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ABSTRACT

Some Fokker/Planck/Kramers equations of currént interest are solved
numerically for autocorrelation functions and spectra. It is demonstrated
that uncritical use of these equations should be avoided because of the
neglect of memory effects inherent in.their make~up. Only in the case
discussed by Evans (1976) does this typé of equation produce realistic spectra,
and then only over a limited raﬁge of temperature and viscosity. The way to
proceed in problems involving molecular diffusion of this type is to use

molecular dynamics simulation

* INTRODUCTION

In a series of articles J1-5].we have recently been attempting to describe
the relation of spectroscopic profiles to molecular motions in the liquid
state and related condensed phases. In particular, the. combination of far
infra-red spectroscopy with dielectric measurements at microwave and lower

frequencies has provided us with a sensitive means of evaluating probability
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diffusibn equations of the Fokker-Planck-Kramers (fPK) type [6]. These are
descriptions of the motion of a particle, or molecule, subjected to
disturbances of stochastic origin, such as in Brownian motion and also

to a superimposed potential energy. The latter may be attributed to
various causes and several articles have recently apéeared stressing the
importance of the FPK type of equation in many branches of physies [7].

In this article we compute from FPK formalism autocorrelation functions
of molecular dipole reorientation. These are Fourier transform pairs with
the electromagnetic spectrum of dipolar liquids from static to THz (or far
infra-red) frequencies provided that linear response theory is applicable,
i.e. that the external measuring field can be regarded as a perturbation.

We have developed specific forﬁs of the géneral FPK equations previously [8]
for comparison with the zero-THz bandshapes of a series of dipolar liquids,
and have extended the analysis to Rayleigh and neutron scattering. In so
doing we have assumed that the potential appearing in the FPK equation arises
from intermolecular interactions of various kinds. For example:

(1) Potential well interaction, leading to molecular torsional oscillation,
or libration. The form of the resultant intermolecular potential is of
course complicated, depending in an intricate manner on the structure of
each molecule but progress 1is possible through the use of simple functions.
In this context a harmonic potential has been discussed in detail by
Coffey et.al. [9], and evaluated experimentélly by Reid et al. [10] under a
wide range of conditions. It emerges that this theory is éuccessful in
reproduciﬁg also the basic features of far infra-red spectroscopy, the Poley
absorption, but not in describing the experimentally observed shift to higher

'frequencies in the peak absorption frequency Umax (cmbl).

Calderwood, Coffey et al,]8,9] have improved upon this aspect of the
“theory by developing a model of the FPK formalism known as itinerant 1ibrati§n
or oscillation (i.b), beéause the dynamical equations are those of 3 1ibra£or
harmonically bound and encaged with a group of neighbours undergoing

rotational diffusion as rigid entity. This is an FPK system in 1R4 space
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where the intermolecular potential well is again assumed to be harmonic.

In its simplest form this model is capable of reproducing the shift in Gmax

and also of defining properly the intermolecular mean square torque essentially
because the encaged molecule is shielded from impulsive collisions by its
neighbours, Evans, Grigolini and Ferrario J11] have discussed in detail its
relationship with the Mori continued fraction of wﬁich it is an apprbximation
Coffey I12] discussed its relation with Budo's theory of diffusing molecules
subjected to internal dipole-dipole interaction of cosinal form. In this

paper we usé FPK formalism to generalise the 1,0. equations for use with an
arbitrary intermolecular potential form. |

(1i) Zero-THz spectroscopy can be used incisively to investigate the molecular
dynamics of liquid crystals. 1In this respect Evans and Price [13]

have recently used a Smoluchowski equation similar to that of Coffey aqd Budo
to explain the loss features at microwave and MHz frequencies of the

nematogen 4-cyano—-4 n—heptyl biphenfl (7CB) without assuming the presence of -

a hydrodynamic director. In this work the intermolecular potential was coasine,
but used with geometrical constraints, Chaturvedi and Shibata [14] using

convolutionless Mori formalism, have shown how this restriction may be lifted.

