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The analysis of zero-THz spectra is extended to include fourth and sixth spectral moments. The usual dielectric loss
(¢"(w)) and power absorption (a{w)/neper cm™') spectral features are supplemented by w”°e(w) and w*a(w). The power
of this kind of analysis is illustrated by the fact that there is not one currently available analytical theory that can follow

let alone predict the experimental behaviour.

i. Introduction

The spectroscopic study of molecular motion
:nd interaction in liquids has reached the point
where the molecular dynamical problem is para-
neterised using ad hoc assumptions [1-5]. The
most difficult aspect of this approach is to
minimise the number of free parameters while
-ztaining realism to a maximum possible degree.
The free variables cannot usually be defined
=xcept on an empirical basis, and may for
=xample involve an equilibrium average or com-
sination of averages taken over high derivatives
af velocity or acceleration. Examples include
“he mean square torque and mean square
:orque-derivative,
~ Sufficient range of frequency must be used if
:he essential differences between the ideas now
= the literature are to be extracted. If, for
=xample, dielectric relaxation is to be used the
sange must extend up to the high frequency
wings of the far infrared Poley absorption.
Similarly Rayleigh depolarised light scattering
measurements [6] should be taken as far as
mossible into the high and low frequency
regions of the displacement from' the exciting
ine. These spectral features reveal statistical
mechanical details such as memory and intertial
eFects [1, 4]. In particular the far infrared
power absorption coefficient [a(w)/neper cm™ ']

is actually sensitive to those subtleties which
serve to distinguish between the various avail-
able models, details of which are obscured to a
large degree at lower (dielectric) frequencies or
alternatively by using measurements only on
loss.

The assumptions on which the models of the
liquid state are based can be avoided by the use
of sum rules [7], which have dealt with the total
integrated absorption cross section of either
£"(w), the dielectric loss, or a(w). The loss and
power absorption coefficient are related by

a(w) = we"(w)/n(w)c,

where n(w) is the frequency dependent refrac-
tive index and ¢ the velocity of light in vacuo.
In this paper we commence the exploration of
the usefulness of sum rules on w’a(w) and
w*a(w), using accurate measurements of a (w)
in the high frequency wings of the far infrared.

.The mathematical sum rules can be developed

for the asymmetric top in terms of the mean
square-torque and the mean square torque-
derivative. It is shown that the existing far
infrared data are sufficiently accurate in the
wings to use the method with w’a (), and in
rare cases o” a(w).

Having developed these sum rules it becomes
possible to use them to eliminate the problem
of free parameters when we switch our
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consideration to the bandshape (or correlation
function) rather than the area beneath it.

2. Theory

Fhe starting equation for the analysis is the
one-for the orientational autocorrelation func-
tion {u(r) « w(0)) (where m is, for example, the
dipole vector) used by Quentrec and Bezot {8]:

S 00 wO) =~ [ 1(s) (O Kot =s) ds.

f ° (1)
Later we discuss the physical basis of this
equation [9]. :

It is well known that eq. (1) is a Mori/Kubo
type of integro-differential with Ky a memory
function, which is itself an autocorrelation func-
tion which can be related to its own memory
function with an equation similar to (1). It
follows that:

Cu(0)={(n(t) - n(0))/{(0) - w(0)),
can be expressed as the following continued
fraction in Laplace space:

-1

Culp) = (p+p ffzg,) , @)

with Ko, K etc. as equilibrium averages which
are related to molecular dynamical quantities in
an increasingly complicated way.

The expansion (2) is by no means universaily
accepted [10] as being useful or even physically
meaningful. Its usefulness depends on how
many terms K, (n - o0) can be defined experi-
mentally without recourse to least mean squares
fitting; and on how it is truncated. We have
evidence that the truncation is more than a
mathematical gesture if we are able to relate its
consequences to a clearly defined set of
mathematical equations representing a model of
the molecular dynamics. Tables of such infor-
mation have been drawn up by Evans et al.

[1, 7). The limits of applicability of eq. (2) have
also been explored.

Usually this series is truncated by a constant
with the units of frequency but no dependence

thereon. This means that the correlation func-
tion K,,_;(t) decays exponentially. There is no
problem in unravelling what this means physi-
cally for n up to 2, but we may try to see
whether it is practically useful to extend the
methodology to -higher n in combination with
sum rules,

The method used is described in the following
steps:

(i) The continued fraction, eq. (2), is approxi-
mated successively.

(ii) The spectrum is calculated using p = —iw
for each approximant.

