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Abstract

Recently an engineering model of Einstein Cartan Evans (ECE) theory
was developed. This allows the design of electro-magnetic devices under
inclusion of resonance e�ects from space-time. The resonance is enabled
by means of the spin connection which is not present in the standard model
of electrical engineering (Maxwell-Heaviside theory). In this paper designs
on base of the so-called vector spin connection are presented and three
mathematical models are developed. The models are studied by analytical
and numerical methods. Results show that space-time resonances can be
evoked by these device in various ways in order to extract electrical energy
from space-time. Some realization examples are proposed.
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1 Introduction

After a long period of stagnancy, general relativity has lived up by the Einstein-
Cartan-Evans (ECE) theory developed by Myron Evans [1]- [4]. Space-time
is considered to be the origin not only of gravity but of all forces of nature,
in particular electromagnetism. Besides the curvature introduced by Einstein,
torsion of Cartan geometry plays an equally weighted role in ECE theory. All
electromagnetic �elds are considered to be components of the torsion tensor of
Cartan geometry. From this geometry two �eld equations are obtained which
are formally identical to the well-known Maxwell-Heaviside equations in the
limit of �at space-time. Therefore the ECE equations are a natural extension
of the electromagnetic theory known for over 150 years.

There are three levels of mathematical representation of the ECE �eld equa-
tions. The most elegant and abstract level is in di�erential form notation. This
can be evaluated to tensor form, comparable to the formalism Einstein used
for his famous equation. This representation can further be rewritten to three-
dimensional vector form. In this form the coordinate-independent formulation
is lost, but the equations are quickly understandable to the broad majority of
scientists and engineers who are not familiar with tensor calculus. The original
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Cartan geometry leaves freedom of de�ning an extra coordinate system which
describes three spatial and one timely polarisation direction (the so-called tan-
gent space). Therefore the vectors of the E and B �eld have an additional index
for this coordinate basis denoted by �a�:

Ea =
(
Eax , E

a
y , E

a
z

)
,

Ba =
(
Bax, B

a
y , B

a
z

)
,

a = 0 . . . 3.

(1)

This complication can be avoided by using an ordinary cartesian (or spher-
ical/cylindrical) coordinate system as a basis for the polarisation directions in
such a way that the basis vectors of polarization are identical to the unit vec-
tors of space-time itself. Then a=1 can be identi�ed with the x component, and
a=2,3 with the y and z component respectively. The 0 component (representing
the time coordinate in ECE theory) is reserved for the charge density. With
this simpli�cation we arrive at the ordinary vector de�nition

E = (Ex, Ey, Ez) ,
B = (Bx, By, Bz) ,

(2)

and the ECE �eld equations are formally identical to Maxwell-Heaviside
theory:

∇ ·B = 0, (3)

∇×E +
∂B
∂t

= 0, (4)

∇ ·E =
ρ

ε0
, (5)

∇×B− 1
c2
∂E
∂t

= µ0J. (6)

The di�erence between standard and ECE theory is made up by the poten-
tials. The dependence of the �elds E and B from the vector potential A and
scalar potential φ is given by

E = −∂A
∂t
−∇φ− cω0A + φω, (7)

B = ∇×A− ω ×A (8)

where ω is the vector spin connection and ω0 the scalar spin connection.
These come into play due to the space-time torsion and curvature of Cartan
geometry. Without this, the above equations would be identical to those of
Maxwell-Heaviside. The spin connections forbid an arbitrary re-gauging of the
potential, therefore potentials have a physical meaning in ECE theory.
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2 The resonant Coulomb law

Solutions of the �eld equations (3-6) can be obtained by inserting the terms for
the potentials (7-8) into them. This gives a set of eight non-linear equations
for eight unknowns. As �rst stated in chapter 8 of vol. III of the ECE book
series [1], some of these equations have the form of a resonance equation which
is a di�erential equation for a function ϕ(x) of the form