SECTICN I: NUMERICAL SOLUTION OF KRAMERS EQUATIONS
In a paper by Brinkman [15] often quoted by authors in this field the

Fokker-Planck-Kramers equation is written as:

~d =03 (F-pp-mrd) +a (p) - -0
- dt  dp T T dp dqg m

where p is the particle density in phase space 1R2(q,p), p being the momentum
of the particle P and q its coordinate, Eqn. (I.1) is derived from the

Langevin equation:

dp = F(q) + A(t) = (I -~ 2); mq =p; F(q) = -dV ~ (I - 3)
dt ’ dq

where V is the potential energy of P. This is the basic equation with which
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we shall be concerned but we shall change Brinkman's equation slightly in
order to concur with that more commonly used in contemporary articles.
Accordingly:
_ o1 -

W(q,p,t); T = B ) F = ‘GV/BQ - (I - 4)

We shall be interested in. evaluating numerically averages of the type
G
qsPp

In the notation (I - 4), eqn. (I - 1) becomes

—3&=a_(—zw-£p-.mkraﬂ +a (") -
3t ap 3q -1 -1 ap 9g i
B B
whose solution may be written as:
o
2
W(g,p,t) =exp|_-p I He v (q,t) - (I -6
(2ka )n=0 t kT

where the Hen are the Hermite polynomials and the wn are functions to be
determined. We stipulate that b =0 for n<0 and in géneral n=20,1,2,3...
Equs. (I.6) and (I.1) with the use of Hen(x) recurrence relations result in

the scheme:

b

- - - } — (1 -

By, +n Y = F oy (kT) N G 1)( kT) 3, - (1 =)
3t gt VaKT m  3q m 3q

where m is the mass of the particle. The set (I.7) 1s one of differential

difference equations, e.g. for n = 0, n =1

o ~(4) 2

at m 9q

- (I -8)
AT U kT)i ( Wy T2 ¥y )
3t B_l (ka){‘ m 3q 9q

This is a complicated structural problem which is best tackled numerically
when the potential V is at all involved. The initial conditions chosen are:
W(q,p,0) = exp (-p°/2mkT) f,(@) - (I -9
which is meant to cover all possible physical contingencies in which we shall
be interested., Here fo(q) represents the initial distribution in q space

only. Clearly:

W(q,p,0) = exp (-p2/2ka) Heowo(q,o); (. Hey = 1) - (1 - 10)

Of particular interest to zero~THz spectroscopy is rotatiopal diffusion.
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In order to keep things simple we shall linearise the Euler equations and

consider diffusion on a circular track so that q = & and our Fokker-Planck

Kramers equation becomes:

Ef2‘+ E__;Wn = F Wn—l —(EE)£ aWn_l - (n+ 1) (EE)% ayn+1 - (1 - 11)
ST /IKT I d9 r’ o

- =3 (-dvw-w p- ke dw)s 2 ()

e dp 40 gt gt dp Yo 1

where p = 10. Here I is the scalar moment of inertia. The Langevin equation

corresponding to this 1is

.s

10 + 180 + F(0) = IB(t); t > o - (1 - 12)
where B is the Wiener process [6] governing the stochastic torque experienced
by the librating molecule. When F(G) = 1058 the model reduces to the harmonic
oscillator model of Calderwood et al. [9) , which is closely related to Gordon's
>m—diffusion model [ 1-3,16] . We suppose that static conditions have prevailed
up to t = o, L.e. for t < o:
16 + 186 + F(8) + pEsin® = IB(t) - (I - 13)
To cover the itinerant librator and Budo formalism the FPK system in IR4 must
be constructed, i.e. involving IRA(el, 82’ él, éz’t) and this i1s discussed in
greater detail later.

In general, fof the present case:
iq 2

<g i =0f fo_ooo elq W dq dp /OIZTK elq dq dp

- 21 ig 2q
7 e ¥ dq/of ¥

0 o da - (1 - 14)

because of the normalisation:

2
X 1 ]
[ e 5 Hep (x) B, (R)dx = Y27 ! 5,

When dealing with the scalar angular coordinate © we have:
iD 2T 10
<e” 7> =0f el Yo dBIOIZWWO do; Yg = ¥Yp (o,t) - (I = 15)

The problem is to calculate ¥¢(0,t) for any periodic F(0) of equn. (L-13).
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We have initially:

W(o, Ié, 0) = W(o, p, 0) = exp (—pz/ZIkT) (1 + yE cos e)e-BV(O)

kT

so that:

Wn(0,0) = (1 + pE cos 8) exp( - BV(0)) = WO(G, o)
kT

To simplify eqn. (I - 11} we write:

n, . il _ _ .
¥ (0, t) alwe™", F = 5 Fe

I
=t

and use the implications of orthogonality to write:

da" +nat = 7t s A" o) - 0a/DHIAY TN ¢ (s DA )
-— 1 =1 1-r 1 1
dt R - r=-0
- (I - 16)
so that:
<816> IZn T Ai(t)e}leelode
0 1= - (1 - 17)
2n® .
;or A%(etPo
1
1=—an
The numerator is finite only for 1 = — 1 and the denominator only for 1 = Q:
. 2m . . 2w, 0
% = 6 Afl(t)elee lOd@/é’ Ao(t)de
_ ,0 o
If we now take the special case of:
F = 16 sine - Iwi (X9 ~ o719y /95 - (1 - 18)

this leads to the recurrence relations:

n n _ { .2 ., n-1 _ ,n-1
Ghy +m A= (" ) B 1AL T ALY
t 8

— o
kT 2

- (%;)i i1 {a2H ¢ (s DA o) - (1 - 19)
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Numerical Solution of Eqn.(I - 19):

This is quite straightforward if we write eqn. (I -~ 19) in;the matrix form:

A(t) = C A(D) - @20
where A(t) =
1
!
Al
o]
AO
O
o
B
1
A1

The formal solution is:
A(t) = exp(Ct)A(o) - (I - 21)
and for numerical purposes we must restrict ourselves to N components of A.

If we take the left and right eigenvectors of the matrix C: Ei (1 =1, ....,N)

and XE (=1, ...,N) respectively, with eigenvalues ij, we may write:
A(o) = Ea.gi, where a, = (XE, A(o)) the scalar product, then we have:
= i =i’ =
C X. = X. X., which means:
— =1 r =1

exp (g;)ﬁi = exp()\it:)éi

We finally get:

ME oo
é(t) = Le (ii, é(O))gi

: - (L - 22)
This is valid only if the matrix C has a complete set of eigenvectors,
e.g. if:

X, YL o= 1 (1 - 23)
i:l::l vy

Eqn. (I ~ 19) is now amenable to solution using methods of diagonalisation.
Next in this section we describe the method of generalising itinerant oscillator
equations of Coffey and Calderwood 797 and Coffey et al 18] to remove the

restriction of harmonic potential force.
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FOKKER-PLANCK KRAMERS EQUATION FOR THE ITINERANT OSCILLATOR
In this case the Langevin equations of motion for scalar angular itinerant

libration are, for a harmonic potential,

Il.ﬁi(c) + 1,8 @1(t) - IQN% (Wz(t) - wl(t))

Ilwl(t)
- (1 - 24)
e . N 2 3
m - -
I, ¥,(t) + L8, ¥,(t) + LW (wz(c) wl(c)> 10, (t)
These reduce to the equations of Coffey and Calderwood [9] when 82 = o,
The physical meaning of the angular functions Wz(t) and Wl(t) and of the

friction coefficients B, and 82 are fully explained in the literature [8,9].

We wish to accomplish the generalisation of the term:

1,2 (4, () = ¥ (8)
which represents the harmonic force between the inner molecule and the diffusing
cage. Eqns., (I - 24) with B, =0 have been tested out experimentally for about
fifty liquid and glassy systems by Reid and Evans [10]. They have the dis-.
advantage that generally the Poley absbrption is too sharply defined

.

theoretically. The FPK equation corresponding to egn. (I.24) is [11] :

D (Uof) + 3 () ~ 3 (f(hp ~ up)E) =

3 (Q%(vp ~ pE)
it ap T o0, 0y
=By 3_ (af) + By 3 (yf) + By kT 32f + gy kT 32¢ (I - 25)
302 a1 I, %7 I 93¢

with initial condition:

E(U1, Vzr 915 §25 ©) = A exp (-1_3_ (13§ + 132 + Laudluz = 4)2)
2kT 22

and is soluble analytically. However our problem is to solve the FPK equation

for a distribution function describing the Langevin equations:

2(8) + £ () + V7 (Y2 ~ ¥1) = By(t)

12 .Iz '
e . . ’ (I - 26)
pr(e) + & wi(t) = V7 (Y2 ~ %) = By(L)

I Iy

where B and B, are Wiener processes. As well as generalising the itinerant

oscillator concept these equations also describe and generalise the Budo
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theory ‘[12] of the molecular dynamics of an assembly of molecules containing
rotating dipolar groups. If these dipoles are denoied by p; and wu, then in
- the Budo/Coffey theory they are compelled to rotate about an axis through their
common centre normal to the plane containing the measuring field €. 1In egn.
(I. 26) subsequently ¢; and 2 are the angles p; and ps make with e, the
direction of €, at any time. I is the moment of inertia of each equally sized
dipole and £ is the friction coefficient arising from the Bro&nian movement
of the surrounding§, while A;{t) and Ap(t) are the random couples acting on 3
and pp again arising from Brownian motion.

