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ITINERANT OSCILLATION WITH A COSINE POTENTIAL
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The equations of motion of the planar itinerant librator are extended to involve a cosine potential rather than a
harmonic form for interaction, and are solved numerically to produce the angular velocity autocorrelation function and
its Fourier transform (real and imaginary parts), The behaviour of the cosine potential is matched with that of the
harmonic potential through these functions and in general conforms more closely to the indication of zero-THz

spectroscopy and computer simulation.

1. Introduction

In this paper we deal with an extension of the
model of itinerant oscillation to include poten-
tial interaction forms other than the harmonic
function used by Coffey and Calderwood [1] in
their original paper. The assumption made by
these authors is that the binding (or potential
interaction) between the inner molecule and
cage is harmonic. This is an approximation
introduced for the sake of analytical tractability.
More realistically the potential has a cosine
dependence so that the equations of motion are
2):

L 6(t)+ L o3 sin [0(1) — (1)1 =0, 1 -
L)+ 1 Bd()— L wisin [0(r) — ¢ (6)] = L, W (¢).

(2)
In these equations W(¢) is a Wiener process
~epresenting the effect of brownian noise on the
rotating cage, of moment of inertia I;. The
moment of inertia of the reference (encaged)
molecule is I, and w3 is a coupling constant
2etween molecule and cage. The friction

coefficient 8 is a scalar governing the brownian
motion of the cage and # and ¢ are orientation
angles defined by Coffey and Calderwood [1].
There is no known analytical solution to egs.
(1) and (2) except in the case sin [8(¢) — P (£)]=
6(t)— & (2), i.e. the harmonic case. However,
Ferrario and Evans [2] have recently solved
these equations numerically by the use of matrix
diagonalisation techniques, and in consequence
it is of interest to recalculate the experimental
best fit harmonic results of Reid and Evans [3].

2, Computer simulation

An algorithm written originally by Renaud
and Singer [4] has been modified to produce the
Legendre polynomial (P, ) orientational auto-
correlation functions for n up to 5, together
with the angular momentum autocorrelation
function, (J(¢) - J(0)). These data can then be
analysed with the model equations (1) and (2) in
the harmonic limit of Coffey and Calderwood
[1] as discussed lately by Ferrario et al. [2].
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This was carried out as follows. With the
original concept of sin [6(t)—¢(t)]=6(t)— (1)
the simulated (P,) function was fitted with a
non-linear least mean squares method, iterating
on B, wg and (I,/L)w} as parameters. Using
these it is possible to calculate (P,) to (Ps)
analytically, using the theorem of Calderwood
and Coffey (1]. It is also possible to calculate
(J(#) - J(0)) with the same set of parameters. A
self-consistent comparison is therefore possible.
By fitting the function (P,(¢)}, the second
Legendre polynomial autocorrelation function
(acf) of orientation, 6(t), the first acf (P;(¢)) is
reproduced fairly accurately [2], especially at
long times, where the decay of both P, and P,
with time is roughly exponential. The functions
{P;) and (Ps) are followed less closely, possibly
because these are always markedly non-
exponential in nature. The harmonic assumption
sin [8(¢) — & (2)]=0(t) —p(¢) is therefore fairly
restrictive in the original model. This is shown
clearly by comparing the simulated and analyti-
cal angular momentum acf’s using the set of
parameters derived from (P,). The model

{J() - J(0) is far too oscillatory.

It is therefore essential to consider whether
the replacement of a harmonic potential by a
cosine one would succeed in damping out these
oscillations to a sufficient degree, or whether the
basic concept of itinerant oscillation is at odds
with the results,

3. Numerical solution

This has been described elsewhere {2], but
the salient points are reproduced here for con-
venience. The first stage is to write down the
Fokker—Planck equations describing the process,
that is:

OP(yn, ¥, 6, &, 1]0)/3t = LP, (3)
where the Fokker-Planck operator L is:

1

(0+¢)+§ J(G qS)—EI— 55 V'(¢2)

1 8 . kT & L2
b L Vi) +—— —3
21, ad (@) 26 ° I, 36° a¢ 36 ¢

kT &
I, a¢*"

The boundary conditions for 8 and ¢ are — = <
0 <m and —m <¢ <, which result in —7 <

n<mand —w <=

Here
h1=(0+¢)/2;  ¢a=(6—-¢)/2;
V(W)= — I, w5 cos (2¢2).
The equilibrium solution of eq. (3) is:

60’ 6L

eq(d’l: (1'2) 0 ¢) —_—exp[ 2kT 2kT

+IZ"’gc 2 )]
&T 0s (2¢42) | .

