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A theory of dielectric absorption and dispersion in the nematic phase is developed which does
not rely on the use of a nematic “‘director’. The major features of the spectrum are reproduced
by using the fact that the autocorrelation functions (u(0) - v(1)) and (v(1) - u(0)) are no longer
symmetry disallowed when the overall sample is anisotropic, as in the aligned nematic. Here u is
the dipole vector of the diffusing molecule and v the centre of mass linear velocity.

1. Introduction

The theory of molecular dynamics in liquid crystalline mesophases') has
been based on the existence of the nematic director potential which cannot
easily be given a molecular origin. In this sense therefore there is a need to
attempt to explain the observable (for example dielectric?)) properties of the
mesophase on purely molecular terms. The purpose of this short paper is to
develop a theory of the dielectric properties of the aligned nematic by
considering the interaction of molecular rotation with translation?).

2. Theory

In an isotropic molecular liquid the symmetry laws®) of time reversal parity
and reflection imply that the autocorrelation functions

(n(1)-0(0)) and (o(1)- u(0))

vanish for all t =0. Here p is the dipole vector and v the centre of mass
velocity. However, in an aligned nematic these laws no longer apply?) because
the specimen is no longer isotropic. If we consider isotropic diffusion on the
Debye model®) this implies that the Langevin equation®) governing the system
may be written”) as

==y — v + T(1), (M
0=~y — V0 + F(1). )
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Here the matrix

Yu Yuv

v=| ] 3)
Yo Yo

represents the friction term governing both the reorientation and translation

of the molecule under consideration. I' and F are the usual stochastic torque

and force terms. Solving eqs. (1) and (2) for the orientational autocorrelation

function we have:

() - p(0)) _ 3_1[ Pty ]
(p(0) - p(0)) P L+ Y)P F Yu) T YuoYou
>Zp+v)7, @

when vy,, =+, =0. In the aligned nematic phase the orientational autocor-
relation function is exponential only when rototranslational interaction is
negligible. The dielectric spectrum from eq. (4) is, neglecting all internal field
corrections®),

€"(w)=(eo— ep)wj (u(t) - u(0)) cos wt dt,
0

€'(w)=€— (e~ €)w j (u(t) - u(0)) sin wt dt, 5
0
so that
€"(w) = (€0 — Ep)w[wz')’u + 'Yv('Yv'YAL_ Vo You)] (6)

(VoY = Yo You — w2]2 + wz['Y# + 'Yu]z '

These equations are valid for isotropic rotational diffusion but for use in the
aligned nematic have to be generalised further. Some examples of the dielec-
tric loss from eq. (5) have been calculated and it can be seen that the usual
Debye peak is split into two components, which is roughly what is observed
in the aligned nematic.

Consider the generalised Favro equation,

t
%P(Q, t| o, 0)=jM,-D,-k(t— SIMP (R, s | 4, 0) ds %)
0

for rotational diffusion where p is the conditional probability density function

for the space (£2) of Euler angles. M; and M, are differential operators defined
by:

M=uxV, (8
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Here u is a unit vector fixed in the frame of a rigid asymmetric rotator along
the resultant permanent dipole moment g In eq. (7) Dy represents the
rotational diffusion tensor and sums over repeated indices are understood.

From the rototranslational equivalent of eq. (7) we need to extract the
correlation functions of experimental interest in a dielectric experiment on
an aligned nematogen. These have been defined by Nordio et al. as
D {uz(t)pz(0)) and 2) {ux (t)x (0)) in the laboratory frame. These are related to
the a.c.f.’s in the molecule frame (for the symmetric top for example) by

(2(D12(0) = (Di(ODI()1? + (DLODFNN kS + ), ©)
(x(DHpx (0)) = (Di(O)DIF(1)) 3 + (DI(O)DIF()) (i + p)
where p,, p, and p, are components of u in the molecule frame, and px and
wz in the laboratory frame (XYZ) whose Z-axis is in the direction of the
optical axis of the liquid crystal. D are the usual Wigner coefficients linking

