neither can any-
thing else. Everything is dragged back by the gravitational �eld.
So one has a set of events, a region of space-time from which it
is not possible to escape to reach a distant observer. This region
is what we now call a black hole. Its boundary is called the event
horizon. It coincides with the paths of the light rays that just fail
to escape from the black hole.� Hawking [97]

Since General Relativity cannot violate Special Relativity, General Rel-
ativity must therefore also forbid in�nite densities. Therefore, point-mass
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singularities are forbidden by the Theory of Relativity. Let a cuboid rest-
mass mo have sides of length Lo. Let mo have a relative speed v < c in
the direction of one of three mutually orthogonal Cartesian axes attached
to an observer of rest-mass Mo. According to Einstein [98] the observer Mo

reckons the moving mass m is,

m =
mo√
1− v2

c2

(9.45)

and the volume is,

V = L2
o

√
1− v2

c2
. (9.46)

The density of m according to Mo is therefore,

D =
m

V
=

mo

L2
o

(
1− v2

c2

) . (9.47)

Hence, v → c⇒ D →∞. Since, according to Special Relativity, no material
object can acquire the speed c, in�nite densities are forbidden by Special Rel-
ativity, and so point-mass singularities and circumference-mass singularities
are forbidden. Since General Relativity cannot repudiate Special Relativ-
ity, it too must thereby forbid in�nite densities and hence forbid point-mass
singularities and circumference-mass singularities. It does not matter how
it is alleged that a `physical singularity' is generated by General Relativity
because the in�nitely dense physical singularity cannot be reconciled with
Special Relativity. Point-charges and circumference-charges too are therefore
forbidden by the Theory of Relativity since there can be no charge without
mass.

Curvature invariants

The squared di�erential element of arc of a curve in a surface is given by
the First Fundamental Quadratic Form for a surface,

ds2 = E du2 + 2F du dv +Gdv2 (9.48)

wherein u and v are curvilinear coordinates. If either u or v is constant
the resulting line-elements are called parametric curves in the surface. The
di�erential element of surface area is given by,

dA =
√
EG− F 2 du dv (9.49)
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An expression which depends only on E,F,G, and their �rst and second
derivatives, is called a bending invariant. It is an intrinsic (or absolute)
property of a surface. The Gaussian (or Total) curvature of a surface is an
important intrinsic property of a surface.

The `Theorema Egregium' of Gauss: The Gaussian curvature K at
any point P of a surface depends only on the values at P of the coe�cients in
the First Fundamental Quadratic Form and their �rst and second derivatives.

Hence, the Gaussian curvature of a surface is a bending invariant.
The Euclidean plane has a constant Gaussian curvature of K = 0. A

surface of positive constant Gaussian curvature is called a spherical surface.
A surface of constant negative curvature is called a pseudo-spherical surface.

Being an intrinsic geometric property of a surface, Gaussian curvature is
independent of any embedding space.

�And in any case, if the metric form of a surface is known
for a certain system of intrinsic coordinates, then all the results
concerning the intrinsic geometry of this surface can be obtained
without appealing to the embedding space.� E�mov [99]

All black hole spacetime metrics contain a surface from which various
invariants and geometric identities can be deduced by purely mathematical
means. Such identities are independent of the area of the surface and of
the length of any curve in the surface. The Kerr-Newman form subsumes
the Kerr, Reissner-Nordström, and Schwarzschild forms. The Gaussian cur-
vature of the surface in the Kerr-Newman metric therefore subsumes the
Gaussian curvatures of the surfaces in the subordinate forms to which it can
be reduced. Gaussian curvature reveals the type of surface and uniquely
identi�es the terms that appear in its general form. Gaussian curvature re-
veals that no purported black hole metric can in fact be extended to produce
the black hole it is said to contain.

The Gaussian curvature K of a surface can be calculated by means of
the following relation,

K =
R1212

g
(9.50)

where R1212 is a component of the Riemann-Christo�el curvature tensor of
the �rst kind and g is the determinant of the metric tensor. Note that neither
the area of the surface nor the length of any curve in the surface is involved.
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If r = const. 6= 0 and t = const., Eq.(9.35) reduces to the surface [43],

ds2 = ρ2dθ2 +

(
R2
c + a2

)
− a2∆ sin2 θ

ρ2
sin2 θ dϕ2 (9.51)

where

ρ2 = R2
c + a2 cos2 θ, ∆ = R2

c − αRc + a2 + q2, Rc = (|r − ro|n + ζn)
1
n ,

r, ro ∈ <, n ∈ <+

ζ =
α+

√
α2 − 4q2 − 4a2 cos2 θ

2
, a2 + q2 <

α2

4
(9.52)

The Gaussian curvature K of this surface is given by [41],

K =
1

2hf

∂β

∂θ

∂h

∂θ
− a2 cos2 θ

h2
− 1

2f

∂2β

∂θ2
+

1

h
+
a2 sin θ cos θ

2hf

∂β

∂θ
+

h

4f2

(
∂β

∂θ

)2

+
2a2 (f −∆h) cos2 θ

h2f
(9.53)

where

f =
(
R2
c + a2

)2 − a2∆ sin2 θ, h = R2
c + a2 cos2 θ, β =

f

h

∆ = R2
c − αRc + a2 + q2, Rc = (|r − ro|n + ζn)

1
n , r, ro ∈ <, n ∈ <+

ζ =
α+

√
α2 − 4q2 − 4a2 cos2 θ

2
, a2 + q2 <

α2

4
(9.54)

It is clearly evident from this that the Gaussian curvature is not a positive
constant and so the surface is not a spherical surface. Thus, the Kerr-
Newman metric is not spherically symmetric. Furthermore, by virtue of this
result, the quantity Rc is neither the radius nor even a distance because it is
de�ned by the intrinsic geometry of the surface. Since the intrinsic geometry
of a surface is independent of any embedding space the quantity Rc retains
its identity when the surface is embedded in Kerr-Newman spacetime. If
ro = ζ and n = 1, then Rc = r. Hence, r is not the radius of anything nor
even a distance in Kerr-Newman spacetime. This result is independent of
the area of the surface or the length of any curve in the surface.
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The Gaussian curvature for the Kerr-Newman surface is dependent on θ,
because it is axially-symmetric. When θ = 0 and θ = π, it becomes [43],

K =
R2
c

(R2
c + a2)2

−
a2
(
αRc − q2

)
(R2

c + a2)3
(9.55)

Since Rc (ro) = ζ ∀ro ∀n, for θ = 0 and θ = π the Guassian curvature
becomes [41]

Kro =
ζ2

(ζ2 + a2)2
−
a2
(
αζ − q2

)
(ζ2 + a2)3

(9.56)

Similarly, when θ = π/2, the Gaussian curvature becomes [41],

K =
1

R2
c

+
a2
(
R2
c + a2

) (
αRc − q2

)
R4
c [R2

c (R2
c + a2) + a2 (αRc − q2)]

(9.57)

Since Rc (ro) = ζ ∀ro ∀n, for θ = π/2 the Guassian curvature becomes [41],

Kro =
1

ζ2
+

a2
(
ζ2 + a2

) (
αζ − q2

)
ζ4 [ζ2 (ζ2 + a2) + a2 (αζ − q2)]

(9.58)

If a = 0 then the Gaussian curvature is independent of θ and reduces to
the spherically-symmeytric Reissner-Nordström form [41],

K =
1

R2
c

(9.59)

and hence, when r = ro [41],

Kro =
1

ζ2
=

1[
α
2 +

√
α2

4 − q2
]2 (9.60)

where ζ is reduced accordingly. This is an invariant for the Reissner-Nordström
form.

If both a = 0 and q = 0 then the Gaussian curvature reduces to the
spherically-symmetric Schwarzschild form [43],

K =
1

R2
c

(9.61)

so that when r = ro,

Kro =
1

α2
(9.62)
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which is an invariant for the Schwarzschild form.
The minimum value for ∆ is,

∆min = a2 sin2 θ (9.63)

which occurs when r = ro, irrespective of the values of ro and n. ∆min = 0
only when θ = 0 and when θ = π, in which cases the metric is unde�ned.

Similarly, the minimum value of R2
c is,

R2
c = ζ2 + a2 cos2 θ (9.64)

which occurs when r = ro, irrespective of the values of ro and n. Since ζ2 is
always greater than zero, R2

c can never be less than or equal to zero.
Note that if a = 0 and q = 0, the Gaussian curvature for the surface

embedded in Kerr-Newman spacetime reduces to that for the surface in the
Schwarzschild metric ground-form [43],

K =
1

R2
c

(9.65)

Because Rc (ro) = α ∀ro ∀n,

Kro =
1

R2
c (ro)

=
1

α2
(9.66)

If, further, ro = α and n = 1, then Rc = r and,

K =
1

r2
(9.67)

Hence, r in Hilbert's solution is not the radius of anything, or even a distance
therein. Once again, this result is independent of the area of the surface
or the length of any curve in the surface. Indeed, the length of a curve
in the surface and the area of the surface are determined by the metric
and r. The length L of a closed geodesic (a closed parametric curve where
r = const. 6= 0, θ = π/2) in the surface embedded in Hilbert's metric space
is given by,

L =

∫ 2π

0
r dϕ = 2πr (9.68)

Applying the relation for the area A of a surface, the area of the surface
embedded in Hilbert's spacetime is,

A = r2
∫ π

0
sin θ dθ

∫ 2π

0
dϕ = 4πr2 (9.69)
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Since this is a surface, r is not the radius of anything, nor is it even a distance
in the surface. The geometric identity of r is not lost when the surface is
embedded in any other space because the Gaussian curvature of a surface
is intrinsic. It is now clear why the cosmologist notions of `areal radius'
(r =

√
A/4π) and `reduced circumference' (r = L/2π) are vacuous. Neither

the length of any curve in a surface nor the area of the surface or part thereof
determines the geometric identity of r in Hilbert's metric.

