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The rigorous relation between the orientational auto-correlation function and the
angular momentum autocorrelation function is described in two cases of interest. Firstly
when a description of the complete zero-THz spectrum is required from the Mori continued
fraction expansioh for the angular momentum autocorrelation function and secondly when
rotation/transiation effects are important. (i) The Mori-Evans theory of 1976, relying on the
simple Shimizu relation is found to be essentially unaffected by the higher order corrections
recently worked out by Ford and co-workers in the Markov limit. (i) The mutual interaction
of rotation and translation is important in determining the details of both the orientational

~ and angular momentum a.c.f.’s in the presence of sample anisotropy or a symmetry breaking
field. In this case it is essential to regard the angular momentum a.c.f. as non-Markovian

-and methods are developed to relate this to the orientational a.c.f.in the presence of rotation/
/translation coupling.

PACS numbers: 05.20.Dd
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1. Introduction

I this paper we consider the rigorous mathematical relation between the orientational
autocorrelation function {u(t) - u(0)) and angular velocity a.c.f. {a(z) - ®(0)) ot a diffu-
sing molecule. We consider two special cases in detail. The first is when <{o(t) - o(0))
is governed by a Mori-Evans type continued fraction expansion [1], the second when
rotation/translation effects [2] are included in the equations of motion for {@(t) - ©(0)).

~ The first order. and subsequent order corrections to <u(t) - u(0)) of Mori-Evans
theory are evaluated and found to be small in cases of experimental interest hitherto
considered [3]. It may be the case, of course, that these corrections are important in zero-
-THz spectra yet to be discovered. However, for practical purposes it seems that the formula-
tion [1] by Evans in 1976 is a good enough approximation (i.e. the correction is iwo
orders of magnitude within the experimental uncertainty in far infra-red power absorption
coefficient). '

* Address: Edward Davies Chemical Laboratory, University College of Wales; Aberystwyth
SY23 INE, Wales, UK.
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Rotation/translation is a factor for direct consideration, secondly, whenever the
symmetry -of the sample is broken by an external field. For example, when a dipolar
molecular liquid is treated with an intense electric field the resulting torque on each dipole
breaks the parity invariance of the total hamiltonian. This means that mixed autocorrela-
tion functions such as {J(t)- T,(0)) no longer vanish for #> 0. This has been demon-
strated recently by Evans [4] using computer simulation. We have denoted by J the resultant
angular mementum vector of the molecule in the laboratory frame at any instant T,
is the molecular torque at the arbitrary initial ¢ = 0 of the equilibrium running time
average < ). At thermodynamic equilibjum this is equal fo the phase space average over
the relevant probability density function [2]. The implications of this hitherto unsuspected
result are widespread, not only for the theories of birefringence transients [5] (induced
by electric, magnetic or laser fields) but also for the molecular dynamics of liquid crystals
[6]. The alignment of the nematic by low intensity electric or magnetic fields is an obvious
case where {J(1) - T (0)> exists for >0, but has been neglected theoretically. Even in
the isotropic phase considered by Evans in his computer simulation [4] {J(t)- T, 0)) is
comparable in order of magnitude with {(J(¢)-J(0)> or (T (1) T,(0)> in normalised units.
In the nematic phase, where the external symmetry brfakihg torque is “amplified” by
intermolecular interaction, mixcd autocorrelation tunctions such as {J(¢) - Tq(0)>/ must
surely assume .a. primary importance.

The paper is organised as follows. In Section 1 we develop the rigorous operator
theory of Ford et al. [7], to deal with the Mori—Evans continued fraction approximation
to {o(t) * ®(0)> and with continued fractions in a Laplace space of the general type first
suggested by Mori [8]. In Section 2 we develop some arguments for the consideration of
rotation/translation as opposed to just rotation in the theory of molecular diffusion in

the presence of symmetry breaking fields. Section 3 deals with the numerical results and
disqussion.

2. Theory

Recently Ford et al. [7] have considered the solution of a stochastic differentiale quation
" of the form: ' '

-

X(7) = eQ(z")x(t_), (1)

where ¢ is a parameter and £(f) a stochastic operator, as defined by van Kampen [9]. The
solution of Eq. (1) is dictated by the equation:

%(x(tD = (VN +*'QV M)+ )@, _ 2

where Q™ (¢) is a non-stochastic operator. This is provided

(i) the stochastic operator Q(¢) is a centred, Gaussian, random variable.
(if) Q(¢) refers to a stationary state and obeys a relation

Q1JQ(t)> = f(h—t)1 . (3)
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with 1 the identity operator. |
(i) ()21, - A1y, )2 =0 | (4)
(iv) At )AL - QL )>

- is eciual to the sum of the mean values when pairs of the s are linked in all possible dif-
ferent ways, mean values being taken for linked pairs.
In Eq. (2) the ®(¢) and Q¥(¢) operators are defined respectWely as:

QA1) = g) [<s2(t)sz(m>—<sz(t)>'<9(t1)>1 dt,

= £[<12>—<1> (2y]dt; = £<12> dt, (5)

and
Q) = [ar, | at, 'f A[C1234—(12) (34— (13) 4Y—(18Y (23Y]. (6
' 0 0 0 .