(iii) In the first approximant there is only one
variable yo which is the inverse of the Debye
relaxation time, i.e. the peak of the low
frequency dielectric loss, All successive
approximants are used in such a way as to
reproduce exactly this peak frequency. This pro-
vides us with the extra information:

de’(w)/dwm =0. (3}

()

(iv) Successive approximants contain the vari-
ables Ky, ..., K, and y,+,. For the spherical top
it is well known that Ky(0)=2kT/I, where [ is
the moment of inertia. The approximant:

C‘u(p)=[p +f—52—3]*1,

(4}

is defined using this [7] and eq.(3) for ;.
{(v) For the next approximant:
Ko(0) ]“ .
p+[K(0)/(p + v2)]

2

C‘u(p)=[p+

a sum rule for v’ a(w) may be used for K, as
an adgitional source of information. This means
that C,(p) may be estimated without fitting. (vi
The next step is:

Culp) = [p + X0 ] ‘

‘ p+ K, (0)/{p +[K2(0)/(p +va)}}

(68

where sum rules for o a(w) and w*a(w)
theoretically give K, and K, unambiguously.
Unfortunately, the accuracy of high wing data =
rarely enough to allow us to estimate with any
certainty the area beneath w*a(w). Here tech-



iz2! improvements in instrumental interfero-
z#rv should help, especially in counteracting
roblems of baseline determination and

wnd overlap.

w11} The final approximant to be taken is the
e involving K, ..., K3, and y,. It becomes

i difficult to find additional sources of infor-
pazon in this case, and the only feasible

pethod of estimating K, even to order of mag-
Fruds, seems to be by fitting with K5 as the
Bsble,

| The measure of convergence of using success-
iely more variables is taken in the following
Bmses:
' 7\ The far infrared spectrum should be
Bescribable accurately in all cases, while it
“esmains true that the dielectric loss peak is
seproduced exactly.
. . There should be an increase across the
< Yo, ... Yn, 1.€. the correlation time of each

“uecessive memory function should shorten,
iherwise the physical basis for truncation is
umdermined, because the nth memory function
“woald not be a fast variable compared with the
+-=ntational autocorrelation function itself,

1 Sum rules for the mean square torque and
wean square torque-derivative

These can be constructed from the funda-
=al relations:

N = [ Clw)e™ dw

| C(w)daH—itI wC(w)do

i

n

t [2¢]
~ ..—i"—J. 0" Clw)dw,

oy (N

“where the suecessive integrals are the required
“=oment of the spectrum. We have

o]

" Clw) dw,

—o0

) D»r-i"j (8)

wianere C(1) denotes the nth derivative of the
rzlation function C(¢). Eq. (8) is a funda-
mental theorem relating the even spectral
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moments of a classical autocorrelation function
to its time derivatives at equilibrium (¢ = 0). The
even spectral moments of order 2n are equal to
the time derivatives of order n at the origin of
the correlation functions. This implies that a
classical correlation function must be expanded
as:

2

4
c= <A2(0)>—% (A%(0)) +;—! (AXO)~ ..,

where

5]

(AX(0))oc [ C(w) do;

—o0

AN [ o Clw) da;
0" C(w)dw.

(A™2(0)) o I
Specifically when A denotes the dipole vector u
the sum rule for the area beneath a(w) has
been derived from the asymmetric top by Gor-
don [11] and in the classical limit by Brot [12],
The result is:

(a(0) « t(0)yoc kT (13 + u?)/ 1,

+ W+ ud)/ L+ s +u3)/ L] 9)

Here u, etc. are the projections of the unit
vector along the dipole moment onto the axis of
inertia. The approximate relation to the power
absorption coefficient follows as:

[+

| %4 2#2/&%/
(N) L (@) do = 3¢

(10)

u3+u§ u§+u§ u3+u3
+ + ,
I, I, I,

where N/ V is the number of molecules per cm’
and p., the dipole moment.

To develop a sum rule for {; w’a(w) dw it is
necessary to evaluate (@#(0) - #(0)) for the asym-
metric top. This may be achieved following a
method originally given by Desplanques [13],
starting from the purely kinematic relations
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f14-16]

i=wXu, w=uXxu.
2.2. Expressions for loss and permittivity

We now set up a separate set of equations
using microwave and far infrared spectroscopy
to supplement the sum rules,

(i) In the first approximation 1/(p 4 yo) we
recover the Debye equations for the loss and
permittivity. The maximum of the low
frequency dielectric loss lies at yo( = w.,).

(i) In the next case:

e"(w)=(eo—ex)wy1Ko
x[(Ko—w?)+viw®]™, (11)
e'(w)=eo—~(e0—€m)w [y} ~ Ko+ w?]

X[(Ko—w?)+viw’]™! (12)

and using de”/dw =0,
v: =[Ko—wi 3wk + Kolw?. (13)

(iii) In the three variable and further cases
similar equations are obtainable.