The impossibility of a black hole is rea�rmed by Riemannian curvature.
Riemannian curvature is a generalisation of Gaussian curvature to dimen-
sions greater than two. The Riemannian curvature KS at any point in a
metric space of dimensions n > 2 depends upon the Riemann-Christo�el
curvature tensor of the �rst kind, Rijkl, the components of the metric ten-
sor gik, and two arbitrary n-dimensional linearly independent contravariant
direction vectors U i and V i, as follows:

KS =
RijklU

iV jUkV l

GpqrsUpV qU rV s
, Gpqrs = gprgqs − gpsgqr (9.70)

De�nition 1: If the Riemannian curvature at any point is independent of
direction vectors at that point then the point is called an isotropic point.

The Riemannian curvature KS for Schwarzschild spacetime is given by
[41],

KS =
A

B

A = 2α (Rc − α)W0101 − αRc (Rc − α)2W0202 − αRc (Rc − α)2W0303 sin
2 θ

+αR3
cW1212 + αR3

cW1313 sin
2 θ − 2αR4

c (Rc − α)W2323 sin
2 θ

B = −2R3
c (Rc − α)W0101 − 2R4

c (Rc − α)2W0202 − 2R4
c (Rc − α)2W0303 sin

2 θ
+2R6

cW1212 + 2R6
cW1313 sin

2 θ + 2R6
c (Rc − α)W2323 sin

2 θ

Wijki =

∣∣∣∣ U i U j

V i V j

∣∣∣∣ ∣∣∣∣ Uk U l

V k V l

∣∣∣∣ , Rc = (|r − ro|n + αn)
1
n ,

r, ro ∈ <, n ∈ <+,

r =
√
x2o + y2o + z2o +

√
(x− xo)2 + (y − yo)2 + (z − zo)2

(9.71)

Since Rc (ro) = α irrespective of the values of ro and n, at r = ro the
Riemannian curvature is,

KS (ro) =
1

2α2
=
Kro

2
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which is entirely independent of the direction vectors U i and V j , and of θ.
Thus, r = ro produces an isotropic point (the only isotropic point), which
rea�rms that Schwarzschild spacetime cannot be extended to produce a
black hole. Note that KS (ro) = Kro/2, i.e. at r = ro the Riemannian curva-
ture invariant of Schwarzschild 4-dimensional spacetime is half the Gaussian
curvature invariant of the embedded spherical surface.

Similarly, the Riemannian curvature of Schwarzschild spacetime in isotropic
coordinates is [43],

KS = A+B
C+D

A = 16α(4Rc−α)2

Rc(4Rc+α)
4 W0101 − 8αRc(4Rc−α)2

(4Rc+α)
4 W0202 − 8αRc(4Rc−α)2 sin2 θ

(4Rc+α)
4 W0303

B = α(8Rc−α)(4Rc+α)
2

2·43R4
c

W1212 + α(4Rc+α)
2 sin2 θ

2·42R3
c

W1313 − α(4Rc+α)
2 sin2 θ

42Rc
W2323

C = −α(4Rc−α)2(4Rc+α)
2

2·44R4
c

W0101 − α(4Rc−α)2(4Rc+α)
2

2·44R2
c

W0202

−α(4Rc−α)2(4Rc+α)
2 sin2 θ

2·44R2
c

W0303

D = (4Rc+α)
8

48R6
c

W1212 + (4Rc+α)
8 sin2 θ

48R6
c

W1313 + (4Rc+α)
8 sin2 θ

48R4
c

W2323

Wijkl =

∣∣∣∣ U i U j

V i V j

∣∣∣∣ ∣∣∣∣ Uk U l

V k V l

∣∣∣∣ , Rc =
[
|r − ro|n +

(
α
4

)n] 1
n ,

r, ro ∈ <, n ∈ <+,

r =
√
x2o + y2o + z2o +

√
(x− xo)2 + (y − yo)2 + (z − zo)2

(9.72)

This isotropic Riemannian curvature depends upon θ.
When Rc (ro) = α/4 ∀ro ∀n, so the Riemannian curvature becomes,

KS (ro) =
8
(
W1212 +W1313 sin2 θ

)
− α2W2323 sin2 θ

16α2
(
W1212 +W13123 sin2 θ

)
+ α2W2323 sin2 θ

(9.73)

Note that this di�ers from that for the ordinary Schwarzschild equivalence
class only by the terms in W2323 (i.e. if not for the W2323 terms the Rie-
mannian curvatureKS (ro) would be 1/2α2 as for the ordinary Schwarzschild
form). For θ = 0 and θ = π it reduces to the Riemannian curvature invariant
for the Schwarzschild form:

KS (ro) =
1

2α2
(9.74)

Hence, for θ = 0 and θ = π, ro is an isotropic point (the only isotropic
point). The W2323 terms appear due to the conformal mapping of ordinary
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Schwarzschild equivalence class into isotropic Schwarzschild equivalence class
[43].

When θ = π/2 and r = ro the Riemannian curvature is,

KS (ro) =
8 (W1212 +W1313)− α2W2323

16α2 (W1212 +W13123) + α2W2323
(9.75)

The Riemannian curvature for the Reissner-Nordström equivalence class
is [41],

KS = A+B+C
D+E+F

A = 2
(
R2
c − αRc + q2

) (
αRc − 3q2

)
W0101 −

(
R2
c − αRc + q2

)2 (
αRc − 2q2

)
W0202

B = −
(
R2
c − αRc + q2

)2 (
αRc − 2q2

)
sin2 θW0303 +R4

c

(
αRc − 2q2

)
W1212

C = R4
c

(
αRc − 2q2

)
sin2 θW1313 − 2R4

c

(
αRc − 2q2

) (
R2
c − αRc + q2

)
sin2 θW2323

D = −2R4
c

(
R2
c − αRc + q2

)
W0101 − 2R4

c

(
R2
c − αRc + q2

)2
W0202

E = −2R4
c

(
R2
c − αRc + q2

)2
sin2 θW0303 + 2R8

cW1212

F = 2R8
c sin2 θW1313 + 2R8

c

(
R2
c − αRc + q2

)
sin2 θW2323

Wijkl =

∣∣∣∣ U i U j

V i V j

∣∣∣∣ ∣∣∣∣ Uk U l

V k V l

∣∣∣∣ , Rc = (|r − ro|n + ζn)
1
n , ζ =

α+
√
α2 − 4q2

2
,

q2 <
α2

4
, r, ro ∈ <, n ∈ <+,

r =
√
x2o + y2o + z2o +

√
(x− xo)2 + (y − yo)2 + (z − zo)2

(9.76)

At r = ro this becomes,

KS (ro) =
αζ − 2q2

2ζ4
=

4
(
α2 + α

√
α2 − 4q2 − 4q2

)
(
α+

√
α2 − 4q2

)4 (9.77)

which is independent of the direction vectors U i and V j . Therefore ro is an
isotropic point (the only isotropic point). This rea�rms that the Reissner-
Nordström equivalence class cannot be extended to produce a black hole.
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The Riemannian curvature for Reissner-Nordström equivalence class in
isotropic coordinates is,

KS =
R0101W0101 +R0202

(
W0202 +W0303 sin

2 θ
)
+R1212

(
W1212 +W1313 sin

2 θ
)
+R2323W2323

G0101W0101 +G0202

(
W0202 +W0303 sin

2 θ
)
+G1212

(
W1212 +W1313 sin

2 θ
)
+G2323W2323

R0101 =
8
(
16R2

c − α2 + 4q2
) (

32q2 − 32αRc − 8α2
)
+ 44RcY

(4Rc + α+ 2q)3 (4Rc − α+ 2q)3
+

32
(
16R2

c − α2 + 4q2
)
Y

(4Rc + α+ 2q)3 (4Rc − α+ 2q)4
+

+
32
(
16R2

c − α2 + 4q2
)
Y

(4Rc + α+ 2q)4 (4Rc − α+ 2q)3
+

16
(
16R2

c − α2 + 4q2
) (

4q2 − 4αRc − α2
)
Y

Rc (4Rc + α+ 2q)4 (4Rc − α+ 2q)4
−

−
64Y 2

(4Rc + α+ 2q)4 (4Rc − α+ 2q)4

Y =
{
4Rc

[
(4Rc + α)2 − 4q2

]
− (4Rc + α)