Coffey {12} has derived the fPK equation in'IR4 corresponding to the system

(1 - 26). This is: (I =1, =1)

Bor P2 B+ a9 - L (W BV ¢ 3 V) =k (B () + 3 (W)
ot s ayy I 30y dyp Ay vy I 3y v,
+ 3 (C33 32W + (C3y + Chg) %W + Chy 3%W ) (I -27)
2 ap13d2 a0y 2
solved subject to the iInitial conditions:
W(P1s b2, §1» Y2, 0) = & exp { - B{1/, (912 + §22) + V(yp - 1)
+ (py; cos ¢ * up cos ¥y) € }} (I - 28)

In eqn. (I - 27) C%3, C3,, Cf3, and Cfy are constants to be determined from the
equilibrium Boltzmann distribution. Thereby eqn. (I - 27) becomes:

W gy M+ Py W= 1 (W BV o+ W av)
I

ot 32 ER 3p 2 1 AN
=5 {0 (W) + 3 ()W + kT (3% + 320 ) LT - 29)
I a0y 3 I 3% ayy?

Coffey has shown how eqn. (I - 29) may be manipulated using two dimensional

Hermite polynomials into the set of differential difference equations:

Yo o = b o%o 1, 1 oy .
S 0,0 - fo(X,ﬂ) - (E) ( o F > ) ’

2T - By an
e ! -1 n
2
{s + £.(m + n) Voo ¥ (2IKT) gy_wm’n_l (I - 30)
I an
! 3y a0 30 v
+ (EE)Z (m + 1) wm+1,n + (n+ 1) 1J)m,n+l + lI}m.—l,n + wm,n—l}

21 ax o ax an

=0
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where x = (Y1 + ¥2)/2; n = (Yo — ¥1)/2; and £ is defined by:

WO6mXa 0,00 = exp {= BI (x* + n®)} £ (x;n)
the probability density function being given by:
. . n
W= exp { ~ IB(x2 + nZ)] mzn He ((gg)%x, (2})%ﬂ) 1
’ ’ kT kT
NN . . "y
¢ = ¥(x,n,s). We wish to solve eqns. (¥30) numerically for W.

Details of the Numerical Solution

Problem in IR2 Space

In this case the Kramers equation is solved in the form:

3 P(Q|Qy, t) =L P(aley, t)
ot F

{o} = {u,0}
with the equilibrium solution:

‘Po = Nexp { - @/kT }; ¢ = Lw?/2 + V(0),

Wita L = cxp {4/2k1} LF exp {- ¢/2kT} as the transformation

we obtain the equation:

2 ==L
3t

Lo

as the equilibrium distribution and:

GE: = exp ¢/2 P(QIQO, t) /N7

with =" Nexp ( ~ ¢/2KkT)

(1-31)
(1 - 32)
(I - 33)

It is possible to show that any correlation function may be expressed as:

Wy (0)Wa(t) = Kyp(t) = So1(R, 0)d,(R, t)3Q
where Qi(ﬂ, t) is the solution of the equation:

9 @i =T ¢i
ot

with the initial condition ¢.(Q, o) = W, 7 (@)
L 1IN0

Risken and Vollmer {7} obtain the differential operator (kT = 1, I

L=-23 w+3 V() +8(4+23% -
L) W dw?

w?)
4

which results in the equation:

o

4. =

1

AZ () %r*' Hy () A exp( =~ ¢/2kT + iq8)

z
n O n:
q

= ==

(1 - 34)
(I - 35)
(I - 36)
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and the recursion relations:

3 A% (£) =~ n gAY (£) - igvm + DA™ o)
— 4 q q
at
— @ B n+l . n-1
+ Vol T ir £_ A (t) - ig/n A (t) » (I - 37)
r =-© r q_r q‘

with

v(e) = ¥ £, exp(iqr) - (1 - 38)

-0

r
Tne to-tine correlation functions K= d cos v card® >

Kw(t) = <w(t)w(o)>; K,

10 <ks1l8(t)wsl0(o)> Kd = <d/dtws6(t) d/dtmse(t)/t=o>

may now be computed. These are of spectroscoplc interest because
<cos@(t)cosO{t)> is the planar analogue of thé orientational autocorrelation
function, which is related to the dielectric loss)éJ(MZby Fourier transformation,
1-5 , and <os 20(r)cos 20(0)> 1is related by Fourier transforﬁation to the
intensity spectrum of depolarisedscattered light. The drivative function