∂2ϕ

∂x2
+ 2β

∂ϕ

∂x
+ κ2

0ϕ = f(x) (9)

as discussed in [10] for example (a popular explanation has also been given
in [5]). In Eq. (9) β is the damping term, f(x) is the driving force, and κ0 is
the eigen frequency of the system which is identical to the resonance frequency
for vanishing damping [10]:

κR =
√
κ2

0 − 2β2. (10)

From Eqs. (5) and (7) we obtain for the pure electrical case (A=0):

−∆φ+ ∇ · (ωφ) =
ρ

ε0
(11)

or

∆φ− ω · (∇φ)− (∇ · ω)φ = − ρ

ε0
. (12)

This is an equation for the potential φ and the vector spin connection. From
Eq. (12) we see that the resonance frequency has to be identi�ed with the
divergence of the spin connection:

κ2
0 = −∇ · ω. (13)

Therefore a non-constant ω is needed to obtain any resonance e�ects. In the
appendix of [7] it was shown that both variables ω and φ can be obtained from
solving the above equation simultaneously with the Faraday equation (4). Here
we simplify the situation by requesting an experimental setup which creates
a vector spin connection of the desired form. According to ECE theory, the
vector spin connection is to be interpreted as a rotation vector of a magnetic
�eld. Such a situation can be realized in several ways, for example by a rotating
bar magnet, a solenoid or a multi-phase AC voltage.

The situation is complicated by the fact that we need a spin connection
varying in space. We can realize this in two ways: varying ω in time and
utilizing the wave propagation of ω for an oscillation in space, or creating a
gradient in one direction by a variation of the magnetic �eld. Experimental
setups will be discussed later.

2.1 Model 1: Oscillatory model

In the following we restrict consideration to one space dimension z. Beginning
with an oscillatory spin connection, we make the approach

ωz = ω1 cos(κ1z) (14)
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with an amplitude ω1 and a wave number κ1. Then Eq. (12) reads

∂2φ

∂z2
− ω1 cos(κ1z)

∂φ

∂z
+ ω1κ1 sin(κ1z)φ = f(z) (15)

with f(z) being the right-hand side of (12). Comparing this equation with
Eqs. (9) and (10), the resonance frequency is

κR =

√
ω1κ1 sin(κ1z)−

1
2
ω2

1 cos2(κ1z) (16)

which is de�ned only for a positive expression under the square root. There-
fore the condition for the existence of resonances is

ω1κ1 sin(κ1z)−
1
2
ω2

1 cos2(κ1z) > 0 (17)

or

κ1 tan(κ1z) >
1
2
ω1 cos(κ1z). (18)

This equation can be ful�lled for certain ranges of z, depending on ω1 and
κ1. Some examples are graphed in Fig. 1. The analytical solution of Eq. (15)
found by computer algebra is

φ(z) =− f(z) e
ω1 sin(κ1 z)

κ1

∫ ∫
e−

ω1 sin(κ1 z)
κ1 dzdz

+ f(z) z e
ω1 sin(κ1 z)

κ1

∫
e−

ω1 sin(κ1 z)
κ1 dz

+ k1 e
ω1 sin(κ1 z)

κ1

∫
e−

ω1 sin(κ1 z)
κ1 dz

+ k2 e
ω1 sin(κ1 z)

κ1

(19)

with constants k1 and k2. The second term represents an unbound func-
tion in z. The integrals cannot be solved analytically, therefore we present a
numerical solution in Fig. 2. We used an oscillating driving force

f(z) = ρ0 cos(κz). (20)

For the parameter values κ1 = 1, ω1 = 1 a resonant enhancement of φ is
found for κ = 1, oscillating with a larger wavelength. These oscillations can
also be seen for the non-resonant κ values, but with much shorter wave lenths.
The oscillation e�ect of the driving force can be eliminated by setting it to a
constant: f = 1. Fig. 3 shows the solution for such a constant driving force.
This is an undamped oscillation, probably the behaviour most searched for.