(
16R2

c − α2 + 4q2
)}

R0202 = −
8Rc

(
16R2

c − α2 + 4q2
)2
Y

(4Rc + α+ 2q)4 (4Rc − α+ 2q)4
R0303 = R0202 sin

2 θ

R1212 =
Y

32R3
c

R1313 = R1212 sin
2 θ R2323 = −

(
Y + 16q2Rc

)
42Rc

sin2 θ

G0101 = −
(
16R2

c − α2 + 4q2
)2

44R4
c

G0202 = −
(
16R2

c − α2 + 4q2
)2

44R2
c

G0303 = G0202 sin
2 θ

G1212 =
(4Rc + α+ 2q)4 (4Rc − α+ 2q)4

48R6
c

G1313 = G1212 sin
2 θ

G2323 =
(4Rc + α+ 2q)4 (4Rc − α+ 2q)4 sin2 θ

48R4
c

Wijkl =

∣∣∣∣ U i Uj

V i V j

∣∣∣∣ ∣∣∣∣ Uk U l

V k V l

∣∣∣∣ , Rc = (|r − ro|n + ζn)
1
n , ζ =

√
α2 − 4q2

4
,

q2 <
α2

4
, r, ro ∈ <, n ∈ <+, r =

√
x2o + y2o + z2o +

√
(x− xo)2 + (y − yo)2 + (z − zo)2

(9.78)

which depends upon θ.
Since Rc (ro) = ζ ∀ro ∀n it then reduces to,

KS (ro) =

4
(
α2−4q2+α

√
α2−4q2

)
(α2−4q2)

(
W1212 +W1313 sin

2 θ
)
−
(√

α2−4q2+α
)2

4
W2323 sin

2 θ[(√
α2−4q2+α

)2
−4q2

]4
42(α2−4q2)3

(
W1212 +W1313 sin

2 θ
)
+

[(√
α2−4q2+α

)2
−4q2

]4
44(α2−4q2)2

W2323 sin
2 θ

(9.79)

If q = 0 this reduces to the Riemannian curvature invariant for the
isotropic Schwarzschild equivalence class.
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When θ = 0 and θ = π, the Riemannian curvature is,

KS =
R0101W0101 +R0202W0202 +R1212W1212

G0101W0101 +G0202W0202 +G1212W1212
(9.80)

and hence if also r = ro this reduces further to the Riemannian curvature
invariant,

KS =
R1212

G1212
=

4
(
α2 − 4q2

)2(
α2 − 4q2 + α

√
α2 − 4q2

)3 =
4
(
α2 + α

√
α2 − 4q2 − 4q2

)
(
α+

√
α2 − 4q2

)4
(9.81)

which is the same as the isotropic Riemannian curvature invariant for the
ordinary Reissner-Nordström equivalence class; and ro is an isotropic point
(the only isotropic point). This rea�rms that Reissner-Nordström spacetime
cannot be extended to produce a black hole.

Then if q = 0 Eq.(9.81) reduces �nally to the Riemannian curvature
invariant for the isotropic Schwarzschild equivalence class,

KS =
1

2α2
(9.82)

When θ = π/2, the Riemannian curvature for the Reissner-Nordström
equivalence class accordingly becomes,

KS =
R0101W0101 +R0202 (W0202 +W0303) +R1212 (W1212 +W1313) +R2323W2323

G0101W0101 +G0202 (W0202 +W0303) +G1212 (W1212 +W1313) +G2323W2323

(9.83)

The Kretschmann scalar f is also called the Riemann tensor scalar cur-
vature invariant. It is de�ned by f = RµνρσR

µνρσ. Cosmologists incorrectly
assert that their `physical singularity' must occur where the Kretschmann
scalar is `in�nite'. For the Schwarzschild equivalence class it is actually given
by [43],

f =
12α2

R6
c

=
12α2

(|r − ro|n + αn)
6
n

Rc = (|r − ro|n + αn)
1
n

(9.84)

Hence, at r = ro,

f (ro) =
12

α4
(9.85)
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In the case of the Reissner-Nordström equivalence class it is given by [43],

f =
8
[
6
(
αRc
2 − q

2
)2

+ q4
]

R8
c

Rc = (|r − ro|n + ζn)
1
n , ζ =

α+
√
α2 − 4q2

2

(9.86)

Hence, at r = ro,

f (ro) =

8

[
6
(
αζ
2 − q

2
)2

+ q4
]

ζ8
=

8

6

α(α+√α2−4q2

2

)
2 − q2

2

+ q4

(
α+
√
α2−4q2
2

)8

(9.87)

For the Kerr-Newman equivalence class the Kretschmann scalar is given
by [43],

f =
8

(R2
c + a2 cos2 θ)6

 3α2

2

(
R6
c − 15a2R4

c cos2 θ + 15a4R2
c cos4 θ − a6 cos6 θ

)
−

−6αq2Rc
(
R4
c − 10a2R2

c cos2 θ + 5a4 cos4 θ
)

+
+q4

(
6R4

c − 34a2R2
c cos2 θ + 6a4 cos4 θ

)


Rc = (|r − ro|n + ζn)
1
n , r, ro ∈ <, n ∈ <+

ζ =
α+

√
α2 − 4 (q2 + a2 cos2 θ)

2
, a2 + q2 <

α2

4
,

r =
√
x2o + y2o + z2o +

√
(x− xo)2 + (y − yo)2 + (z − zo)2

(9.88)
Note that here f depends upon θ.

Since Rc (ro) = ζ ∀ro ∀n, when r = ro the Kretschmann scalar for the
Kerr-Newman equivalence class becomes,

f (ro) =
8

(ζ2 + a2 cos2 θ)6


3α2

2

(
ζ6 − 15a2ζ4 cos2 θ + 15a4ζ2 cos4 θ − a6 cos6 θ

)
−

−6αq2ζ
(
ζ4 − 10a2ζ2 cos2 θ + 5a4 cos4 θ

)
+

+q4
(
6ζ4 − 34a2ζ2 cos2 θ + 6a4 cos4 θ

)


(9.89)
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The Kretschmann scalar is �nite when r = ro, irrespective of the values of
ro and n. When θ = 0 and when θ = π,

f (ro) =
8

(ζ2 + a2)6


3α2

2

(
ζ6 − 15a2ζ4 + 15a4ζ2 − a6

)
−

−6αq2ζ
(
ζ4 − 10a2ζ2 + 5a4

)
+

+q4
(
6ζ4 − 34a2ζ2 + 6a4

)

 (9.90)

When θ = π
2 , f (ro) reduces to,

f (ro) =
8

ζ8

[
3α2ζ2

2
− 6αq2ζ + 6q4

]
(9.91)

Note that this does not contain the `angular momentum' term a and that the
result is precisely that for the Reissner-Nordström equivalence class (where
a = 0).

When q = 0 the Kretschmann scalar for the Kerr-Newman equivalence
class reduces to that for the Kerr equivalence class,

f (ro) =
12α2

(ζ2 + a2 cos2 θ)6
(
ζ6 − 15a2ζ4 cos2 θ + 15a4ζ2 cos4 θ − a6 cos6 θ

)
(9.92)

This too depends upon the value of θ. When θ = 0 and when θ = π, f (ro)
becomes,

f (ro) =
12α2

(ζ2 + a2)6
(
ζ6 − 15a2ζ4 + 15a4ζ2 − a6

)
(9.93)

When θ = π
2 , f (ro) reduces to,

f (ro) =
12

α4
(9.94)

which is precisely the Kretschmann scalar for the Schwarzschild form, where
both q = 0 and a = 0 in the Kretschmann scalar for Kerr-Newman spacetime.

In the case of the Schwarzschild equivalence class in isotropic coordinates,
the Kretschmann scalar is given by [43],

f = 3 · 413 α2R6
c

(4Rc + α)12

Rc =
[
|r − ro|n +

(α
4

)n] 1
n
, r, ro ∈ <, n ∈ <+

(9.95)
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Since Rc (ro) = α
4 ∀ro ∀n,

f (ro) =
12

α4
(9.96)

which is the very same �nite value as that for the ordinary Schwarzschild
equivalence class.

The Kretschmann scalar for the isotropic Reissner-Nordström equiva-
lence class is [43],

f =
413R6

c

{
[α(4Rc+α)

2−4q2(8Rc+α)]
2
+[α(4Rc+α)

2−4q2(12Rc+α)]
2
+[α(4Rc+α)

2−4q2(4Rc+α)]
2
}

(4Rc+α+2q)8(4Rc+α−2q)8

Rc = (|r − ro|n + ζn)
1
n , ζ =

√
α2−4q2

4 , 4q2 < α2 r, ro ∈ <, n ∈ <+

(9.97)

Since Rc (ro) = ζ ∀ro ∀n, the Kretschmann scalar reduces to the invariant,

f =

413ζ6
{[
α (4ζ + α)2 − 4q2 (8ζ + α)

]2
+
[
α (4ζ + α)2 − 4q2 (12ζ + α)

]2
+
[
α (4ζ + α)2 − 4q2 (4ζ + α)

]2}
(4ζ + α + 2q)8 (4ζ + α− 2q)8

(9.98)

The Kretschmann scalar is always �nite. For it to be unde�ned by a
division by zero, as contended by cosmologists, it requires that the positive
real power of the absolute value of a real number must take on values less
than zero, which is a violation of the rules of pure mathematics, as the case
ro = 0, n = 2 ampli�es.