Egs. (1) to (6) may be used to solve for the orientational autocorrelation function
Cu(t) - u(0)> of an asymmetric molecule undergoing isotropic rotational diffusion. In this
case Evans ([1,2], 1976) the relevant equation of motion is the generalised Langevin
‘equation (or Liouville equation);

d W

Lo() = —1I, _[K(t—*c)w(r)dr+1, P 7
where I, is a reduced moment of inertia and w the angular velocity vector of: the molecule
regarded as an equivalent rotating sphere with an embedded dipole vector along one of its
diameters. I,dW/dt is a random driving torque. The use of Eq. (7) simplifies the ‘algebra
associated with the rotational Brownian motion of an asymmetric top to that associated
with the spherical top whilst retaining the physical picture associated with the diffusion of
a dipolar molecule. This is essentially the device used by Debye [10], to whose equation of
motion Eg. (7) reduces when the memory function K is a delta function in time.

Mori [8] has shown that the solution of Eq (7) may be expressed in Laplace space
(p) as an infinite contmued fraction:

C(p) = L{o(?) - @(0)> = {w(0)*)

p+Ko0)
P+K1(O)

®
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This may be inverted, or back transformed, using the Heaviside expansion theorem [11]
to produce:

C) = (w(t) @(0)) = <w (0)>Z Bl(a ) " m—co e

Here a, are the roots (in general complex) of the polynomial which makes up the denom-
inator. of Eq. (8) when expressed as the fraction A(p)/B(p). If B is a polynomial of order
m, then it follows from Eq. (8) that A4 is a polynomial of order m — 1. These finite polyno-
~ mials can be produced by truncating the continued fraction assuming that:

Kn—2(1) = K- 2(0) exp (—1). (10

With m = 3 Reid et al. have shown [3] that the resulting expression for C(¢) is a useful
representation of the absorption of dipolar molecules from static frequencies to far infra-red.
In that work an approximate relation was used to link C(¢) to the onentatlonal auto-
correlation function <{u(?) - u(0)):

- 2kT ¢t '
<u(t) . u(O)) = ¢Xp| — "T br dtl J. dt2C(t1 _tz)] ) (11)
V] .

' -’
where I = I/2 is the moment of Inertia of the rotating dipolar molecule when regarded
as a Debye isotropic diffuser [10]. If the molecule has u along the a (least axis of mertla
then 1/I, = 1/I,+1/I.. In general: :

WA = (g +pdI (el + DIy (2 + )
for the asymmetric top where 4, b, and ¢ denote the principal moment of inertia axes. Eq.
(11) was, however, derlved on the basis of the Shimizu expansion [12] for linear molecules,
in turn based on an expansnon in terms of cumulant averages. Lewis et al. [7b] and Ford
et al. [7a] bave produced a rigorous relation based on Eq. (1), and part of the purpose
ol this section is to generalise this to deal with Eq. (7) where K is in general not a delta
function. We shall be concerned with solutions of the continued fraction of the form
taken by Eq. (9).

Ford et al. have shown that Eq. (11) is an approximate form of the rigorous relation
between (u(?) * u(0)) and {(w(t) - ©(0))> based on the generally valid kinematical equation:

u(t) = oft) xu(t), (12)
or in operator form of Eq. (1)): _
u(t) = (o(1) - S, (13)
with:
00 0 0 0 1 0 -1 0]
al=00.—1;02= 0 0 0); oa3= 00

1
01 0 , -1 0 0 0 00
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Egs. (1) to (6) then imply:
‘ ) .. 2
(u(t) - u(0)y = exp {—2 [kTT 126+ (kTT) 159(8)
- 3 | 4 '
+ () uPwsarPor () aporso
+8I®() +18I1P(1) + ]} | (14}

- where the I™ factors are repeated integrals defined in the original paper by Ford et a.l
[7a] inr their case <@ (f) - 0(0)) = Z—I;Zexp (—Pt). Here B is the friction coefficient of the
rotational Langevin equation 2: |

Io = —Ifo+IW | (15)

We note that solutions of the form of Eq. (9) for {w(t) - @(0)> are sums of complex
exponentials. In this case {uft) - u(0))> will take the form of Eq. (14). In this notation the
approximate expression [1] by Evans (1976) can be written as:

<y w0 = esp| - 2170, (16)
where
' C O AW |
(2) — SONTRS an(ti—t2)
190 = [dt, [t ZB‘(a,,)e ) an
n=1 ’

