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_ = 716" d7 and torque components evaluated.

Isfroduction and theory

The description of zero-THz spectra in
‘ecular liquids is a formidable problem of
wstical mechanics. The theory is only just
mming to reveal the intricacies behind the
! looking broad band spectra usually
“servable [1]. The only classical theoretical
wsod available at present to match these
wres over a broad enough range of frequen-
s the semi-empirical one based on
sions of the Liouville equation governing
N molecules of the system as a whole [2].
Mori continued fraction is one such
sansion, in terms of equilibrium ensemble
azes, Ko(0), ..., K,(0) (n-> ) of the
=vant dynamical variables [3]. If we choose
erientational unit vector, u, these averages
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The description of microwave and far infrared spectra with continued fractions is pursued using a moment analysis
on numerical integrals of the kind j;o a(0) %" d0, where « is the power absorption coefficient (in neper em™)
wnd 7 the wavenumber in em™", The theory is evaluated for bromoethane and 1-bromonaphthalene (pure liquids)

« room temperature. The three and four variable truncations used are more successful for bromoethane than for
_-sromonaphthalene, where the sharp peak produced theoretically may be broadened and shifted only relaxing the
comditions of vy, the critical wavelength of the microwave data, Sum rules are developed for the moment integrals

are constructed as:

Ko(0) = (u?), (1)
K1(0) = Gy /{i®) ~ (a?). )
If we define:

ay=—{u; a;=(i); as=—(i%),

then

" Kx(0)=(2at —2a%ax—aias+a3)/ar(az—a?).

3)
This kind of analysis can be continued for
higher K,(0) (n -»0) (see appendix).

In principle, it is possible to obtain K, (0) for
all » by a moment analysis of the appropriate
spectral data. This is because
2n

© t
CO=® uO)= % azs.

4)
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If this is assumed then Evans et al. [4] have shown
that when we ignore internal field corrections:

a,=—= J' a(p) ds, (5)
0

e o]

a,=4x2c'= J 5% a (D) dd, (6)
0

a;=-167'c*= J 5% a(5)ds, (7)

[}
with
==3kTc*/mNpn’. (8)

In egs. (5)—(8), a(?) is the far infrared power
absorption coefficient, in neper cm™', 7 the
wavenumber (in cm"l), N, the molecular num-
ber density, . the molecular dipole moment
and ¢ the velocity of light. Eq. (5) is often
known as the Gordon sum rule. These relations
are obtained on the basis of the expansion:

2 ’4

CO= 1~ iD= v (©)

6!
which holds true in the absence of quantum
effects. The quantum mechanical equivalent [1]
of C(t) may be expanded in a time series, but
the odd t terms no longer necessarily vanish. It is
frequently overlooked that the series expansion
represented by eq. (9) does not produce an
acceptable spectrum by Fourier transformation.
Taken term by term we have, in Laplace space:

.2 w2 w2
-1 G0
p p 14 P

(10)

The real and imaginary parts of C(p) in the
space of frequency (w) are obtained using the
substitution p = —iw. It is easily seen from eq.
(10) that C(~iw) has no real part, and therefore
is not a valid description of a relaxation spec-
trum, i.e. of loss and dispersion. The rigorous
quantum mechanical equivalent of C(~iw) on the
other hand has a real and imaginary part.

Mori [3] has expanded C(p) in a continued
fraction: -

pt. (11
which is equivalent to eq. (10) if we take the
continued fraction to infinity. Therefore eq. (11
also is not a valid description of a broad band
relaxation spectrum when untruncated. This was
first pointed out by Scaife [5] in 1976 in the
context of autocorrelations of u. The rigorous
quantum mechanical version of eq. (11) is of
course equivalent to the quantum-mechanical
version of eq. (10) and produces a well-defined
spectrum. The more general Mori theory [6],
derived for cross-correlation functions in addi-
tion to the autocorrelations of egs. (10) and
(11), uses column vectors of more than one
dynamical variable, e.g. {7]. In general the Mori
resonance operator does not vanish when taking
into account cross-correlations.