Geodesic incompleteness

A geodesic is a line in some space. In Euclidean space the geodesics are
simply straight lines. This is because the Riemannian curvature of Euclidean
space is zero. If the Riemannian curvature is not zero throughout the entire
space, the space is not Euclidean and the geodesics are curved lines rather
than straight lines. If a geodesic terminates at some point in the space it is
said to be incomplete, and the manifold or space in which it lies is also said
to be geodesically incomplete. If no geodesic in some manifold is incomplete
then the manifold is said to be geodesically complete. More speci�cally,

�A semi-Riemannian manifold M for which every maximal
geodesic is de�ned on the entire real line is said to be geodesically
complete - or merely complete. Note that if even a single point p
is removed from a complete manifold M then M − p is no longer
complete, since geodesics that formerly went through p are now
obliged to stop.� O'Neill [89]
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Consider now Hilbert's solution. In 1931, Hagihara [100] proved that
all geodesics therein that do not run into the boundary at r = 2Gm/c2

are complete. Hence this is also the case at r = ro for all the solutions
generated by the Schwarzschild in�nite equivalence class. This is also the
case at r = ro for the isotropic forms. The geodesics terminate at the
origin; the point from which the radius emanates; Rp = 0. In other words,
Hagihara e�ectively proved that all geodesics that do not run into the origin
Rp = 0 are complete. This once again attests that Droste's solution cannot
be `extended' to produce a black hole.

The acceleration invariant

Doughty [101] obtained the following expression for the acceleration β
of a point along a radial geodesic for the static spherically symmetric line-
elements,

β =

√
−g11

(
−g11

) ∣∣∣∂goo∂r

∣∣∣
2goo

(9.99)

Since the Hilbert and Nordström metrics utilised by cosmologists are par-
ticular cases of their respective in�nite equivalence classes, the foregoing
expression becomes, in general,

β =

√
−g11

(
−g11

) ∣∣∣∂goo∂Rc

∣∣∣
2goo

Rc = (|r − ro|n + ζn)
1
n , r, ro ∈ <, n ∈ <+

ζ =
α+

√
α2 − 4q2

2
, q2 <

α2

4

(9.100)

The acceleration is therefore given by,

β =
αRc − 2q2

2R2
c

√
R2
c − αRc + q2

(9.101)

In all cases, whether or not q = 0, r → ro ⇒ β → ∞, which constitutes
an invariant condition, and therefore rea�rms that the Schwarzschild and
Reissner-Nordström forms cannot be extended to produce black holes.

The expression for acceleration appears at �rst glance to be a �rst-order
intrinsic di�erential invariant since it is super�cially composed of only the
components of the metric tensor and their �rst derivatives. This is however,
not so, because the expression applies only to the radial direction, i.e. to
the motion of a point along a radial geodesic. In other words, it involves
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a direction vector. Consequently, although the acceleration expression is a
�rst-order di�erential invariant, it is not intrinsic. First-order di�erential
invariants exist, but �rst-order intrinsic di�erential invariants do not exist
[110, 111]. That the acceleration expression involves a direction vector is
ampli�ed by the Killing vector. LetXa be a �rst-order tensor (i.e. a covariant
vector). Then for it to be a Killing vector it must satisfy Killing's equations,

Xa;b +Xb;a = 0 (9.102)

where Xa;b denotes the covariant derivative of Xa. The condition for hyper-
surface orthogonality is [69,71],

X[aXb;c] = 0 (9.103)

The two foregoing conditions determine a unique time-like Killing vector
that �xes the direction of time [69]. By means of this Killing vector the
four-velocity vi is,

va =
Xa

√
XaXa

(9.104)

The absolute derivative of the four-velocity along its own direction gives the
four-acceleration βa,

βa =
Dva

du
(9.105)

The norm of the four-acceleration is,

β =
√
−βaβa (9.106)

Applying this to the Reissner-Nordström equivalence class yields,

β =
αRc − 2q2

2R2
c

√
R2
c − αRc + q2

Rc = (|r − ro|n + ζn)
1
n , r, ro ∈ <, n ∈ <+ ζ =

α+
√
α2 − 4q2

2
,

q2 < α2

4
(9.107)

which is Eq.(9.101). Consequently, the acceleration expression is not in-
trinsic; it is a �rst-order di�erential invariant which is constructed with the
metric tensor and an associated direction vector, as the motion of a point
along a radial geodesic implies.
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When q = 0 the acceleration expression reduces to,

β =
α

2R2
c

√
1− α

Rc

Rc = (|r − ro|n + αn)
1
n , r, ro ∈ <, n ∈ <+

(9.108)

which can of course be calculated directly from the equations for the Schwarz-
schild equivalence class.

In the case of the isotropic Reissner-Nordström equivalence class the
acceleration is given by [43],

β =
8R2

c[64Rc(4Rc+α+2q)(4Rc+α−2q)−16(16R2
c−α2+4q2)(4Rc+α)]

(4Rc+α+2q)2(4Rc+α−2q)2(16R2
c−α2+4q2)

Rc = (|r − ro|n + ζn)
1
n , ζ =

√
α2−4q2
4 , 4q2 < α2 r, ro ∈ <, n ∈ <+

(9.109)
If q = 0 this reduces to the acceleration for the isotropic Schwarzschild
equivalence class [43].

In all cases r → ro ⇒ β → ∞, which constitutes an invariant condi-
tion, and therefore rea�rms once again that the Schwarzschild and Reissner-
Nordström forms cannot be extended to produce black holes.

The Newtonian `black hole'

Cosmologists routinely assert, incorrectly, that the theoretical Michell-
Laplace dark body, extracted from Newton's theory of gravity, is a black
hole.

�Laplace essentially predicted the black hole . . . � Hawking and
Ellis [91]

�On this assumption a Cambridge don, John Michell, wrote
a paper in 1683 in the Philosophical Transactions of the Royal
Society of London. In it, he pointed out that a star that was
su�ciently massive and compact would have such a strong grav-
itational �eld that light could not escape. Any light emitted from
the surface of the star would be dragged back by the star's gravi-
tational attraction before it could get very far. Michell suggested
that there might be a large number of stars like this. Although we
would not be able to see them because light from them would not
reach us, we could still feel their gravitational attraction. Such
objects are what we now call black holes, because that is what they
are - black voids in space.� Hawking [97]
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�Eighteenth-century speculators had discussed the character-
istics of stars so dense that light would be prevented from leaving
them by the strength of their gravitational attraction; and accord-
ing to Einstein's General Relativity, such bizarre objects (today's
`black holes') were theoretically possible as end-products of stel-
lar evolution, provided the stars were massive enough for their
inward gravitational attraction to overwhelm the repulsive forces
at work.� Cambridge Illustrated History of Astronomy [102]

�Two important arrivals on the scene: the neutron star (1933)
and the black hole (1695, 1939). No proper account of either can
forego general relativity.� Minser, Thorne, and Wheeler [61]

�That such a contingency can arise was surmised already by
Laplace in 1798. Laplace argued as follows. For a particle to
escape from the surface of a spherical body of mass M and radius
R, it must be projected with a velocity v such that v2/2 > GM/R;
and it cannot escape if v2 < 2GM/R. On the basis of this last
inequality, Laplace concluded that if R < 2GM/c2 = Rs (say)
where c denotes the velocity of light, then light will not be able to
escape from such a body and we will not be able to see it!

�By a curious coincidence, the limit Rs discovered by Laplace
is exactly the same that general relativity gives for the occurrence
of the trapped surface around a spherical mass� Chandrasekhar
[45]

But it is not �a curious coincidence� that General Relativity gives the
sameRs �discovered by Laplace� because the Newtonian expression for escape
speed is deliberately inserted, post hoc, into Hilbert's solution by Einstein
and his followers in order to make a mass appear in equations that contain
no material source by mathematical construction.

The theoretical Michell-Laplace dark body is not a black hole. It pos-
sesses an escape speed at its surface, but the black hole has both an escape
speed and no escape speed simultaneously at its `surface' (i.e. event horizon);
masses and light can leave the Michell-Laplace dark body, but nothing can
leave the black hole; it does not require irresistible gravitational collapse to
form, whereas the black hole does; it has no in�nitely dense `physical singu-
larity', but the black hole does; it has no event horizon, but the black hole
does; it has `in�nite gravity' nowhere, but the black hole has in�nite gravity
at its `physical singularity'; there is always a class of observers that can see
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the Michell-Laplace dark body [116], but there is no class of observers that
can see the black hole; the Michell-Laplace dark body persists in a space
which by consistent theory contains other Michell-Laplace dark bodies and
other matter and they can interact with themselves and other matter, but
the spacetime of all types of black holes pertains to a universe that contains,
supposedly, only one mass (but actually contains no mass by mathematical
construction) and so cannot interact with any other masses (in other words,
the Principle of Superposition holds for the theoretical Michell-Laplace dark
body but does not hold for the black hole); the space of the Michell-Laplace
dark body is 3-dimensional and Euclidean, but that of the black hole is a
4-dimensional non-Euclidean (pseudo-Riemannian) spacetime; the space of
the Michell-Laplace dark body is not asymptotically anything whereas the
spacetime of the black hole is asymptotically �at or asymptotically curved;
the Michell-Laplace dark body does not `curve' a spacetime, but the black
hole does; the gravity of the theoretical Michell-Laplace dark body is a force
whereas the `gravity' of a black hole is not a force. Hence, the theoretical
Michell-Laplace dark body does not possess any of the characteristics of the
black hole, other than a �nite mass, and so it is not a black hole.