B(as) = p*+yp*+p(Ko +K,)+7K,
= (P—al) (p—az) (p—as),
A(as) = P2+P}’+K1,

with y defined by the truncation:

Ki(t) = K,(0) exp (—71). : (18)

Reid and Evans [3} have evaluated this result with microwave and for infra-red data for
thirty-nine dipolar solutes in decalin solution. After considerable algebra the approximate

solution, Eq. (16), can be extended to the result (14) with the I integrals defined in the
appendix. : ' '
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Using these results and expanding the exponential in Eq. (14) we have the series:

{u(t) > u(0)> ='1._2 ({‘II ) Im( )+ <kT) [4[(4>(t)+61(4>(t)]
kTY’ 6) (6) (6) (6)
- (T) [8122() +241°(1) + 1812(£) + 201§ (0]

kT 4 .
+ (7) (161 3(1) + 721(r) + 108151y + S415(1)

+120I8(6) +80ID(0) + 801 () + 10019~ ... - (19)

From this asymptotic expansion and the further relation:
: . —d?
Cu(?) - u(0)) pr Cu(t) - u(0)> | (20)

we may obtain an expression tor the far infra-red power absorption coefficient a(w) which
is the Fourier transform of the rotational velocity correlation function of Eq. (20).
Using

d* -
L(-—- Zi_tiF(t)> = ~p2F(p)+pF(O)+F’(O)
we have:

L(G() - #(0)) = p(1—p*F(p)) = p(1— pL<u() - u(0)))

2
=7 {3';—1" LU®(1)~ (%T—) [AL(IE(2) +6LUS ()]
kTN (6) (6) (6) (6)
+ (T) [8LIY’()+24LI5(t) + 18 LIS (1) +20LI7 (1)]

kT\*
- (T) [16LIY (1) + 72LIS (1) + 108 LIY(1)
+S4LIE() + 120LIS (1) + BOLIE (1) + 8OLIP(1)
+100LI )]+ } ' (21)

This is however a slowly convergent series which would need several terms before a realistic
spectrum is obtained. Rather than consider this series we will use a more direct method
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L

of computing the far infra-red spectrum from the first order correction term only, i.e.
| y | kT kT
Cu(t) - w(0)> = exp l:—f’--(T 1)+ (—I_) 5 (t)ﬂ (22)

and compare this with the simple Mori-Evans—-Shimizu equation (16). We aim to see what
is the effect of terms non-linear in XT/I on the far infra-red spectrum.
The most convenient expression for I®)(r) to extract a far infra-red spectrum is:

ID(1) = Cyt+Age @ L B @B ¢ Tty
Ay = 3(4,~1B);  Bo=3(4,+iB); (23)
with - |

-

ra+nt
Cq = (—)—— DO=._A0—‘B0—C0.

w;
These are related to the coefficients y, X, énd Kl of Egs. (8) and (10) by:
= 2@“2;
Ko+ K, = 20,0, 4+ B2+

YKo = (73 Ba;

_ 20(e7 + )
0‘2(52 +o3—3a3) .

(24)

These reiat_:ioné further imply that:

01 =OC2; '
az =a1+i13;
a; = o, —if; /
3 1 H :
- ‘
Ay = ay—yu, + Ky

Ay = (& +1B? (e +1P)+ Ky

A = (a;—1B)* —y(e, —if)+ K3

B} = 302 —20,9+ Ko+ K

B; = 3oty +if)* —2p(a, +if) + Ko+ Ky

B; = 3(oty — iﬁ)z ~2y(oy —if)+ Ko+ Ky;
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B 3af+2a1a21"—-,82‘
T D (Y

. 3[32“1 +F(x232—a;’_r‘a%a2.
BN @+

 2aya + (e} + o3+ p%)
T (14D (@)

In view of the complexity of these equations it is easier to proceed by evaluating Eq.
(22) and comparing directly with Eq. (16) for different values of y, K, and K;. An ex- -
pression for IY(¢) analogous with Eq. (23) for I®)(z) is prepared in Appendix B. This
is purely real, as it should be. This supports the validity of our generalisation for use with
Mori theory the operator methods of Ford et al. To complete our chain of r§lations we
have [I, 2]: : .

1 V. Y.
ay =3 (S +S)+ 3 2= ~85(—8+ =

.3
J3

B,

25)

=—(5;-5,); ~

ﬁ» 2 ( 1 2) ' .
/
2ol (2L (2L
) 27 4/ > TP 3 27 4
A = KO+K1_y2/3s
292 R

B=%<%+2KO—K1>_ - @)

from Cardan’s solution ot a cubic with negative discriminant. The latter is always the case
experimentally in zero-THz spectroscopy [2]. The Egs. (24), (25) and (26) allow us to -
compute {u(t) - u(0)) from Ky, K, and y using firstly Eq. (16) and then Eq. (22).