(xyz) and (XYZ). The components of u(t) in the Z and X directions are given
by

pz(t) = (= 1Dy, (Hp' " »
p1 (10)
=—= —-1y[D! -p! nLp)
px (1) V§§p:( PID!, (1) — DL ()],

where the irreducible spherical tensor components p'""? are, in terms of the
components u,, pn, and p, in the molecule frame

0= p,
1 _ (1)

The problem is therefore to solve for the tensor a.c.f. (uT(0)u(t)) in the
molecule frame and convert to (uz(t)uz(0)) and (ux(t)x(0)) using egs. (9) to
(1.

By definition:

(u(t)u™(0)) = f #(@uT( Q)P (2, 1 | Do, 0)Por(20) A2 42 (12)

and therefore from (7) and (12)

t

%(.;(t)u"f(o» =”d0 dnof 2(Qu(2)M'D(t — )M
0

X P(, s | o, 0)Pe(Qo) ds (13)
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and

1
{
|
'
|
|
|
|
!
|
|

2 (1) = [ Dutt = ) [ 40P
]

x j dQu(QMMP(Q, s | 2, 0). (14)

Dropping (for convenience) the explicit 2-dependence and integrating by
parts:

fdQuiMijP =fdQuiej,,"u,V,,,ek,,ququP
= j dQuiti€jnenpy (Vo8imp + Uy Vi V)P
= IdQPej,,nekpq(—VqS,,,p + Vo Vi, Yui
= f dQPejn€xpg[— Uidiydmp — UidigBmp + Up{8yiBim + 81yBmi}
+ U {8iyBump + 84pBmi} + Ui{81yOmp + 84pSi}]

= IdQPGi!mekpq[up{Sqislm + 8|q6nli} + u!8q1)8mi + ui6qp8nll]-
Using the property €., = 0 of the Ricci tensor, we have

f dQu,-M;MkP = j dQPGjliEkplup

- f dQPu, {845, — 5450).

Now, returning to eq. (14),
2 O ) = [ Da(t =) [ 40P 20hn( )
0

x [ d0u, (D518 — Budip)
1]

— [ (D4t = sXuy()un()~ Dy (O} i,

0
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so that
d T . T T
;l(u(t)u 0)) = I(D (t —s) = 1Te[D(t — s)) u(t)u'(0)) ds,

(|
] T T
5wu»uw»:fWﬂDa—smmwuw»
0

= ITe[D(t — $)lu(t) - u(0))} ds. (15)

Perrin’s well known results can be obtained from eq. (15) by dropping the
time dependence of the tensor D (i.e. dropping memory effects), and assuming
further that D is diagonal, i.e. that:

ip+TrD)1 - DT

pt+Dn+Dsy 0 0
= 0 p+D]|+D]3 0 (l6)
0 0 p+ D+ Dy

In this case the solution to eq. (15) in p space is
(u(Ou O uOu"(©0)'= £.'{((p + Tr D)1 ~ D], (17)

Perrin’s equation. In this form eq. (17) is a description of orientational motion
in a macroscopically isotropic sample. In the aligned nematic condition it is
possible that (u"(0)v(t)) # 0 so that we consider the rototranslational general-

isation of the eq. (17):

[(u(t)uT(O»(v(t)uT(O))] [(u(O)uT(O)) 0 ]"
(u()p " (O)v(H)v'(0)) 0 (p(0)v'(0)

_ 4aW)ﬂwq”

=%, , 18
[wm 8(p) (18)

where

p+D¥+D¥ 0 0

a(p)=|0 p+D¥+DE 0 ,
0 0 p+ DY+ D¥
D#» 0 0

B(p)=10 D% 0
0 0 D
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—D(ﬂ") 0 0
ym=|0 D& o |,
o o D

rp+DE 0 0
8(p)=10 p+D¥ 0
10 0 p+ DY

The null elements in (18) come from the fact that, e.g.