Whenever eq. (11) has been used as a
description of zero—THz spectra it has been
closed with an ad-hoc assumption on the time
dependence of K, (¢), an nth memory function.
A great deal of spectral comparison has been
completed to date with the closure:

Ki(t) = K1(0) exp (—y1). (12

The analysis of this equation has not been
entirely satisfactory because K,;(0) and y, have
been treated as adjustable variables. In this
paper we aim to resolve the question con-
sistently without the use of fitting procedures,
but rather through the acquisition or use of
accurate spectra over the complete zero—THz
range, especially in the high frequency wing
area of the far infrared. Egs. (1) to (7) can then
be utilised to define the averages K, (0) unam-
biguously from the far infrared power absorp-
tion coefficient.

The frequency v, is defined from the peak
frequency (w;) of the dielectric loss €” through
the equation

[de"/dw]l., = 0. (13)
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111=(13) provide the relations: v: ={2w1(4w] —2w1[Ko(0) + K1(0) + K2(0)])

- K0)+ K (0)H50] — wi[K(0)+ K, (0)]}
[Ko(0)— w3 ][Ko(0)+3wi] ’
(14)

=~ 23)wy1Ko(0)K1(0)/D,

e ey n%)w Y [Ko(0) — 0]

« —[Ko(0) + K1 (0ODIK:(0)~w’1}/D,  (15)

o~ w[Ko(0)+ K (0] + ¥i[Ko(0) - T,
(16)

- is the static permittivity, n the refrac-

“mcex at the high frequency extremum of

sero—-THz curve, €" the dielectric loss and €’

seguency dependent permittivity. The far

i power absorption coeflicient is defined
=n the Maxwell relation:

=we'(w)/n(w)c, (17)

= i:(:€12+€u2)1/2+€,]}1/2,

~efractive index. With the usual relation

Tc it is therefore possible to construct
ically the moment spectra 72" (5). The
we of the truncation, eq. (12) implies that

* © © will become a plateau theoretically as

' == The 5*a(0) spectrum, which is measur-

* . sxperimentally, albeit with some difficulty
= »e reproduced qualitatively only with the

W e zssumption:

= K5(0) exp (—yat). (18)
= =guation implies that:

€9 ngo)w‘h Ko (0) Ki(0) Kz(o)/Dl, (19)
=~ (€0~ n&)w{(w’ — w[K1(0)+ Kx(0)]))
e~ 0 [Ko(0)+ K1 (0) + K2(0)]+ Ko(0)K2(0))
e (w0 —[Ko(0)+ K1 (0)]) -

b K. 0)-0*Y/Dy; : (20)
B - e =0 [Ko(0) + K1 (0) + K(0)]

= K0P+ y3{w® — w[Ko(0) + K1(0)1,
' (21)

I

X (@1 = w7 [Ko(0) +K1(0) + K»(0)]
+Ko(0)K2(0)) — (w1 — 1 [Ko(0) + K1(0) + K2(0)]
+Ko(0)K2(0)Hot (i —[Ko(0) +K1(0)])

X (23w} ~[Ko(0)+ K1(0)])

+wi ~[Ko(0)+K1(0)D} . (22)

Egs. (3), (7) and (19)—(22) allow us to build up
5 () fairly satisfactorily but 5% () still
develops a plateau theoretically as & - co.
Obviously it is not useful to attempt to take the
analysis further without adequate consideration
of what is being generated by truncations fur-
ther down the continued fraction.