The maximum amplitude di�erences of φ after 30 periods are graphed in Fig.
4. The oscillating driving force was used again. There is a resonance maximum
for a driving frequency κ of about 0.1 units. Further maxima appear at integral
values of κ which probably are related to the chosen value of κ1 = 1.
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2.2 Model 2: Distance model

Next we consider a spin connection decreasing by 1/z:

ωz = a1/z (21)

with a dimensionless factor a1. This corresponds to a space region in vicinity
of a suitable magnetic �eld construction (see next section). A similar model has
been used for atomic structure calculations [6], [7]. Since the potential of a
point charge drops by 1/z, we assume the same behaviour here for the spin
connection. Then Eq. (12) becomes

∂2φ

∂z2
− a1

z

∂φ

∂z
+
a1

z2
φ = f(z). (22)

For z → 0 the equation contains singular values but the analytical solution

φ(z) = k1 z

√
a21−2 a1+1

2 +
a1+1

2 + k2 z
a1+1

2 −
√
a21−2 a1+1

2 − f(z) z2

a1 − 2
(23)

shows that there is no in�nite asymptote for z = 0 in all cases. The last term
shows that there is a resonance for a1 → 2. If f(z) does not decrease faster than
1/z, the solution is growing over all bounds for z → ∞. The solution contains
oscillatory parts from the �rst two terms for a1 < 1.

In Fig. 5 the regular development of the solution for z=0 can be seen (a1 =
1). In the case a1 = −1 (Fig. 6) there is indeed a pole if z approaches zero. In
both �gures we used f = 1.

2.3 Model 3: Linear model

A third model assumes a linear varying spin connection. A technical realization
will be proposed in section 3. Assume

ωz = γ1z (24)

with a factor γ1 > 0 which has the units of inverse squared meters. Then
Eq. (12) reads

∂2φ

∂z2
− γ1z

∂φ

∂z
− γ1φ = f(z). (25)

The analytical solution is

φ(z) = −k1

√
2π e−

γ1
2 z2 erf

(√
−γ1
2 z

)
2
√−γ1

+ k2 e
− γ1

2 z2 +
f(z)
γ1

(26)

The behaviour of this function can be best studied from the graphs (Figs. 7
and 8). For γ1 > 0 the solution is complex. The real part is a gaussian function
with a maximum at z=0. The height of the maximum depends on the initial
conditions (chosen for the left border inall cases). In all graphic examples we
used

φ(zmin) = 0,
∂φ

∂z
(zmin) = 0.1 . (27)
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Figure 1: Range of resonance frequencies (model 1) for ω1 = 0.1, ω2 = 1, and
ω3 = 5 with κ1 = 1.
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Figure 2: z dependence of Potential (model 1) for several frequencies κ =
0.5, 0.9, 1.0, 1.1, 1.2.
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Figure 3: z dependence of Potential (model 1) for non-oscillating driving force
(f=1).
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Figure 4: Resonance diagram (maximum amplitude di�erences) of model 1.
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Figure 5: Solution of model 2 for a1 = 1.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

-40 -35 -30 -25 -20 -15 -10 -5  0

P
h
i(
z
)

z[m]

Resulting Potential Phi(z)

Figure 6: Solution of model 2 for a1 = −1, logarithmic scale.
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Figure 7: Solution of model 3 for γ1 = 0.25.
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Figure 8: Solution of model 3 for γ1 = −1.0, logarithmic scale.
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Figure 9: Realizations of a vector spin connection by magnetic �elds.

Figure 10: Realization of model 1 (oscillatory model).
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Figure 11: Magnetic �eld of a Tesla coil.

Figure 12: Realization of model 2 (distance model).
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Figure 13: Realization of model 3 (linear model) with two counter-rotating B
�elds.

Figure 14: Spin connection of two counter-rotating B �elds.
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For γ1 < 0 the gaussian terms have positive exponents, the solution grows
over-exponentially for z →∞. This is a giant resonance. The driving force does
not play a role in this model, but can (in conjunction with the initial conditions)
lead to a sign change of the resonance.