<%€ cosO(t) %E-cosé(t)l t = o> 1s the direct Fourier transform of the far infra-~

red, optical power absorption coefficient a(w) (in neper cm-l). We have:

Kw(t) = Jo (0,u0,0)¢  (£,0,0)dwdd (1

- 39)
- _ ~\ f
with d’w(o’“”o) = w0 = N He1(w) exp ( ~ 4/2kT);
§051®<t) = flp(ole(o’m’O)q)coSlO (t,m,@) dwd0 (1 - L0)
i ilo -110 -/ 2kT
with ¢“Sle(0,w,0) = cos(l@)zz()= (A /2) (e + e YHey e v/ (1 - 41)
and Ky(t) = f9,(0,w,0)2,(t,0,0)dudd (I - 42)
with &, (0,0,0) = = wsin0 /=g = W' /(21) (' 9% W,y ¢/ AT (- 43y
By defining:
exp (— V/kT) = 5 )
. gz exp(ir®)
it is possible (see Risken and Vollmer) to show:
= ® 1
K(t) =1 =2 A (t)g_ (1 - 48)
w e q
g0 q===
with
Al(o) = 6 3
q n,1 q,0 (I - 45)
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By explicit calculation we have:

: oo /. ile -110 -V/kT
_KESQIBKt) = fﬂﬂdO i °°du) ( N (el + e )HS e

2

x £ Ag(t) %r_ He,(w)exp (iqo) exp(-w?/242) (I - 46)

n,q

i

[

= fﬂn]:%:'(eilo + e—ilO) exp(-V(0)/kT) L AZ(t)equ]de =1 I Ag(t)[g—q—f g_q+£]

q 2g, q=-e

o

with the initial condition:
oy = 1 - 47
and
o -V/KkT —m2/2A2 n iq8
K.(t) = ff&e f_mdw{—w sinBN"e e T A (t)Hen(w) e 1 1}
a T n, q 7[_?
3 ~l' _ 1 .
= TN (el® - ¢ 10y, V(6) /kT s A (t)elqe } do
oY 1"
i
® 1
= 2 A (t - (1 - 48)
1/(2igy) DI q( ) {8,1_q 81_q}
with the initial condition:
I )
= - - I - 49
B2(0) == 1 6y (8 g =8, p) (1 - 49)
21
The Budo.Model with Arbitrary Potential (f(8)) (IR3 space)

In this case we have {Q} = Wiy ® 5wy = wl/Al

B = ¥y7P,3 wy, = wzlaz

and
bp = 7 (Bguy = Bywp)2 1 (813 = 8,3 JV7(8)
- 36 kT Buy dw
2
2 : 2
+ 8, (0 w, +23 ) +8, 1@ w,+ 3 )
L 2 = M2 T .
®1 ¥1 o0y Y,
and

P

i.e. ¢ =

0 N exp {-w%/Z -~ w%/Z - V{(8)/kT}

w%/Z + w%/z + V(@) /kT
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The operator L becomes
L=~ (8w = Ayw,y) 3/38 + 1/kT(Aié/aml -4, 3/3w,) V(D)
+ gy (L/2 + leuw% - w%/4) + 8,(1/2 + az/aw% - w%/&);

(e¢/2 P T Il TR

o 4 1 9 - V7(a)).
duy duy 2 30  2kT
The numerical solution now proceeds via the expansion of the functions:
n,,n
® 172 - 2
. (8, wy5w,,t) = I c (t,0) N~e vie)/ kT]n ,N,. >
1 1’72 1’72
n,=0,
1
n2=0
where we use a quantum~like notation:
' 2 2
= 2, 1 ~1/2 Lo Wy tow?
Inpomy> = (annying ) TR Cup) Bpp () expd -———Z———}

which expleits the properties of Hermite polynomials in the following

immediate way:

8/8w1|n1;n2> % (Vhllnl - 1: np> — vYnj + 1 lnl + 1, n2>)

3/3w2|nisno> = § (Vmalnp,ny -1> - Vap + 1] ny,np +1> )

wllnl,n2> (/hl , n; - 1, ns> + /nip + I'IHI + 1, n2>)
Cw2my np> = (plag,ag -1+ Vg T ny,ng + 1)
. .. ning . . . .
We obtain for the coefficient C X,t) the following differential equation,