Eq. (3) can be solved by a method which is gen-
erally applicable and is described by Risken and
Volmer [5]. This allows us to compute any cor-
relation function of interest by the integral:

(e, (0) aalt)) = j (@, 0) x2(Q, 1) dQ,

where [Q]=[¢1, ¥, 6, $] are physical observ-
ables of the system and can be expressed in
terms of [{)(z)].

x2(Q, t) is the solution of the equation

ax/ot = Lrx,

with the diffusion operator:

Le=y¢ (LW

and

Y@= (N2 exp[~(L6°+1,6%)/4kT
+(Lwd/2kT) cos (24,)].

Subjected to the initial condition:

D2(0, ) = a2(2) Y(Q).

The solution is achieved numerically by using
the following expansion on the basis set of Her-
mite polynomials and on the plane waves of the
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function ®:

o

D)= 3 ¥ AL"()Hen(6) Hen(d)
n=0 —®

x exp (ki +iqi) ¥ (QY), 9)

which transforms eq. (6) into a linear differen-
tial matrix equation:

AW =CAQW, (10)
where
AS(?)
A= |0 (1)
3 i

and C is the matrix expansion of the operator
Lr on the basis set given by eq. (9).

Eg. (10) is solved by diagonalising the matrix
C. The solution is:

A(t) =exp (C1)A(0) =} F; exp (C)[F;, A(0)],
(12)

where F; and F; are the right and left eigenvec-
tors and C; the eigenvalues of the matrix C, and
the brackets [ , ] mean the scalar product. In
evaluating the integrals (5) we have used the
fact that:

8= J. cos (gx) exp ((I,w02/kT) cos 2x) dx
=0if n is odd;

= B2 (Lw5/kT) if n is even or zero.

Here B,(z) is the modified Bessel function of

integer order, n =0, 1, 2, ....

4. Results and discussion

Reid and Evans [3] have récently estimated
the coefficients 8, w5 and (I;/I)w? for twenty-
three dipolar solutes in decalin using data in

both frequency and time domains. We have re-
- computed the theoretical angular momentum

acf’s and in this section some of the results are
illustrated in the low and high damping
extremes.

The computational problem of solving egs. (1)
and (2) involves multi-dimensional matrix
diagonalisation [eq. (11)] and therefore an
unusually large amount of storage. In con-
sequence it is not possible on the system avail-
able to us (UMRCC CDC 7600) to compute the
orientational autocorrelation functions {P,)
because of lack of storage space.

However, using the best fit parameters of
Reid and Evans [3] it is possible to compare
directly the harmonic and cosinal angular
momentum autocorrelation functions. We have
chosen four solute/decalin systems out of the
original twenty-three with which to do this in as
representative a manner as possible. The corres-
ponding zero-THz spectra are listed elsewhere
[3, 6] in the harmonic limit,

The purpose of replacing the harmonic poten-
tial with a cosine potential is to generalise the
itinerant librator model. There is no known
truncation of the Mori continued fraction which
corresponds to the use of a cosine potential
although theoretically the use of an infinite con-
tinued fraction with the appropriate equilibrium
averages should lead to a proper description of
three-dimensional angular motion even when
the intermolecular potential interaction is
arbitrary in form [6-8]}. The Mori continued
fraction is linear in nature but so is two-
dimensional angular motion, in contrast to the
three-dimensional case, where the non-
linearities of the Euler equations are projected
into the noise term of the generalised Langevin
equation. Debye used the same device in the
development of his original rotational diffusion
equation for isotropic motion [9], because the
Euler/Langevin equations for a spherical top
are inherently non-linear in three dimensions.

The systems considered are [3] (10% V/V it
decalin at 293 K): toluene, pentafluorobenzens,
«a-picoline, nitrobenzene (two alternative sets of
parameters), bromobenzene (two alternative
sets), aniline, benzonitrile, chloronaphthalene
(two alternative sets), and bromonaphthalene.
The parameters 8, ws and (I;/I)w} of egs. (1)
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and (2) used in these calculations are listed by

Reid and Evans [3]in their table 1. LY JaATI o Fencrion
The harmonic and cosinal versions of the rer

itingrant librator-madel are illustrated in figs. 1

tO-ﬁ,_;iﬂ—tOfmS—Off{he normalised angular osr

a4}

F(@) - T(O) _ (6(1) 6(0) .