(0(0)u"(0)) = f o(F)u™(To)PoT') Ty

Ty
T
=%J’v(t)uT(t)dt = 0.
0

Finally therefore:

(0)u, (0))(p + DY
0 ON = 5 B ¥ D4 DT DIFDET

_ (uy(O)u, (O))p + D)
£ OwON =[5 DR+ DE)Yp + DF) - DEDET
Lol (DHu,(0))) = (u,(0)u;(0))(p + DY)

(P + DW D%))(p + Dg”l)) — Dg‘i“)Dg“)'

It remains to link these components with the observables {(ux(t)ux(0)) and
(uz()uz(0)) in the laboratory frame. It is already clear, however, that the
consideration of O/T coupling produces in general dielectric spectra com-
posed of a number of peaks for the asymmetric top without using the idea of
director potential. Only two of these are usually resolved experimentally.
Increasing the symmetry of the nematic molecule under consideration will of
course reduce the number of D elements and the number of theoretical loss
peaks.

It is of interest to pursue this discussion into the field of induced bire-
fringence (e.g. the Kerr-effect) because this can be used to investigate the
nematic to isotropic transition region in detail. The theory of Kerr-effect
transients involves the higher order correlation functions {(u(t) - u(0)").

The same approach may be used to compute higher order two-time cor-
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relation functions:

%(un(O)us(O)u.-(t)u;(t)Fjds{D,-k(t — $)un (0)u; (01t (5 ), () €y
+ €iDix (t — ) €xpi{Un(0)u; (0) (8, () + Dyt — 5 ) un ()15 (0)u, (s)ui(5))
—2D;(t — s Xu, (O u; (0 ui(s)us (8)) + Dpi(t — s Kun(0)u, (0)ug(s)u, ()},

or

2 (s OO0 = [ ds{eseryDi(t = 5) + eeapDi(t =)

+ Dp[(t - 8)5“ + Dp,'(t - S)S,[ - 2Djj(t - 8)5:,'5,,[}
X un (0)us (0 (s)up(s)). (19

Eq. (19) may be rewritten concisely as

%(u..(O)ux(O)uf(t)u;(t)) =- j dsBinp (t — s Kun (0)u;(0)uy (5)up (5)), (20)

where the super-matrix B, is defined in an obvious way by comparison of eq.
(19) and eq. (20).

By solving eq. (20) we can get the ((u(t) - u(0))*) correlation function, which
we need to construct the (P,(u(t)- u(0))), by simply n=i and s =f and
performing the sums over i and f. The solution of eq. (20) in Fourier
transform terms may be accomplished in the following way:

(Un(0)us (0)u;(0)ur(0)) + i (U (0)us (0) Laui () us (1))

~

= = Binp (0 X (015 (0) La(ur (1)1, (1)) (21)
and by defining:

CR(1) = (ua(0)us (O)ui (1 uy(1)),
-CP(0)= (Biﬂp + iw5n5/p)é£.2:)1p(w)- (22)

Eq. (22) may be reduced to a 3 dimensional matrix eqn. for pure rotational

diffusion (or a super-matrix equation for rotationftranslation), since it does

not depend on the indices ns, and by defining an index m which sum as

follows m=1 (=) i=1, f=1, m=2(=)i=z f=1, m=3 (=) i=2,

f=2....Eq. (22) may be simplified by assuming that D,-k is a diagonal mafrix.
In this case the matrix fi, may be written as

Bigp(w) = Dyj(@)[ 848, — 818yl + Dji()[8y81, — 8udgp]
+ D/f(w)[5|i5p/] + Dii(w)[5lf5pi] — 2Dj(w)88,;.

By using the fact that we can make the permutation i < f without changing
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C%, eq. (22) simplifies to
Biip (@) = 2Dji(@)[ 8481, — 2848511 + 2Dy ()88,

which can be used to develop the r/t theory of Kerr transients in the aligned
nematic phase.
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