From 3/3t ¢i= L ¢i :

a/at Cnlnz(e,t)e—v(8>ZkTVNf|n1,ﬂ2> = - A (/np + I|ny + 1, np> + /E?‘nl - 1,ny>
x (CMP200,6) = v7/(2kT) M2 (0, £)) viv e V(O /2K T

+ 8y (Vnzg + 1| ny, np + 1>+ vV, | ng, np -1 3)
x  (CM%2¢q ) - v/(2kT) CPIP2(0, 1)) e V(O /2KT

+ B8/(KT) (Vg |ny -1, ne> - AT F Dlny e 1, no)V @)
x  CZ @ o)y exp (-V()/(2KT))

- 85/(2kT) (¥n3|ny, ny~1> =/ny + 1] ny, np + 1>)V ()
x P20, 0) W exP(Qv(a)/sz))

- (n) 81+ nzez)cnlnz(e,t)/N’e’v(G)/(ZkT)lnl,n2>

v

Summations over n) and n» are understood in the above formula.
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' Ve obtain for the coefficient C"1° pz(@,t):

. : «1,n
3 P M2(g,1) = - (VagM R2ee,0) + AT F1CM"2 (o,6))

It

o (a2 The) + Jmp w12 He, )

v (AR /AT T LML (o) 0y v (o)

S (8K Ve, T TCM 2 (g v (o)

- (m1B] + nyBy)CM P 2(0, 1)

The next step is to expand Cnl’nz(g,t) over a set of functions of 0.
By denoting: |q> = eiqO we have C"1? "2¢p,t) = qg - Azlnz(t)|q>

The properties of |q> are

3 lo> = iqle>
a0 :
and V*(0) |g> =—1id (|q + 1> ~ |q
2
For V(0) = 19 cos 0, where 3 is a constant, we have V7(0) = & s5in0
= 4™ -0y /20); and v (o)W = - gt ADE _milamhe,
2
S
By inserting the equation for C (a,t) we obtain
ny,0, n; -1, n, nl+l e .
a/at A (®) o> = -, (/n (iq) & (t)|q> + vV I (iq) A (t)]q>)
nl,nz—l nl,n2+1
+ Az(/n2(iq)Aq (g + Yo, + 1 (iq) Aq (£) @) + (- id Al)an + 1
2 kT
nl+1,n2 l,n2+l
x (A (t) (Ja + 1> = |a = 1)) = (- id 8,) /n, + T (A (t)
2 kT
Bpo7y
x (Jg+1>-|q- 1)) - (nlB1 *myB A, (D) [q>
1’“
Finally we have an equatlon for A (c) which is numerically soluble:
1,0, ny -1, n, 4 1+1 sT,
3/at A (t) = -iq Al/nl (t) - iq By Yn, + 1 A ' (t)
s=1 ,n,+1 0, +1, n,
+ iq A2/n2 R (t) + iq Az/ +1 % 172 (r) - 1 Zijn +1 {A (t)
n,+l,n da n,,n +1 n,,n,+1 1, ,n
oy 2 2 1’72 1’72 1’
“agg () ZkT/E;:T1[Aq_l (€) = Ay © (DY = (a8 + n,8)) A
The correlation functions of spectroscopic interest are now given in terms of
nl,n2
A t):
q (v)

K (t) = <w1(t)wl(0)> - émdul%fég{wquOé_v/(ZkT)/‘N’|nl,n2,q>}
Mgy 5 Aq Al (t)g
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ny,n,
with the initial condition: A (0) = 6 )
q nl,l q,0 nz,O
n, ,n
_ 0,1 . 2 5 5
sz(t) = 1/go g Aq (t)g_q, with 1.c. Aq ~(0) nl’o n2,1 4,0
1 0,0
= — +
Kcosle(t) 2g0 g Aq (t) (g~q—1 g_q+1)
n,n, .
i initi iti = 8 § $ 8
with initial condition Aq (0) ) nl,o nz,O ( w1 + q,—l)
' _ 1 1,0 _ 0,1 _
Kp(e) = =gy B LA - &g ©) ) ~ 5,
n,,n
. 1772 1
= - = 8 ) § - 8
with Aq (0) 2i (6nl,0 énz,l + nl,l nz,O) ( 41 q,~1)

Checks on the Numerical Evaluation: Normalisation Factors and t -+ o«

limits of the Correlation Functions

(a) Equation in IR’ space

The normalisation factors may be calculated from the equilibrium
distribution function:

Po(8,0) = N exp {—@2/2 - V(8)}, (KT = 1)

't

1

Jiexp (-w?/2 - v(8))dodw)
We set once more V(8) = drosg. The initial condition on the Kramers equation
is
Po(8(t), w(t), t.|6(0), w(0), 0)
= §(w(t) =~ w(0)) &(a(t) - 6(0))
The limiting value for t-w may easily be calculated because the two-time -

distribution functions may be replaced by the product of the two P, equilibrium

0
functions, because there 1s no correlation between the system at t = 0 and at

£t » =, 50!

lim Wz(e(t), w(t), t; 9(0), w(O), 0)

—3-00

= Po(e(t), w(t)) Py (6(0), w(0))

(PO independent of t).
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So we obtain:
<w(0)w(0)> = Nfjw?exp(-w?/2 + V(6))&sdy = 1
<c0s8(0)cosB(0)> = focoszeexp(-w2/2‘+ 3cosf) dedw

bral o+ cosZG)exp{aéose} do/ fexp{dcosa} ds

1l

1§

1/(2gy) {8q + &}
where g, = Jcosngexp {dcosp} do = In(d)
In {z) being the modified Bessel function of in;eger order (n). In addition:
<c0526(0)cos28(0)> = Sf/Ncos22@exp(-w?/2 + acose)ae
= 1/(2g) {gy + 8,4}
<cosnp(0)cosnp(0) > = 1/(2go){gO + an}

gg_cose(tlg_cose(t)/t=0> = <é(0)sine(0)é(0)sin9(0)>
ot ot

N [fw?sin?gexp {~w?/2 + 3cosg} dedy

Ssin?exp {dosO} 40/ exp {dcosO} dO

i}

2 -
1/(2g,) (g5 = g,)

The limits t > « of the orientational a.c.f.'s are generally different from
zero because of the Kramers potential. This fact is of paramount importance
in the development of a molecular theory of the mesomorphic state of matter,

These limits may be expressed by:

Lim  <gy(€)g1(0)> = Lim SW2(0(c), @X(t),t; WXo), o)

t > o £

% g1(0(t),eXt))g,(0(0), ©X0)) do(t)doo)dw(t)duXo)

/ Wo( )de(o) ..... du{o)

= JP_(01,W)g1(0y,W;)d0d0d; /P _(02,8;)82(02,W,)d02dW,

/( IPO(O,Q)dOdw)z

so we obtain:
lim <X ) o)> = 0, because [WPo(ld,0)dodWw = o
Lovoo

lim <d cose(t)g_pose(t)/tso> = <@ 0)><s1nd(t)sinB{o)> = o
treo  dt dt

lim <cosn@(t)cosnp(o)> = -
_ (fexp {deosddo ) z,

t-ro0

_ (JcosnBexp [ dcos@) do)? - gnja
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{b) Budo's Model, Cosine Potential

In this case:
2

(-w_® d
Po(bﬁ,ﬁﬁ,e) = exp LEZ% - §§g + 7c0s é]/fexp e dWd,do

so we obtain
<D ()W (0)> = 8%;< (0)wy(0)> = A%

<éos no(o)cos nofo)> = 1/(280)[.80 + 82n]

4 cose(t)rt=o> = <(W; (o) —(JZ(o))sine(o)(&h(o)—h&(o))sino(o)>

< cosO(t))t=o TS

dt

= (<@1(0)01(0)> + W(0)W:(0)>] <sinb(0)sind(0)>
(83 + %) /28 (g, ~ 8y
and 1hn<3b1(t)wl(o)> = lim< &, (t)&5(0)> = 0o

ol o] Lo

I1im < d cos0O(t) g_cosO(t){t=é>== 03
too0 dt dt

lim < cos n@(t)cosnd{o)> = (g /go)z-
treo "

Results and Discussion

The numerical results are illustrated in figs. (1) to (3) for both the IR2

. . . 3 .
model and the more complicated set of equations in 1R™ space. An important
feature is that in neither case is the velocity (or angular velocity)

autocorrelation well-defined as t» o. This 1s because the initial slope is

not zero, and can be explained as follows:

(a) 1R2 SEace.