2. Quantum effects and the continued fraction

The correlation function in quantum
mechanics is based on the Heisenberg equation
and has been discussed in detail by Gordon [7].
The truncation of the continued fraction accord-
ing to eq. (12) or (18) introduces odd terms in
the classical expansion (10), but still moment
spectra such as 5%« (7) are left undefined
theoretically. On the other hand, if we take the
continued fraction to infinity (always assuming
that the classical autocorrelation function is
infinitely differentiable) the spectrum is well
defined because, as we have seen C(—iw) has no
real part (or a vanishingly small real part). The
continued fraction is derived by projection
operations into subspaces of the complete Hil-
bert space spanned by the dynamical variables
of interest and the starting point for this exer-
cise is the classical Liouville equation of statis-
tical mechanics. There are paradoxes inherent
therefore in the classical theory which may not
be resolved by taking the continued fraction to
infinity. In the quantum-mechanical case the
markovian assumption leads rigorously to the
correct thermodynamical equilibrium. The
breakdown of time-reversal invariance is an
effect of the markovian assumption at the nth
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order of Mori’s hierarchy rather than of quan-
tum origin. If we accept the classical projection
procedures of Mori, Kubo, Zwanzig et al. [1]
and the implied linearisation of the Euler
equations governing molecular rotational
motion then the classical theory must be
replaced by ‘the rigorous quantum theory in
order to match without paradox observable
spectral moments even when these are derived
from broad-band spectra. This is a fundamental
theorem which has not been foreseen to apply
to relaxation spectra, in particular dielectric
spectroscopy.

If we want to build up the autocorrelation
function of the quantum mechanical operator
A, the classical commutative equation:

C(1) = (A(NA(0) = (A=) A(0)) = (A(0)A(~1))
(23)

no longer applies. The autocorrelation function,
or scalar product, of A is no longer even in
time, and has an imaginary part. The real part is
even in time but the imaginary part is odd, The
real and imaginary parts of the spectral density,
pC(w) and aC(w) respectively, are related by
detailed balancing, so that:

C(—w)=exp (~ha/kT)C(w), (24)
aC(w) =tanh (iw/2kT)pC (w), (25)
C(w)=[1+tanh (hw/2kT)pC(w). (26)

Denoting by R and I the real and imaginary
parts of the correlation function, it follows that

pé(w)=2—17; J' R C(1) e d, (27)

with h

RC(n=3[C(n)+C(-1)]
=3[{A0A())+(AMA(-))]. (28)

Here A emphasises that A is to be regarded as
a quantum mechanical operator. Eqs. (24)-(28)
therefore imply that the further down the Mori
continued fraction we truncate, i.¢. the higher is
v, (in THz), the more important will become
the imaginary part of the quantum mechanical

correlation function. To reproduce the spectro-

scopically observable 5°"a(5) we shall need the

rigourously quantum mechanical Mori continued
fraction. This is discussed in the literature (see r
f1], chs. 9 and 10) in terms of the Redfield equa
and its superoperators.

By spectroscopy and computer simulation it is
seen that the real part of C(¢) behaves in a cer-
tain way, but these same spectra are capable of
revealing also the imaginary part of C(),
defined by

2s)

iIC(1) = j’ oClw) e dw. (29;

—a0

As a first approximation the classical and quan-
tum mechanical correlation functions are related
by:

C (1) = Corass(t —1h/2kT). (30

In this paper we shall see how the purely
classical Mori continued fraction works out
with moment spectra fup to #*a(#)] for liquid
bromoethane, 2,2-dibromopropane and 1-
bromonaphthalene, a series chosen partly for
spectral convenience and partly because these
three molecules typify in many respects the
features observable in complete zero-THz
frequency spectroscopy (i.e. dielectric, far
infrared and higher moments).