3. Discussion

Several different methods of fitting the data
were used involving a non-linear least mean
square program of the N.A.G. Library,
EO4FAA. In the three variable case we iterate
on K, only, because K, is defined by (i2(0)).
We use for CHCl, €5 =9.08 and for £« take
n =2.03. Of course v, is related to K, through
€q.(2). The least mean squares best fit is shown
as the solid curve of fig. 1 with y,=
2.2x10"%s™"; K, =5.35%x10% 572, This com-
pares with K;(0) derived from the experimental
second moment of 3.56x10%*s™* (in 10%
decalin solution, see appendix).

We note the following:

(i) v2> 7D, the inverse of the Debye relaxa-
tion time. The decay time of the exponential
correlation function K,(?) is therefore much
shorter than that of {u(z) - w(0)), the dipole
a.c.f. The basis of the continued fraction
approach is valid in this case.

(ii) The constraint imposed by eq. (17) shows
up as a shoulder in the theoretical best fit curvs
at low frequencies. The theoretical maximum
lies at a higher frequency than that observed.

In the four variable and subsequent cases we
have used the following approaches to test the
convergence of the continued fraction.

Firstly, in the four variable case K, and K.

.are taken as defined by the three variable fit,

and vy, is related to K, via eq. (21). The a(w
data are then best fitted by least mean squares
using K, as a variable.

Secondly, the same procedure was followzd
by iterating simultaneously on K; and K.

The curves from these time fittings are almos:
identical with each other and with that from e
three-variable fit, The value of K, changes vers
little between the three- and four-variable
fittings and ;> y,. The algebraic criteria for 9
convergence of the continued fraction is obeyed
However, it is not possible to define K, with :
any accuracy using this procedure because large
variations in K, have very little effect on the
theoretical a(w) curve. This is true when fittimg
a(w) (fig. 1), o a(w) or w*a(w). The short-
comings of both the three and four variable
theory are clearly revealed in that ’a(w)
reaches a plateau level in the three and four
variable theories, despite the fact that the res
to transparency in this case i$ theoretically w
dependent.

Thirdly the moment spectra w’a(w) and
w’a(w) were fitted using the same methods
(fig. 2). Again K, is well defined but K is nos

The only incisive method for estimating hoss
K; and K, with reasonable accuracy therefore
seems to be by moment analysis, using an itera
tive method to extrapolate the experimental
w” a{w) data on the high frequency side. This
gives us K; =3.56 % 107573, K, =6.95x 107"«
with an uncertainty of about £10% in the for-
mer and £30% in the latter (see appendix:. :

In the remaining part of this discussion we
concentrate on the extra information availabie
from w’a(w) spectra under a range of condi-
tions. The Fourier transform of this curve
results in an estimate of the normalised rota-
tional acceleration autocorrelation functicr
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Fig. 1. Mori continued fraction fittings to power absorption
data for liquid CH,Cl,. © Experimental data. Three-
variable fit, taking Ko as defined by the classical root mean
square angular velocity. With eq (experimental) =9.08;
ng =2.03, where np is the refractive index of the CH,Cl,
liquid absorption at the high frequency end of the far
infrared dispersion range. With reference to the main body
of the text, y2=22%10'%57"; K, =5.35%10%°s72, non-
linear least mean squares fitting with the constraint that
5a(e") =3.35cm™", where 5,(e") is the wavenumber at
which peaks the dielectric loss. —— Four-variable fit, indis-
tinguishable from the three-variable fit, iterating on 3 and
K,. With the constraint 5,(e")=3.35 cm™ we have y; =
3.6%10"7s7; K, =1.30x 10%® 572, — - - Five-variable fit,
iterating on v (=1.6x10"7s7") and K (=2.35x10%°57%)
taking Ky = 1.3 X 1028572, —— — Four-variable free iteration
on y3 (=6.34x10'7s7"); K, (=1.75%10%%57%); K,
(=5.4%10*¢ 572), Ordinate: «(5)/neper cm”}; abscissa:

g/em L.

ir.a.a.c.f.)
(i (t) - a(0))/€i(0) - i (0)).

Figs. 3a and 3b illustrate the information
available for the rotator and liquid phases of 2-
chloro-2-nitropropane. The r.a.a.c.f. for the
rotator phase is slightly the more oscillatory,
and both are more oscillatory than the corres-
ponding rotational velocity autocorrelation func-
tions related to the Fourier transform of a(w)
itself [13]. The result is also in harmony with a

~ computer simulation of (i(t) - #(0)) carried out
by Evans et al. [15] for N,. This result has impli-
cations for the levél at which the Mori con-
tinued fraction could be truncated, because the

Fig. 2. (1) —— Three-variable fit using £ (>n|2;,), two vari-

able fit. (2) Two-and three-variable fittings using n3.
The moment analysis is acutely sensitive to the intensity of

the spectrum. - — - Four-variable analysis, using n,z). Para-

meters of fig. 1. Ordinate: 107 x 5%a (5); Abscissa: b/cm™.

r.a.a.c.f. is as long-lived as its velocity counter-
part. The second memory function, which is
defined at t =0 by

(0) - di(0)) (a(0) - u(0))
@(0) - @(0)) (u(0) - u(0))’

is certainly not describable in reality by
K\ (1) =K,(0) exp (—7t),

as in three variable theory, but is inclined to be
oscillatory.