9.7 The paradox of black hole mass

Although one violation of the rules of pure mathematics is su�cient to inval-
idate it, the black hole violates other rules of logic. Einstein maintains that
although Rµν = 0 contains no terms for material sources (since Tµν = 0),
a material source is nonetheless present, in order to cause a gravitational
�eld. The material source is rendered present linguistically by the assertion
that Rµν = 0 describes the gravitational �eld outside a body such as a star.
Indeed, concerning Hilbert's solution, Einstein writes,

�ds2 =

(
1− A

r

)
dt2 −

[
dr2

1− A
r

+ r2
(
sin2 θ dϕ2 + dθ2

)]
(9.109a)

A =
κM

4π

M denotes the sun's mass centrally symmetrically placed about the
origin of co-ordinates; the solution (9.109a) is valid only outside
this mass, where all the Tµν vanish.� Einstein [85]
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Note that Einstein has incorrectly asserted, in the standard fashion of
cosmologists, that his mass M in his Eq.(9.109a) is �centrally symmetrically
placed about the origin of co-ordinates�.

�In general relativity, the stress-energy or energy-momentum
tensor Tab acts as the source of the gravitational �eld. It is related
to the Einstein tensor and hence to the curvature of spacetime via
the Einstein equation.� McMahon [42]

�Again, just as the electric �eld, for its part, depends upon the
charges and is instrumental in producing mechanical interaction
between the charges, so we must assume here that the metrical
�eld (or, in mathematical language, the tensor with components
gik) is related to the material �lling the world.� Weyl [103]

On the one hand, Einstein removes all material sources by setting Tµν =
0 and on the other hand immediately reinstates the presence of a mas-
sive source with words, by alluding to a mass �outside� of which equations
Rµν = 0 apply; since his gravitational �eld must be caused by matter. This
contradiction is reiterated by cosmologists.

�Einstein's equation, (6.26), should be exactly valid. There-
fore it is interesting to search for exact solutions. The simplest
and most important one is empty space surrounding a static star
or planet. There, one has Tµν = 0.� 't Hooft [63]

According to Einstein his equation (9.109a) contains a massive source,
at �the origin�, yet also according to Einstein, the universe modelled by
Rµν = 0, from which (109a) is obtained, contains no material sources. The
contradiction is readily ampli�ed. That Rµν = 0 contains no material sources
whatsoever is easily rea�rmed by the �eld equations,

Rµν = λgµν (9.110)

The constant λ is the so-called `cosmological constant'. The solution for
Eq.(9.110) is de Sitter's empty universe, which is empty precisely because
the energy-momentum tensor for material sources is zero, i.e. Tµν = 0. De
Sitter's universe contains no matter:

�This is not a model of relativistic cosmology because it is devoid
of matter.� d'Inverno [71]
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�the de Sitter line element corresponds to a model which must
strictly be taken as completely empty.� Tolman [104]

�the solution for an entirely empty world.� Eddington [54]

�there is no matter at all! � Weinberg [105]

Note that in Rµν = 0 and Rµν = λgµν , Tµν = 0. Thus, according to
Einstein and the cosmologists, material sources are both present and absent
by the very same mathematical constraint, which is a violation of the rules
of logic. Since de Sitter's universe is devoid of material sources by virtue
of Tµν = 0, the `Schwarzschild' universe must also be devoid of material
sources by the very same constraint. Thus, the universe modelled by Rµν = 0
contains no matter, whereby its solution is physically meaningless. But it is
upon Rµν = 0 and its solution that the mathematical theory of black hole
rests.

Not only does Rµν = 0 contain no matter, it also violates other `physi-
cal principles' of General Relativity. According to Einstein his Principle of
Equivalence and his Special Theory of Relativity must hold in his gravita-
tional �eld.

�Let now K be an inertial system. Masses which are su�-
ciently far from each other and from other bodies are then, with
respect to K, free from acceleration. We shall also refer these
masses to a system of co-ordinates K ′, uniformly accelerated with
respect to K. Relatively to K ′ all the masses have equal and
parallel accelerations; with respect to K ′ they behave just as if a
gravitational �eld were present and K ′ were unaccelerated. Over-
looking for the present the question as to the `cause' of such a
gravitational �eld, which will occupy us later, there is nothing to
prevent our conceiving this gravitational �eld as real, that is, the
conception that K ′ is`at rest' and a gravitational �eld is present
we may consider as equivalent to the conception that only K is
an `allowable' system of co-ordinates and no gravitational �eld is
present. The assumption of the complete physical equivalence of
the systems of coordinates, K and K ′, we call the `principle of
equivalence'; this principle is evidently intimately connected with
the law of the equality between the inert and the gravitational
mass, and signi�es an extension of the principle of relativity to
co-ordinate systems which are in non-uniform motion relatively
to each other. In fact, through this conception we arrive at the
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unity of the nature of inertia and gravitation.
�Stated more exactly, there are �nite regions, where, with re-

spect to a suitably chosen space of reference, material particles
move freely without acceleration, and in which the laws of the
special theory of relativity, which have been developed above, hold
with remarkable accuracy.� Einstein [85]

�We may incorporate these ideas into the principle of equiv-
alence, which is this: In a freely falling (nonrotating) laboratory
occupying a small region of spacetime, the laws of physics are the
laws of special relativity.� Foster and Nightingale [53]

�We can think of the physical realization of the local coordinate
system Ko in terms of a freely �oating, su�ciently small, box
which is not subjected to any external forces apart from gravity,
and which is falling under the in�uence of the latter. . . . It is
evidently natural to assume that the special theory of relativity
should remain valid in Ko� Pauli [106]

�General Relativity requires more than one free-�oat frame.� Tay-
lor and Wheeler [88]

�Near every event in spacetime, in a su�ciently small neigh-
borhood, in every freely falling reference frame all phenomena (in-
cluding gravitational ones) are exactly as they are in the absence
of external gravitational sources.� Dictionary of Geophysics, As-
trophysics and Astronomy [56]

Note that both the Principle of Equivalence and Special Relativity are
de�ned in terms of the a priori presence of multiple arbitrarily large �nite
masses and photons. There can be no multiple arbitrarily large �nite masses
and photons in a spacetime that contains no matter by mathematical con-
struction, and so neither the Principle of Equivalence nor Special Relativity
can manifest therein. But Rµν = 0 is a spacetime that contains no matter
by mathematical construction.

9.8 Localisation of gravitational energy and conser-
vation laws

Without a theoretical framework by which the usual conservation laws for
the energy and momentum of a closed system hold, as determined by a vast
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array of experiments, there is no means to produce gravitational waves by
General Relativity. Einstein was aware of this and so devised a means for
his theory to satisfy the usual conservation of energy and momentum for a
closed system. However, Einstein's method of solving this problem is invalid
because he violated the rules of pure mathematics. There is in fact no means
by which the usual conservation laws for a closed system can be satis�ed by
General Relativity. Consequently the concept of gravitational waves has no
valid theoretical basis in Einstein's theory.

It must �rst be noted that when Einstein talks of the conservation of
energy and momentum he means that the sum of the energy and momentum
of his gravitational �eld and its material sources is conserved in toto, in the
usual way for a closed system, as experiment attests, for otherwise his theory
is in con�ict with experiments and therefore invalid.

�It must be remembered that besides the energy density of the mat-
ter there must also be given an energy density of the gravitational
�eld, so that there can be no talk of principles of conservation of
energy and momentum of matter alone.� Einstein [85]

The meaning of Einstein's `matter' needs to be clari�ed.

�We make a distinction hereafter between `gravitational �eld'
and `matter' in this way, that we denote everything but the grav-
itational �eld as `matter'. Our use of the word therefore includes
not only matter in the ordinary sense, but the electromagnetic
�eld as well.� Einstein [66]

�In the general theory of relativity the doctrine of space and
time, or kinematics, no longer �gures as a fundamental indepen-
dent of the rest of physics. The geometrical behaviour of bodies
and the motion of clocks rather depend on gravitational �elds,
which in their turn are produced by matter.� Einstein [107]

Einstein himself is not free from contamination by his followers. He
states clearly that in his theory his gravitational �eld is not matter and
that only matter as he conceives of it can produce his gravitational �eld.
Nevertheless, cosmologists alter Einstein's theory ad arbitrium in order to
attempt justi�cation of their own claims about his theory. For instance,
according to 't Hooft Einstein's gravitational �eld can �have a mass of its
own� [43,108], in direct contradiction of Einstein's own account of his theory.
Alteration of Einstein's theory to suit their purpose, pretending that their
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alterations are part of Einstein's theory and thereby have his seal of absolute
authority, is another common method employed by his followers. Einstein's
theory has the character of a chameleon, able to take on any colour required
for any desired purpose. Einstein's enthusiastic followers have become �more
Einsteinich than he� Heaviside [109]

The energy-momentum of Einstein's matter alone is contained in his
energy-momentum tensor Tµν . To account for the energy-momentum of his
gravitational �eld alone Einstein introduced his pseudotensor tασ , de�ned by
(Einstein [77]),

κtασ =
1

2
δασg

µνΓλµβΓβµλ − g
µνΓαµβΓβνσ (9.111)

where κ is a constant and δασ is the Kronecker-delta.