3. Experimental

The spectra were obtained with three inter-
ferometers at Aberystwyth; Trinity College,
Dublin; and Telecom, Martiesham Heath. A
Grubb Parsons Mark III ‘‘cube” interferometer
was used at Aberystwyth in the phase modu-
lated mode of operation fully described else-
where. These results were checked at TCD
with an amplitude modulated interferometer of
Grubb-Parsons/NPL mark I design. At Tele-
com a Martin-Puplett polarising interferometer
was used with a liquid helium cooled Rollin
detector to bridge the gap between the available
MHz to GHz frequency data (of Smyth et al. [8]




‘- zxample) and the far infrared.
The cell designs used were based on the RIIC
© _-01 variable path-length liquid cell incor-
sewating quartz or poly (4 methyl pent-1-ene)
w=dows. Golay detectors were used to about
~ -m™}, the low frequency limit of its range.
" arious configurations were tried in an
i=mpt to optimise the high frequency wing of
uz fzr infrared Poley absorption. The experi-
- menial methods involved here are more fully
~ ~=eombed elsewhere.

. Hesults and discussion

T=e spectra are illustrated in figs. 1-3. The
=r frequency parts of these spectra (the

e zetric loss and dispersion) are available in
. lzerature, and have been used to fix v, and
. sccording to egs. (14) and (22), respectively.

= Bromoethane

%= method used to match the experimental
“in s frstly to attempt to reproduce as many
sents as possible using eq. (12), and then
“=st for “convergence’’ using eq. (18), i.e.
 meertain how the theoretical spectra are
“=d by truncation further down the con-
fraction.

& 80 120 160

f. Power absorption coefficient, in neper cm ™, of
mocthane at 293 K. (1) Three-variable theory.
i=ble theory.
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Fig. 2. @ Power absorption coefficient in neper cm™", of
liquid bromonaphthalene at 293 K. (1) Three- and four-
variable theory. (2) Extrapolated high frequency using of
liquid data. (3) Lorentzian extrapolation of a proper mode
to lower frequencies.

Bromoethane is a suijtable simple liquid
because the far infrared spectrum (fig. 1) is free
of proper mode interference (see Durig et al.
[9]), and Hennelly et al. [8] have produced the
necessary lower frequency part of the total
zero—THz frequency profile. This is the so-
called zeroth spectral moment, the area under-
neath €”"(w)/w. The classical Debye theory is
capable of fitting this superficially, but produces

.
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Fig. 3. Multi-decade profile of liquid 2,2-dibromopropane.
® Polarizing interferometers, 1-10 em ™. <O Cube intet-

ferometers.




78 G.J. Davies et al. | Moment analysis of the Mori continued fraction

a plateau in the power absorption a(?), so that
the area beneath a(?), i.e. the second spectral
moment, is infinite for classical rotational
diffusion.

Unfortunately, most of the available litera-
ture analysis of molecular diffusion in liquid
bromoethane is still based on Debye’s theory.
For example Sempere and Regnier [10] have
detected two spin-lattice relaxation times in
the 213-373 K temperature range in liquid
bromoethane and have compared these with
Debye relaxation times. Adamenko and Cher-
nyavs’ka [11] have investigated the translational
and rotational diffusion of bromoethane using
respectively viscous shear stress measurements
and reorientational relaxation times from the
anisotropic component of the Rayleigh light
scattering. Plots of log(viscous shear stress) and
log(reorientational relaxation time) versus I/ T
are linear in all cases. In an interesting paper
Martin {12] obtained a glass of CH3;CH,Br by
differential thermal analysis. On heating, an
endothermic process appears at a temperature
T., where the glass softens and is transformed
into a supercooled liquid by the appearance of
free volume (holes), and at a temperature Ty
the supercooled liquid recrystallises. X-ray pow-
der spectra reveal no crystallisation below Ty.
Infrared spectra prove that in the glassy and
supercooled hquid states the same rotational
isomers coexist that were observed in the liquid
above Tf, the melting point. In the crystal only
the trans isomer exists. NMR spectra show that
between Ty and TR a dynamic reorientation of
the different segments of the hydrocarbon
chain appears, which ceases in the crystal.
Intense dielectric absorption between Ty and
Twr confirms the reorientation of the polar group
CH,X, which produces a Cole/Davidson
behaviour of €” when plotted against €. It
would be interesting to monitor this thermal
process with far infrared data, where the liquid
state Poley absorption is transformed into the y
process of the viscous and glassy states, recently
discovered and characterised by Reid and Evans
{13]. The complete zero~THz spectrum in this
case should of course include the far infrared vy
feature.