J(Q) - J(0)) (6(0) 6(0)) " ]
: and the real and imaginary parts of its Fourier 00 b A\ e
- transform (in the frequency domain).
‘ The (6(+)6(0)) function for toluene/decalin is \\ S/
oscillatory in the harmonic limit but damped \\ v
when we solve eqs. (1) and (2). For reasons of 0.4 | —

storage restriction on the CDC 7600 it is not
possible to extend the computation past 5.0
reduced units in the time domain (fig. 1a), but
the full effect of the damping can be brought
1 out by Fourier transformation (fig. 1b). The
: top panel of fig. 1b, is approximately similar to [ b
the'far infrared power absorption coeflicient, '

Ia 1200 2 OS8 FRICTION- 1739

o0

a(w)oc I {6(¢)8(0)) cos wt dt,

V]

although the latter is more accurately the
Fourier transform of the rotational velocity
autocorrelation function [6-8]. It can be seen
from fig. 1b that use of the cosinal potential has
the effect on the spectrum of moving the peak
to lower frequencies and to develop a secondary
feature in the dispersion (bottom panel). The
spectrum in the cosinal case is the broader. At
higher frequencies both representations become
A identical.

1 The situation for pentafluorobenzene/decalin
(fig. 2) is similar, and the “as infrared” spec-
trum (fig. 2b, top panel) shows the characteristic
shift to lower frequencies. This implies that the

effective mean square torque is lower when Fig. 1. Best fit for toluene in decalin. (a) —— (thick line)
using a cosine potential. The damping out of cosine potential. —— harmonic potential. We have 8, =
(6(1)6(0)) illustrated in figs. 1a and 2a produces 17.3 (KT/1)'"* THz, w5 =100.0 (KT/I) (TH2)", (L/1) wj =
an angular velocity acf more in line with that 112 (kT/1,) (THz)" with (1,/kT) *"=0.69 ps. Here I is a

d db t . lati [6 8] reduced moment of inertia described by Reid and Evans [3’
produce y computer simulation |0-6 }. T =293 K. (b) Fourier transformation. Bottom panel disper-

These characteristics are exhibited also by the sion, top panel “far infrared” spectrum (approximate).
10% V/V solution of a-picoline in decalin. The Ordinates and abscissae in reduced units.
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Fig. 2. Pentafluorobenzene in decalin, as for fig. 1.
(I/kT)"/*=1.04 ps. In the units and order of fig. 1a the
parameters are: 24, 129, 232.

angular momentum acf’s for nitrobenzene/
decalin were computed with the two different
sets of parameters chosen by Reid and Evans
[3] to represent extremes in their time-domain
fitting procedures in this case (table 2 of ref.
[3]). In the second case the effect of using the
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Fig. 3. Bromobenzene/decalin (first set of parameters [3]).
(I./kT)/?*=1.04 ps. Parameters: 23.5, 82, 224. :

et T

cosine potential is not as pronounced, the
angular momentum acf’s remaining.oscillatory.
The first case corresponds to curve-4 of Reid - ,
and Evans, fig. 3c, and the second to curve 2 of et
the same figure, the curve whichpeaks at the

higher frequency in the far infrared.
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Fig. 4. Aniline/decalin. (I,/kT)"/* =0.69 ps. Parameters:
11.6, 94.5, 94.3.

Similarly, two sets of best fit parameters
[B1, ws, and (I1/L)w3] were deduced in the
harmonic limit by Reid and Evans for bromo-
benzene/decalin. Fig. 3 illustrates that the effect
on the autocorrelation function and spectrum in
this case is very pronounced.

Reid and Evans discussed the case of aniline
in decalin as one where molecular association =
an important consideration [3, 6], and the efzct
of the cosine potential {fig. 4) is significant, 1h=
peak of the theoretical spectrum in the har-
monic limit being removed and replaced by =
shoulder (fig. 4b, top panel). The breadth of
the spectrum is now more in line with what =
observed experimentally (Reid/Evans) and the
damped angular velocity acf is more like thza: e
produced typically in a computer simulation 5

The pattern is similar in benzonitrile/decz’ =
and in the large, flat, asymmetric diffusers 1- 3
chloronaphthalene/decalin and 1-bromonap~-
thalene/decalin.

In conclusion therefore we can see that th=
inclusion of a cosine type of angular depen-
dence in the equations of motion produces
results more in line with known spectral
features and with those of computer simulat:on
The amount of computer power involved in
solving egs. (1) and (2) is, however, prohibi-
tive, and further developments should be pur-
sued with care, and in close association with e
results of computer simulation, which works =
three dimensions with more realistic interactom
potentials.
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