�The quantities tασ we call the `energy components' of the gravi-
tational �eld.� Einstein [66]

But tασ is not a tensor. As such it is a coordinate dependent quantity,
contrary to the basic coordinate independent tenet of General Relativity.

�It is to be noted that t as is not a tensor � Einstein [66]

The justi�cation is that tασ acts `like a tensor' under linear transforma-
tions of coordinates when subjected to certain strict conditions. Einstein
then takes an ordinary divergence,

∂tασ
∂xα

= 0 (9.112)

and claims a conservation law for the energy and momentum of his gravita-
tional �eld alone.

�This equation expresses the law of conservation of momentum
and of energy for the gravitational �eld.� Einstein [66]

Einstein added his pseudotensor for his gravitational �eld alone to his
energy-momentum tensor for matter alone to obtain the total energy-momentum
equation for his gravitational �eld and its material sources.

E = (tασ + Tασ ) (9.113)

Not being a tensor equation, Einstein cannot take a tensor divergence.
He therefore takes an ordinary divergence, [66],

∂ (tασ + Tασ )

∂xα
= 0 (9.114)
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and claims the usual conservation laws of energy and momentum for a closed
system:

�Thus it results from our �eld equations of gravitation that the
laws of conservation of momentum and energy are satis�ed. . . . here,
instead of the energy components tσµ of the gravitational �eld, we
have to introduce the totality of the energy components of matter
and gravitational �eld.� Einstein [66]

The mathematical error is profound, but completely unknown to cos-
mologists. Contract Einstein's pseudotensor by setting σ = α to yield the
invariant t = tαα, thus,

κtαα = κt =
1

2
δααg

µνΓλµβΓβµλ − g
µνΓαµβΓβνα (9.115)

Since the Γαβσ are functions only of the components of the metric tensor
and their �rst derivatives, t is seen to be a �rst-order intrinsic di�erential
invariant [41, 60, 61, 78], i.e. it is an invariant that depends solely upon
the components of the metric tensor and their �rst derivatives. However,
the pure mathematicians proved in 1900 that �rst-order intrinsic di�erential
invariants do not exist [110]. Thus, by reductio ad absurdum, Einstein's
pseudotensor is a meaningless collection of mathematical symbols. Contrary
to Einstein and the cosmologists, it cannot therefore be used to represent
anything in physics or to make any calculations, including those for the
energy of Einstein's gravitational waves. Nevertheless, cosmology calculates:

�It is not possible to obtain an expression for the energy of the
gravitational �eld satisfying both the conditions: (i) when added
to other forms of energy the total energy is conserved, and (ii) the
energy within a de�nite (three dimensional) region at a certain
time is independent of the coordinate system. Thus, in general,
gravitational energy cannot be localized. The best we can do is to
use the pseudotensor, which satis�es condition (i) but not condi-
tion (ii). It gives us approximate information about gravitational
energy, which in some special cases can be accurate.� Dirac [90]

�Let us consider the energy of these waves. Owing to the
pseudo-tensor not being a real tensor, we do not get, in general,
a clear result independent of the coordinate system. But there is
one special case in which we do get a clear result; namely, when
the waves are all moving in the same direction.� Dirac [90]
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Consider the following two equivalent forms of Einstein's �eld equations,

Rµν = −κ
(
Tµν −

1

2
Tgµν

)
(9.116)

Tµν = −1

κ

(
Rµν −

1

2
Rgµν

)
(9.117)

By Eq.(9.116), according to Einstein, if Tµν = 0 then Rµν = 0. But by
Eq.(9.117), if Rµν = 0 then Tµν = 0. In other words, Rµν = 0 and Tµν = 0 must
vanish identically - if either is zero then so is the other, and the �eld equations
reduce to the identity 0 = 0 [43, 73, 75, 111]. Hence, if there are no material
sources (i.e. Tµν = 0) then there is no gravitational �eld, and no universe.
Bearing this in mind, with Eq.(9.113) and Eq.(9.114), consideration of the
conservation of energy and momentum, and tensor relations, Einstein's �eld
equations must take the following form [43,73,75,111],

Gµν
κ

+ Tµν = 0 (9.118)

where

Gµν = Rµν −
1

2
Rgµν (9.119)

Comparing Eq.(9.118) to Eq.(9.113) it is clear that the Gµν/κ actually
constitute the energy-momentum components of Einstein's gravitational �eld
[43,73,75,111], which is rather natural since the Einstein tensor Gµν describes
the geometry of Einstein's spacetime (i.e. his gravitational �eld). Eq.(9.118)
also constitutes the total energy-momentum equation for Einstein's gravita-
tional �eld and its material sources combined.

Spacetime and matter have no separate existence. Einstein's �eld equa-
tions,

�. . . couple the gravitational �eld (contained in the curvature of
spacetime) with its sources.� Foster and Nightingale [53]

�Since gravitation is determined by the matter present, the same
must then be postulated for geometry, too. The geometry of space
is not given a priori, but is only determined by matter.� Pauli
[106]

�Mass acts on spacetime, telling it how to curve. Spacetime in
turn acts on mass, telling it how to move.� Carroll and Ostlie [60]
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�space as opposed to `what �lls space', which is dependent on the
coordinates, has no separate existence� Einstein [112]

�I wish to show that space-time is not necessarily something to
which one can ascribe a separate existence, independently of the
actual objects of physical reality.� Einstein [113]

Unlike Eq.(9.113), Eq.(9.118) is a tensor equation. The tensor (covari-
ant derivative) divergence of the left side of Eq.(9.118) is zero and therefore
constitutes the conservation law for Einstein's gravitational �eld and its ma-
terial sources. However, the total energy-momentum by Eq.(9.118) is always
zero, the Gµν/κ and the Tµν must vanish identically because spacetime and
matter have no separate existence in General Relativity, and hence gravita-
tional energy cannot be localised, i.e. there is no possibility of gravitational
waves [43,73,75,111]. Moreover, since the total energy-momentum is always
zero the usual conservation laws for energy and momentum of a closed sys-
tem cannot be satis�ed [43, 73, 75, 111]. General Relativity is therefore in
con�ict with a vast array of experiments on a fundamental level.

The so-called `cosmological constant' can be easily included as follows,

(Gµν + λgµν )

κ
+ Tµν = 0 (9.120)

In this case the energy-momentum components of Einstein's gravitational
�eld are the (Gµν + λgµν ) /κ. When Gµν or Tµν is zero, all must vanish iden-
tically, and all the same consequences ensue just as for Eq.(9.118). Thus,
once again, if there is no material source, not only is there no gravitational
�eld, there is no universe, and Einstein's �eld equations violate the usual
conservation of energy and momentum for a closed system.

The so-called `dark energy' is attributed to λ by cosmologists. Dark
energy is a mysterious aether ad arbitrium, because, according to Einstein
[85, 114], λ is not a material source for a gravitational �eld, but is vaguely
implicated by him in his gravitational �eld,

�. . . by introducing into Hamilton's principle, instead of the scalar
of Riemann's tensor, this scalar increased by a universal con-
stant� Einstein [114]

The `cosmological constant' however falls afoul of de Sitter's empty uni-
verse, which possesses spacetime curvature but contains no matter, and is
therefore physically meaningless. By Eq.(9.120), if λgµν is to be permitted,
for the sake of argument, it must be part of the energy-momentum of the
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gravitational �eld, which necessarily vanishes when Tµν = 0. Recall that ac-
cording to Einstein, everything except his gravitational �eld is matter and
that matter is the cause of his gravitational �eld. The insinuation of λ can
be more readily seen by writing Eq.(9.120) as,[

Rµν − 1
2 (R− 2λ) gµν

]
κ

+ Tµν = 0 (9.121)

Einstein's �scalar increased by a universal constant� is clearly evident; it
is the term −(R − 2λ)/2. Hence Einstein's �eld equations �in the absence
of matter � [66], i.e. Rµν = 0, once again, have no physical meaning, and
so the Schwarzschild solution too has no physical meaning, despite putative
observational veri�cations. Consequently, the theories of black holes and
gravitational waves are invalid.

9.9 Numerical relativity and perturbations on black
holes

Numerical analysis of merging black holes and perturbation of black holes
are ill-posed procedures for the simple fact that such mathematical means
cannot validate a demonstrable fallacy. Numerical analysis and `systematic
perturbation expansions' on a fallacy produce fallacies still. Similarly, no
amount of observation or experiment can legitimise entities that are the
products of violations of the rules of pure mathematics and logic. However,
cosmologists systematically perturb:

�In a systematic perturbation expansion one can compute the
interactions, due to nonlinearity, between black holes.� 't Hooft
[115]

Since the premises are false and the conclusions drawn from them in-
consistent with them, such numerical and perturbation procedures are con-
sequently of no scienti�c merit. Nonetheless the LIGO-Virgo Collaboration
has stated,

�The signal sweeps upwards in frequency from 35 to 250 Hz
with a peak gravitational-wave strain of 1.0 × 10−21. It matches
the waveform predicted by general relativity for the inspiral and
merger of a pair of black holes and the ringdown of the resulting
single black hole.� Abbott et al. [38]

�Using the �ts to numerical simulations of binary black hole
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mergers in [129,130], we provide estimates of the mass and spin
of the �nal black hole, the total energy radiated in gravitational
waves, and the peak gravitational-wave luminosity [76].� Abbott
et al. [38]

�Several analyses have been performed to determine whether
or not GW150914 is consistent with a binary black hole system
in general relativity [131]. A �rst consistency check involves the
mass and spin of the �nal black hole. In general relativity, the end
product of a black hole binary coalescence is a Kerr black hole,
which is fully described by its mass and spin. For quasicircular
inspirals, these are predicted uniquely by Einstein's equations as
a function of the masses and spins of the two progenitor black
holes. Using �tting formulas calibrated to numerical relativity
simulations [129], we veri�ed that the remnant mass and spin
deduced from the early stage of the coalescence and those inferred
independently from the late stage are consistent with each other,
with no evidence for disagreement from general relativity.� Ab-
bott et al. [38]

Signal GW150914 was extracted from a database containing 250,000 nu-
merically determined waveforms generated on the false assumptions of the
existence of black holes and gravitational waves. A `generic' signal cGW
was initially reported by LIGO, after which powerful computers extracted
GW150914 from the waveform database for a best �t element.