The results of the Mori analysis are sum-
marised for CH;CH,Br in fig. 1. From the
moment analysis we have, using the pro-
portionality constants of eq. (34), i.e. the
observable liquid state (eo—ng), rather than
the gas phase = of eqgs. (5)—(8) we have in
the three-variable case: y; =11.8 THz;
Ko=4.1(THz)*; K,=176.2 (THz)*; and
in the four-variable case: y>=22.2 THz;
Ko=4.1(THz)>; K, =176.2 (THz)*; and
K,=254.4 (THz)". ,

We have €5=9.22; no=1.42; and the dielec-
tric loss peaks at 0.71 cm. 3

The intensity of the measured power absorr -
tion coefficient is matched very well, and the
loss peak frequency is theoretically fixed at th-
value 0.71 cm. In the three variable case the
moment analysis produces a fairly good posi- .
tional fit and shape, but perhaps due to an over-
emphasis in the wings of 5*a(5) the four-vari-
able peak is shifted to higher frequencies, and
consequently there is no sign of convergence in
the continued fraction. It is probable that higher
accuracy in the wings of the far infrared data
will improve the overall fit.

4.2. 1-bromonaphthalene

This is a much more severe test for the three-
or four-variable theory because the molecule is
flat and an asymmetric diffuser with moments
of inertia I, =5.97x107*® gm cm?; Iy =
1.32x107Y gm em”: Ie=1.92%x10"Y gm cm”,
The dielectric permittivity at static frequency is
€y =4.83; with a D line refractive index of
np = 1.658. The dielectric loss peak wavelengtt
is v = 16.2 cm, well separated from the far
infrared peak frequency at 7 =38+3 cm™ .

These data provide us with the three-
variable result: y, =0.52 THz; Ko = 3.6 (THz)*
K,=157.2 (THz)*; and in the four-variable
case: y, =451 THz; Ko = 3.6 (THz)*; ,
K,=157.2 (THz)*; K,=232.5 (THz)’. However. _
the theoretical loss sectrum is now far too sharp
(fig. 2) in both cases. This is a phenomenon
well-known from the work of Reid and Evans
{1, ch. 4] on the Mori continued fraction
applied to the angular velocity. The situation
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{an be improved by allowing Ko, K; and v to
“ury. i.e. allowing both the microwave and far
{airared peak frequencies to vary theoretically.
“s demonstrated by Reid and Evans this pro-
w25 a much better fit to the far infrared spec-
=, but with the microwave critical frequency
wsout 50% too high. There is, of course, a fur-
~wer difficulty with applying projection method
= asymmetric rotational diffusion because non-
~scarities of the Euler/Langevin equations are
“uojected into the random noise term, necessi-
“ating, among other things, the use of a reduced
=oment of inertia I, as defined by Reid and
“vans [1, ch.4].

The situation in 2,2-dibromopropane is inter-
Eediate.

= 3 Analysis of spectra in terms of mean square
wmgue sum rules

~ The areas under the a(w) versus w and

. =lw) versus w curve may be calculated in

2= manner of Gordon {7] and Bordewijk and

- “octcher [14] who have given expressions for
& 0)~(0)) and (#(0) - ii(0)). These are, for the
asymmetric top:

200) w(0)) =(w)uz +u3)

2y 2, 2 2., 2 2
—(w2)(ui+u3)t{wi)Nuz +usz)

2 2 2 2 2 2,
uytus uytusz us-tuji
+ + s

=kT(
A A I,

(31)
where I, I and I3 are the principal moments of
‘mertia and u,;, u; and u; components of the
Zipole unit vector u. Eq. (31) is of course the
well known Gordon sum rule for § a(w) dw,
spart from a constant factor given by Brot [15].
This kind of analysis can be extended using
“he= kinematic relations (the Euler equations):

L =wrtwiws

_Ta, (‘Ir*h+1?
12 w3 12 ’

L —I,+1
;;=—a31+w2w3=~}%+w2w3<~—1-#—3-),
- 2 2
hrE W Twa.