Similar behaviour is observable for 2,2-
dichloropropane where the w”e(w) spectra
show distinctly that the high frequency features
in the rotator plane are more pronounced than
in the liquid, leading to a more oscillatory
r.a.a.c.f.

In figs. 4a and 4b a similar analysis is illus-
trated for the rotator and liquid planes of ¢-
butyl chloride. In this case the opposite
behaviour to 2,2-dichloropropane is exhibited in
that the liquid w’a(w) spectrum is the broader
possibly because in the rotator phase the effects
of collision induced absorption are lessened by
the symmetrical arrangement of- the- molecules
in the solid lattice. The r.a.a.c.f. is more oscilla-
tory (and longer lived) than that inthe liquid.

It is well known that non-dipolar liquids and
compressed gases absorb in the far infrared

K1(0)=
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Fig. 3. (a) (1) 2-chloro-2 nitropropane liquid, o a(w) spec-
trum at 293 K. (2) 2-chloro-2-nitropropane rotator phase

wza(w) spectrum at 209 K. Ordinate: Eza(ﬁ)/neper em”2,

abscissa: 5/cm”". (b) Fourier transform of curves 7(a), ——
rotator phase; -~ - liquid. Ordinate: normalised r.a.a.c.f.:
Abscissa: t/ps.

because of collision induced absorption. The
w’a(w) of liquid carbon dioxide and its nor-
malised Fourier transform are shown in fig. 5. In
principle this type of spectrum could also be
used to investigate in further detail the mechan-
ism of dipole induction in a dynamical context.
The Fourier transform of w’a(w) in this case is
also as long lived as that of «a(w).

In fig. 6 a similar analysis is carried out for
liquid CS,, the a(w) and o’a(w) spectra being
compared directly. The effect of uncertainty in
the high frequency tail of the spectrum is

Fig. 4. (a) (1) Rotator phase at 238 K (2) liquid at 27 &
(b) — - - rotator phase; — liquid phase. Ordinates and
abscissae as in fig. 3.

102m-3

t/ ps

Fig. 5. Liquid carbon dioxide; (a) and (b) ordinates =z~
abscissae as in fig. 3.
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Fz. 6. (a) Liquid carbon disulphide, —— «(iJ)/neper em™!
72a(D)/neper em 3. Abscissa: 6/cm”". (b) Fourier trans-
f2-m of 62a(5), normalised ordinate; abscissa #/ps.

magnified in the w’a(w) spectrum, but by no
means to an unacceptable degree, so that
moment analysis of this kind is generally
izasible. The effect of the uncertainty on the
Fourier transform is illustrated for benzene in
fig. 7.

The new numerical methods currently appear-
ing allow us to evaluate the spectral moments to
zny order, using, for example, the technique of
semi-stochastic simulation, provided the initial
-zquation of motion is properly defined. In this
respect a simple Langevin equation for the
angular momentum is no longer sufficient.
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Appendix

The Mori continued fraction parameters K,
X, and K, can be measured experimentally. In
order to present our results in a homogeneous
form we have measured with Reid [2, 3] some
fresh far infrared spectra for some dipolar
solutes in a common environment (decalin sol-
vent), The resulting values of Ky, K| and K, are
thereby as§umed to reflect specific solute—
solvent interactions, and be unaffected by
differing solute-solute interactions as in the

2 3
A\ | | t/ps
40 cm! 120

Fig. 7. As for fig. 6, benzene.

main body of the text in this paper. The follow-

ing values are uncorrected for internal field
variation

185

Sotute 10 Ko/s™2 102K, /s™> 107 Ky/s™?
(10% v/v (£15%) (£15%) (£30%)
except where
stated)
CH,Cl, 9.29 356 695
CHCl, 17.49 171 479
fluorobenzene 3.70 130 170
nitrobenzene 1.83 143 164
chlorobenzene  5.23 108 152
bromobenzene  7.34 94 172
pentafluoro-
benzene 0.94 139 189
1-chloro-
naphthalene  1.64 147 233
t-butylchloride  2.52 92 157
pyridine 6.61 211 404
(20%) toluene  7.50 157 190
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