�The initial detection was made by low-latency searches for
generic gravitational-wave transients [78] and was reported within
three minutes of data acquisition [80]. Subsequently, matched-
�lter analyses that use relativistic models of compact binary wave-
forms [81] recovered GW150914 as the most signi�cant event
from each detector for the observations reported here.� Abbott et
al. [38]

With such powerful computing resources and so many degrees of freedom
it is possible to best �t just about any LIGO instability with an element of
its numerically determined waveform database. This is indeed the outcome
for the LIGO-Virgo Collaborations, as they have managed to best �t a nu-
merically determined waveform for and to entities that not only do not exist,
but are not even consistent with General Relativity itself. This ampli�es the
futility of applying numerical and perturbation methods to ill-posed prob-
lems.
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There are no known Einstein �eld equations for two or more masses and
hence no known solutions thereto. There is no existence theorem by which it
can even be asserted that Einstein's �eld equations contain latent capability
for describing con�gurations of two or more masses [43,73,75,116]. General
Relativity cannot account for the simple experimental fact that two �xed
suspended masses approach one another upon release. It is for precisely these
reasons that all the big bang models treat the universe as a single mass, an
ideal indivisible �uid of macroscopic density and pressure that permeates the
entire universe. Upon this model the cosmologists simply superpose, where
superposition does not hold.

�We may, however, introduce a more speci�c hypothesis by
assuming that the material �lling the model can be treated as a
perfect �uid.� Tolman [104]

�We can then treat the universe as �lled with a continuous dis-
tribution of �uid of proper macroscopic density ρoo and pressure
po, and shall feel justi�ed in making this simpli�cation since our
interest lies in obtaining a general framework for the behaviour of
the universe as a whole, on which the details of local occurrences
could be later superposed.� Tolman [104]

�. . . it must be remembered that these quantities apply to the
idealized �uid in the model, which we have substituted in place of
the matter and radiation actually present in the real universe.�
Tolman [104]

9.10 Big bang cosmology

The central dogma of big bang cosmology is that the Universe created itself
out of nothing [117]. Often this nothingness is vaguely called a big bang
`singularity'. Space, time, and matter, all came into existence with the big
bang creation ex nihilo.

�General relativity plays an important role in cosmology. The
simplest theory is that at a certain moment `t = 0', the universe
started o� from a singularity, after which it began to expand.
. . .All solutions start with a `big bang' at t = 0.� 't Hooft [49]

�At the big bang itself, the universe is thought to have had
zero size, and to have been in�nitely hot.� Hawking [97]
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That which has zero size has no volume and hence cannot possess mass or
have a temperature. What is temperature? According to the physicists and
the chemists it is the motion of atoms and molecules. Atoms and molecules
have mass. The more energy imparted to the atoms and molecules the faster
they move about and so the higher the temperature. In the case of a solid
the atoms or molecules vibrate about their equilibrium positions in a lattice
structure and this vibration increases with increased temperature.

�As the temperature rises, the molecules become more and
more agitated; each one bounds back and forth more and more
vigorously in the little space left for it by its neighbours, and each
one strikes its neighbours more and more strongly as it rebounds
from them.� Pauling [118]

Increased energy causes atoms or molecules of a solid to break down the
long range order of its lattice structure to form a liquid or gas. Liquids have
short range order, or long range disorder. Gases have a great molecular or
atomic disorder. In the case of an ideal gas its temperature is proportional
to the mean kinetic energy of its molecules [119]- [121],

3

2
kT =

1

2
m
〈
v2
〉

(9.122)

wherein
〈
v2
〉
is the mean squared molecular speed, m the molecular mass,

and k is Boltzman's constant.
Now that which has zero size has no space for atoms and molecules to

exist in or for them to move about in. And just how fast must atoms and
molecules be moving about to be in�nitely hot? An entity of zero size and
in�nite hotness has no scienti�c meaning whatsoever. Nonetheless, according
to Misner, Thorne and Wheeler [61],

�One crucial assumption underlies the standard hot big-bang
model: that the universe 'began' in a state of rapid expansion
from a very nearly homogeneous, isotropic condition of in�nite
(or near in�nite) density and pressure.�

Just how close to in�nite must one get to be �near in�nite�? No object
can possesses in�nite or near `in�nite density' and pressure either, just as
no object can possess in�nite gravity or in�nite temperature. Even Special
Relativity forbids in�nite density.

Near in�nities of various sorts are routinely and widely invoked by cos-
mologists and astronomers. Here is yet another example; this time from
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Professor Lawrence Krauss [122] of Arizona State University, on Australian
national television:

�But is that, in fact, because of discovering that empty space
has energy, it seems quite plausible that our universe may be just
one universe in what could be almost an in�nite number of uni-
verses and in every universe the laws of physics are di�erent and
they come into existence when the universe comes into existence.�

Just how close to in�nite is �almost an in�nite number �? There is no
such thing as �almost an in�nite number �.

�There's no real particles but it actually has properties but the
point is that you can go much further and say there's no space,
no time, no universe and not even any fundamental laws and it
could all spontaneously arise and it seems to me if you have no
laws, no space, no time, no particles, no radiation, it is a pretty
good approximation of nothing.� Krauss [122]

�There was nothing there. There was absolutely no space, no
time, no matter, no radiation. Space and time themselves popped
into existence which is one of the reasons why it is hard . . . �
Krauss [126]

Thus, the Universe sprang into existence from absolutely nothing, by big
bang creationism, �at a certain moment ′t = 0′� [49] and nothing, apparently,
is �a good approximation of nothing� [122]. And not only is nothing a good
approximation of nothing, this rigmarole is pushed even further:

�But I would argue that nothing is a physical quantity. It's
the absence of something.� Krauss [122]

Professor Brian Schmidt is a Nobel Prize winning cosmologist [123]. The
following question was put to him on Australian national television:

�How can something as in�nitely large as the universe actually
get bigger? � Irvin [123]

Schmidt began his reply with the following:

�Ah, yes, this is always a problem: in�nity getting bigger. So,
if you think of the universe and when we measure the universe it,
as near as we can tell, is very close to being in�nite in size, that is
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we can only see 13.8 billion light years of it because that's how old
the universe is, but we're pretty sure there's a lot more universe
beyond the part we can see, which light just simply can't get to us.
And our measurements are such that we actually think that very
nearly that may go out, well, well, thousands of times beyond what
we can see and perhaps an in�nite distance.� Schmidt [123,124]

However, an in�nite universe cannot get bigger7, bearing in mind that
in�nite simply means endless, and so is not even a real number. Profes-
sor Schmidt committed the very common cosmologist elementary error that
�very close to being in�nite in size� is a scienti�c quantity [125]. With this
in mind, how likely is it that cosmologists actually measured the nearness to
in�nity that Professor Schmidt has claimed? Schmidt continued,

�So, ultimately, we're expanding into the future but think of
it this way: in school you would have done this little experiment
in math where you will put a ray starting at zero and it will go
out one, two, three and o� to in�nity. You put a little arrow,
it goes o� forever. So I can multiply that by two. So zero stays
at zero, one goes to two, two goes to four, four goes to eight
and you can do that for any number you want all the way up to
in�nity. And that's sort of what the universe is doing. In�nity is
just getting bigger and we're allowed to do that in mathematics.
That's what's so cool about math.� [123,124]

Consider the two in�nite sequences of integers that Professor Schmidt utilised
(where the dots mean, `goes on in like manner without end'),

0, 1, 2, 3, 4, . . .

0, 2, 4, 6, 8, . . .

First, all Schmidt has done here is to place the non-negative even integers
(the lower sequence) into a one-to-one correspondence with the non-negative
integers (the upper sequence). This does not make in�nity get bigger. Both
sequences are in�nite. For every number in the upper sequence there is
one and only one corresponding number in the lower sequence, according to
position. Second, since in�nity is not a real number, contrary to Professor
Schmidt's claim, it cannot even be multiplied by 2 because, ultimately, num-
bers on the real number line can only be multiplied by numbers. In�nity is

7I shall not consider the esoteric purely mathematical issues of Cantor's `trans�nite
numbers', as they have no relevance here.
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often denoted by the symbol ∞. This is not a real number and so it cannot
be used for the usual arithmetic or algebra. Substituting the symbol ∞ for
the word `endless' or the word `in�nity' or the word `limitless' does not make
∞ a real number. Consequently, 2×∞ does not mean that in�nity is dou-
bled; it is a meaningless concatenation of symbols. In like fashion, multiply
Professor Schmidt's �rst sequence by 1

2 . The resulting sequence is,

0,
1

2
, 1,

3

2
, 2, . . .