Here T, and T, are components of the total
torque T, defined by Bordewijk et al.

T=j=2mirixf;.

Assuming that the components of @ and T are
all independent, and averaging a),-2 and w; we
have:

2 2
(T21>+(T3)
I I

(i(0) - i (0)) =

(kT)*
+W{I3[81112+I3(11 +1,)]

+(IL = L) (I, + I+ I3)}. (32)

Here eq. (32) is in effect the sum rule for

a0

J- wza(w)dw,

0

apart from a constant term, taking into account,
among other things, the effect of the internal
field.

Similarly we may construct a sum rule for
o g el e
fo o a{w)dw from the equilibrium average:

(i (0) * i(0)),
given by:
(i (0)  #(0)) = (i1 (0)+(E3 (0) + (i3 (0)),  (33)

with

. T, (L +L+1\

u1=_3+(——l—23)(w1w3+w1053),
I, L

T L-DL+Iy, .

iy = -Tll‘+ (-—1—5——%) (w2w3 +w2w3)’

&'3 = —2((01([)1 + w2d)2),

o1 = [T+ w03~ 1))/ 1,
W2 =[To+wiws(l:~ 1)}/ 1,

w3 =[Ts+ww (I} ~ 1))/ L.
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Consequently, at ¢t =0,
o (T3) (Iz+13_11>2
Y= +

<u1> I% I
X[<w§><2T%>+(12~13
I I,
+<w%><2T§>+(11—12
13 13
UL -1~ 1)

I 1,

)2<w§><w§>

)2<w;‘><w%>

<w%><w§><w§>],

where / =1, 2, in permutation.
(ii3) = HwiwT) +8(w10,10202) + Hw3w3).

With Boltzmann statistics we have:

oo

(w?">=[ J dw; w?" exp (—%I.-w?/kT)]

—oC

-1
x[ J- dw; exp (—iLw3/kT)]

=[2n)!/n'YkT/21,)".

The sum rule for [° w*a(w)dw therefore
involves both the mean square torque and the
mean square torque derivative. Finally the gen-
eral constant of proportionality is given by:

o

J € (@) do,

0

(ny |Gy 2

(u (€0 €w)

a(w)=we"(w)/n(w)c,
so that

o)

J' (352" 2 da, (34)

0

2nc(2mc)*" !

(u(n) . u(ll)) —
(€0~ €w)

taking n(w) as approximately constant.
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Appendix

C(t) satisfies the integro-differential equation

!

daC
_d_:t_)=_,|‘ Ko(t—7)C(7)dT, (A1

0

where the memory function K, is defined by a
similar integro-differential equation:

1

—-J‘ K (t —7)Ko(1) dT, (A2

0

dKo(f) _
ds

and so on for K,,..
If we assume that

C(t)=Y ant"/n!, (A.2
Ko(f)'—‘z k(),,fn/ﬂ!, (A.4
K,.(t)=Y kpat"/n!, (A2

then it is possible to express Ko(0), ..., K (0) i
terms of the coefficients a, of eq. (A.3). For
example:

oy (L)
p
p p’ ’

so that comparing coefficients gives:

2 a
koo=—ai; koir=ai—az;, kex=ai—as. (A

Similarly:

k11 =—kaok10,

koz = —(kioko1 + k11koo), (A"
so that

K1(0)=kio=ai—az/ay, (A




s
1

Y —aja3+(ai —ax)’V/aia2—a?).
(A.9)

= process can be continued but becomes
“edious algebraically.
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