3 Propositions for experimental realizations

After it has been shown that the three models are candidates for resonance
e�ects, in this section a technical realization of these models is proposed. This
is mainly how to construct a spin connection as used in the models. The vector
spin connection ω can be considered to be a rotation vector of the plane of
the vector potential from which the magnetic �eld is generated. For example
a toroidal coil or solenoid exhibits a constant rotation of the A plane per unit
angle and therefore creates a constant spin connection, see Fig. 9, right-hand
side. A linear coil does not produce a spin connection since the magnetic �eld
vectors are parallel and the A plane does not change.

As an alternative method, the rotation of the A plane can be enforced by
a rotating magnetic �eld, see Fig. 9, left-hand side. The time-frequency of the
rotation ωt can be related to the z component of the spin connection ωz by

ωt = c ωz. (28)

This has to be con�rmed experimentally but is taken as a working hypothesis
here. Then a spin connection can be created by a rotating magnetic �eld which
is used in standard three-phase AC electromotors.

Model 1

An application of model 1 is shown in Fig. 10. The rotation speed of the
B �eld has to be varied periodically. The oscillating spin connection results by
the fact that it is proportional to the time derivative of the B vector:

ωz ∝
∣∣∣∣∂B∂t

∣∣∣∣ . (29)

If two conducting plates are positioned in a distance ∆z which correcsponds
to a quarter of the wavenlength in Figs. 2 or 3, an enhanced electrical signal
can be induced. This would correspond to a �space-time enhanced transmitter�
as was reported to have been built by Nicola Tesla. To spin this thought a bit
further, a Tesla coil is shown if Fig. 11. The magnetic �eld lines of this device -
although nowhere shown in the literature - must have the form as shown in Fig.
11. Obviously this is a static image of the rotating �eld in Figs. 9/10. This
can be seen as a strong hint that Tesla used e�ects of the spin connection for is
unusual experiments, anticipating hundred years of development in theory.

Model 2

A similar distance e�ect can be obtained by model 2. Here the spin connec-
tion decreases inversely proportional to the distance from the generating �eld
(Fig. 12). According to Fig. 5 an enhancement of the electrical potential is
possible for a1 > 0. In case a1 < 0 (Fig. 6) no enhancement is obtained. It
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is not clear how these sign conditions can be arranged experimentally. In the
simplest case they correspond to two sides of the rotational �eld area where the
spin connections point to di�erent directions, seen from the center. Tests with
a Tesla coil could be helpful. The above comments concerning the Tesla coil
also apply to this model.

Model 3

The most interesting e�ects can be expected from model 3. This can be
realized by two B �elds rotating in parallel planes but di�erent directions, see
Fig. 13. The development of the spin connection then changes sign in the
middle between the planes as graphed in Fig. 14. From Fig. 7 we expect the
potential to take the form of a resonant gaussian function for γ1 > 0. Therefore
a dielectric or conducting disk centered between the planes of rotation should
get a high voltage, compared to earth potential. In contrast to model 2, it is
quite clear how the case γ1 < 0 can be realised. The direction of rotation has
to be reversed in both planes. Fig. 8 teaches us that we will get then a high
voltage between both sides of the disk, if it is thick enough (see also left-hand
side of Fig. 13). According to Fig. 14 the �source of space-time energy� can be
located in this case very well: it is the region where ω changes sign. From Eq.
(13) here we have the condition

∇ · ω 6= 0, (30)

in other words, the divergence of the spin connection acts as a source of
voltage. The divergence term acts like a charge density of space-time itself. The
mechanism is either a forced oscillation or a divergent solution of the generalized
Coulomb law of ECE theory. Compared to the veri�ed space-time device of
Bedini [9] which has recently been explained by ECE theory [8], the realizations
in this article are of much simpler nature. Therefore a quantitative design of
these proposed machines appears feasible.

The results of this paper are intellectual property of the author and publically
available under the AIAS License as published on www.aias.us.
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