Does this mean that in�nity has been halved? Is not this sequence also
in�nite? Professor Schmidt's doubling of in�nity by means of the real number
line is just as nonsensical as halving in�nity with the real number line.

Yet despite the zero size, the in�nities and near in�nities possessed by
nothing, the absence of something, and big bang creation ex nihilo, Hawking
admits that,

�energy cannot be created out of nothing.� Hawking [97]

Thus stands yet another cosmological contradiction.
The so-called `Cosmic Microwave Background' (CMB) is inextricably in-

tertwined with big bang cosmology. Without the `CMB', big bang creation-
ism and General Relativity are defunct. The reasons why the `CMB' does
not exist are simply stated:

1. Kirchho�'s Law of Thermal Emission is false [127].

2. Due to (1), Planck's equation for thermal spectra is not universal.

Consequently, when Penzias and Wilson [128] assigned a temperature
to their residual signal and the theoreticians assigned that signal to the
Cosmos, they violated the laws of thermal emission. It is a scienti�c fact
that no monopole signal has ever been detected beyond ≈ 900 km of Earth.
The signal is proximal (i.e. from the oceans on Earth [129]- [132]).

Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging
(MRI) are thermal processes. That they exist is physical proof of the in-
validity of Kirchho�'s Law of Thermal Emission and the non-universality
of Planck's equation. If Kirchho�'s Law of Thermal Emission is true and
Planck's equation is universal, then NMR and MRI would be impossible,
because NMR and MRI utilise spin-lattice relaxation [133]. Hence, there is
energy in the walls of an arbitrary cavity that is not available to thermal
emission. Kirchho� and Planck however, incorrectly permitted all energy in
the walls of an arbitrary cavity to be available to the emission �eld. The very
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existence of clinical MRI, used in medicine everyday, proves that Kirchho�'s
Law of Thermal Emission is false and that Planck's equation is not universal.
This means that the `CMB' does not exist because it requires the validity of
Kirchho�'s Law of Thermal Emission and universality of Planck's equation.
These facts alone invalidate big bang cosmology completely.

Put a glass of water inside a microwave oven then turn on the oven. The
water gets hot because it absorbs microwaves [132]. That water absorbs mi-
crowaves is also well known for submarines, which is precisely why microwave
radio communications cannot be used under water. It is well known from
the laboratory that a good absorber is also a good emitter, and at the same
frequencies. Approximately 70% of Earth's surface is covered by water. This
water is not microwave silent. The reported `CMB' is characterised by the
monopole signal for the mean temperature of the microwave residue of the
big bang. Its spectrum is a blackbody distribution at ≈ 2.725 K. Cosmol-
ogists claim the error bars of their CMB spectrum plot are some 400 times
narrower than the thickness of the curve they have drawn for it. Yet it is a
scienti�c fact that no monopole signal has ever been detected beyond ≈ 900
km of Earth. Without a monopole signal far from Earth, at say L2 (i.e.
the second Lagrange point), all talk of a CMB and its alleged anisotropies
is wishful thinking. All detections of the monople signal are of microwaves
emitted by the oceans, scattered by the atmosphere.

The water molecule is bound by two bonds: (a) the hydroxyl bond, and
(b) the hydrogen bond. The hydrogen bond weakly binds one water molecule
to another. The hydroxyl bond strongly binds an oxygen atom to a hydrogen
atom within the water molecule. Robitaille [134] has shown that the hydroxyl
bond is ≈ 100 times stronger than the hydrogen bond. It is the hydrogen
bond that is responsible for microwave emissions from water. If the oceans
are at 300 K, then their microwave emission reports a temperature of ≈ 3
K. From this it is clear that a blackbody spectrum does not report the true
temperature of the emission source, unless that source is a black material,
such as soot; otherwise the temperature extracted from a blackbody spec-
trum is only apparent. Moreover, the Planckian (blackbody) distribution is
continuous. Only condensed matter can emit a continuous spectrum. Gases
can only emit in narrow bands, never a continuous spectrum, irrespective
of pressure, and pressure requires the presence of a surface. Solar scientists
and cosmologists believe the Sun and stars to be balls of hot gas, mostly
hydrogen. Stars, they say, produce black holes by irresistible gravitational
collapse. Liquids however are essentially incompressible. The photosphere
of the Sun emits a Planckian spectrum. This alone is certain evidence that
the Sun is condensed matter, not a ball of hot gas [135, 136]. The most
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likely candidate for the constitution of the Sun and stars is liquid metallic
hydrogen [135, 136]. Furthermore, when a solar �are errupts it produces a
radiating circular transverse wave emanating from its point of eruption in
the Sun's surface, like that when a stone is �ung into a pond. Gases cannot
form or carry a transverse wave. The transverse wave produced by a solar
�are too is certain evidence that the Sun is condensed matter.

9.11 Conclusions

LIGO did not detect Einstein gravitational waves or black holes. Black
holes and Einstein's gravitational waves do not exist. The LIGO instability
has been interpreted as gravitational waves produced by two merging black
holes by a combination of theoretical fallacies, wishful thinking, and confor-
mational bias. Black holes are products entire of violations of the rules of
pure mathematics. Einstein's General Theory of Relativity is riddled with
logical inconsistencies, invalid mathematics, and impossible `physics'. The
General Theory of Relativity violates the usual conservation of energy and
momentum for a closed system and is thereby in con�ict with a vast array
of experiments, rendering it untenable at a fundamental level.

Arguments such as,

�What is more, astronomers have now identi�ed numerous
objects in the heavens that completely match the detailed descrip-
tions theoreticians have derived. These objects cannot be inter-
preted as anything else but black holes.� 't Hooft [63]

have no scienti�c merit [137].
LIGO is reported to have so far cost taxpayers $1,100,000,000.00 [138].

Just as with the Large Hadron collider at CERN, such large sums of public
money demand justi�cation by eventually �nding what they said they would,
despite the actual facts.

In the same fashion that people who believe in ghosts attribute the action
of ghosts to that which they do not understand, cosmologists attribute the
action of black holes and big bangs to that which they do not understand.
No amount of experiment and observation can validate entities that have
been extracted from theory by means of violations of the rules of pure math-
ematics, violations of basic logic, con�ict with well established experimental
�ndings, and just plain wishful thinking. With their litany of violations
of scienti�c method it is perhaps not surprising that cosmologists, led by
Professor Stephen Hawking, are now spending $100, 000, 000.00 of Milner's
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money, looking for aliens [139]; the very same aliens that �y saucers, man
UFO's, and abduct human beings for experiments and vivisection, because
they all come from outer space. Radio telescopes around the world will assist
the cosmologists in their quest for alien contact [139]. One such telescope is
the Parkes Radio Telescope in New South Wales, Australia. For 17 years,
cosmologists at the Parkes facility mistook microwave signals from the mi-
crowave oven in their lunchroom for cosmic signals, and even called them
`perytons' [140]. Is there any doubt that the cosmologists will soon report
alien contact? The aliens must be out there because the cosmologists even
have a journal for them [141].

Kirchho�'s Law of Thermal Emission is false and Planck's equation for
thermal spectra is not universal; physically proven by the clinical existence
of MRI. It follows immediately from this that the Cosmic Microwave Back-
ground does not exist because it requires Kirchho�'s Law and universality
of Planck's equation. The `CMB' is due to microwave emission from the
oceans on Earth [129]- [132]. For this reason no monopole signal has ever
been detected beyond ≈ 900 km of Earth.

Planck's theoretical proof of Kirchhi�'s Law of Thermal Emission is false,
owing to violations of the physics of optics and thermal emission [127]. Ein-
stein's derivation of Planck's equation is valid only for black materials be-
cause he invoked a Wien's �eld; a characteristic of black materials such as
soot [127]. Only black materials such as soot emit a blackbody spectrum.
Other materials emit an approximate black spectrum whilst yet others do
not. The radiation within arbitrary cavities is not black and their radiation
�elds, at thermal equilibrium, depend upon the nature of the cavity walls.

The Sun and stars are not balls of hot gas; they are condensed matter
[135,136].

Modern physics is steeped in magic, mysticism and superstition. The
proclivity of the Human Condition to magic and mysticism is well known to
anthropologists:

�The reader may well be tempted to ask. How was it that intel-
ligent men did not sooner detect the fallacy of magic? How could
they continue to cherish expectations that were invariably doomed
to disappointment? With what heart persist in playing venerable
antics that led to nothing, and mumbling solemn balderdash that
remained without e�ect? Why cling to beliefs which were so �atly
contradicted by experience? How dare to repeat experiments that
had failed so often? The answer seems to be that the fallacy was
far from easy to detect, the failure by no means obvious, since in
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9.11. CONCLUSIONS

many, perhaps in most cases, the desired event did actually follow
at a longer or shorter interval, the performance of the rite which
was designed to bring it about; and a mind of more than common
acuteness was needed to perceive that, even in these cases, the
rite was not necessarily the cause of the event.� Frazer [142]
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