In this case eqn. (I-2) has no memory kernel apart from the delta function
friction coefficient, A direct mathematical consequenée is that the
autocorrelation function of the velocity or anéular velocity has a Taylor expansion
which beginsﬁ 1-Bt+ O(tz) where B is the friction frequency factor,

(b).The Budo equations (I-24) can be regarded as a zeroth order approximant
of the integro-differential matrix equation developed by Damle et al 117]

in the context of neutron scattering, i.e. the associated memory matrix has
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FIGURE 1

2 . . . .
IR” model, normalised autocorrelation functions and spectra for various

values of friction coefficient f and potential strength d. Solid like

behaviour. Abscissa in reduced time units of(%f) 4 where I is the moment

of inertia.

a) Angular velocity autocorrelation function.

i
0.05 reduced frequency units of(%l) , d = 0.25.
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b) and ¢). Real and imaginary parts of the angular velocity épectrum
Abscissa in reduced frequency units

d) rotational velocity autocorrelation function, the second derivative of

the orientational autocorrelation function.
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e) and f). Far infra-red dispersion and power absorption coefficient
respectively. Note the multiple peak structure reminiscent of lattice
libratiéns in the solid state,

g) <cos@(t)cosB(0)>

hyand i). Fourier transform components of g)

j) <cos20(t)cos20(0)>

k) and 1). Fourier transform components of j).

m) <cos30(t)cos30(o)>

n) and o). Fourier transform components of m).
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FIGURE 2  Intermediate damping, as for figure 1.
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delta function off-diagonal elements. The initial behaviour of the velocity or
angular velocity correlation function from this model is also
1 -8, ¢t + 0(t2), i.e. only in the case B, = o do we recover the correct
initial behaviour. This is when the model reduces to the version first derived
in Mori continued fraction form by Evans [8(1)].

Both the models considered here are therefore fundamentally flawed except
in the case B8; = o for the second. It is surprising therefore that the
Kramers/Fokker/Planck equation on which they are based continues to be used
uncritically in much of the physi&al literature [7] as the starting point for
the description of phenomena connected with, for example, Josephson tunnelLing,
superconduction and second-order phase loop analysis in laser technology.

We have already revealed the mathematical limitations of the Kramers
equations, but in physical terms the most incisive experimental technique
in this context is that of zero~THz spectroscopy of ultra-viscous and
vitreous media J10]. In terms of dielectric loss the spectrum of low
temperature viscous molecular solutions peaks three times (a, B and y) over
a very wide range of about twelve decades of frequency. At room temperatures
the viscosity and spectral features are drastically altered. Evans equations
describe the spectral features in the latter case fairly satisfactorily, but
fail at high viscosities (as described elsewhere T1o] ) because only two loss
peaks can be produced theoretically. With the more complicated case By# o the

situation is improved by virtue of the fact that the theoretical vy peak may
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FIGURE 3 Heavily damped case, as for figure 1. g=2.0 d=0.25
d 0.50

d= 1.00
d= 2.00
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now be bfoadened, but at extreme high frequencies (around 200 cm—l) the
mathematical flaw at t + o manifests itself in a theoretical refﬁrn to
transparency which is far too slow.

To emphasize in detail the shortcomings of both models the most useful
technique is to use the far infra-red power absorption coefficient (a(w)/
neper cm—l) of dipolar molecular liquids and solutions. This is sometimes
known as the Poley absorption 1-5 , but should always be considered as a
version of the dielectric loss weighted by a multiplication by the angular
frequency (rad sec_l) and division by n(w) thé refractive index. The far
infra-red range is the extreme high frequency li@it of a spectrum extending
to static whose shape represents a.molecular dynamical evolution extending
from ps onwards.

In conclusion, therefore, we see clearly by numerical analysis that the
form of potential used in FPK equations is irrelevant in the description of
zero-THz spectra when the underlying mathematical structure is imperfect
(i.e. based on naive concepts of the molecular dynamics). The Kramers'
Fokker-Planck equation of the type considered here succeeds in describing
results in other branches‘of physics only because the data available on these
phenomena do not cover a wide enough range of conditions.

Suggested improvements may be listed as follows:

(i) The Fokker-Planck-Kramers equations should be given a memory function
other than a delta function. This would rectify the incorrect behaviour as
t > 0.

{(11) Increased effots should be made to éoordinate the research in fields
where these equations are used as starting points with the results of molecular
dynamics simulations and broad-band spectroscopy.

(iii) Until memory and inertial effects are involved properly these equations
cannot be useful in discriminating between forms of the inter-molecular
potential. Only then will it be possible to progress from such crudities as

harmonic cosine forms, chosen only for reasons of analytical tractability.
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