Note that I$7(¢) or any higher correction does not affect the thermodynamic defini- -
tions [2, 8] of K, and K, i.ec.

o SOy Oy @)
0™ T2 AN 1= ,.2 - 2 :
(w?(0)) PO (X0

A discussion of the effect of I$¥(¢) on the orientational autocorrelation function is given
later in the paper using a range of sets of values of (K, X; and ).

3. Rotation translation coupling

- In the classical theory of molecular diffusion [2, 10, 13] it is assumed universally that
the angular momentum vector J(0) is not correlated with the linear centre of mass momen-
tum vector p(¢). In other words the mixed auto-correlation functions (p(z) - J(0)> or
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- KJ(t) - p(0)) are assumed to vanish. In this section we explain why this is not necessarily
the case in the presence of symmetry breaking fields, and use the theory described above
to link <J(¢) - J(0)) to u(r) - u(0)> when translation/rotation coupling is fully accounted
for. Here u is the dipole vector.

" The general theorem which prohibits the existence of mixed autocorrelation functions
of the type {A(¢)B(0))> have been set out by Berne and Pecora [13]. In particular:

(@) If the total bamiltonian H is invariant to time reversal then {A4(0)B(0)> vanishes
if A and B have different time reversal symmetry. There are no reasons, based on time
reversal alone, why {A(#)B(0)} should vanish for ¢ > 0 even when 4 and B have different
time reversal symmetry. If this were the case then {4(t)B(0)> would be an-odd function
~ of time in the classical limit. These COIISldCI‘atIODS do not apply if, for any reason, H->-—-H

when t - —t. - '

(iiy If H — H under parity transformatlon then the correlatlon function {A(#)B(0))
vanishes for all 7 if 4 and B bchave differently under parity transformation. However,
if for some reason H — —H under parity transformation then the theorem does not
apply. The parity invariance H is broken by mechanical, electric, magnetic, gravitational
or any other type of field which breaks the directional symmetry of the system under
- comsideration. For example, if we direct an electric field at an isotropic liquid the ha.rml-
tonian may take the form:

H=fw-1: co+zmv +V—y E - . (27

for every molecule n the system. Here @ is the angular velocity, 1 the moment of inertia
tensor, m the molecular mass, v the centre of mass velocity, ¥ the potential energy from all
sources, g the molecular dipole and E the external electric field. It is clear that H of Eq.
(27) - — H under parity transformation, and we no longer have a general theorem which
prohibifs the existence of {J() - p(0)> or {p(z) - J(0)> on the grounds of parity symmetry.
We note in- passing that the correlation functions {g(¢) + p(0)> or {p(?) - u(0)> are not pro-
hibited by parity symmetry or time reversal symmetry even in the absence of a symmetry
breaking field. This is because # and p have the same parity. However, they have a different
time reversal symmetry and {p(0) - p(0)> vanishes. <u(¢) - p(0)) is an odd function of time.

(i) If H is nvariant to reflection of positions and momenta then the system is said

to have definité reflection symmetry. (a) If we take the autocorrelation function {u(¢) - p(0)>
then reflections such as

(xj1 Vi zj) - (xj3 Yis Zj)

(pjx: Pjy: pjz) - (pjm —pjy: pjz)

will obviously have the same effect on u (which is a difference of position vectors in the
lab. frame) and p. In the case H — H under reflection there is no reason why {u(r) - p(0)>
or {p(t)- p(0)> may not exist for ¢ > 0.

(b) In the absence of a symmetry breaking field J and p transform dlﬁ‘erently under reflec-
tion symmetry so that {p(t) + J(0)) and <{J{(¢) - p(0)> must vanish for all ¢ provided H - H
under reflection of all positions and momenta. However the introduction of a term such
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as —pu + E means that H — — H under any reflection of the projection u - E (a difference
of position vectors in the lab. frame). The theorems of reflection symmetry no longer
prohibit the existence of {p(f) - J(0)) or (J(t) p(O).

(iv) Rotation symmetry is also broken by an unidirectional external field. At this -
stage we consider the experimental evidence for rototranslation as embodied in the phe-
nomena associated with dielectrophoresis [14], the translation of a liquid dielectric under
the influence of an electric field gradient. If we consider a parallel plate capacitor partially
filled with an isotropic non-conducting liquid the bulk will translate in one direction when
the field is switched on. If the conductors have equal and opposite charges O, the energy
U = 0?%2C where C is their capacitance. Using the principle of virtual work [14], any
component of the force is given by a differentiation; for example, the force parallel to the
. plates in the direction x of translation of the bulk of the liquid is

2
Fx__a_a_(]ﬁ*%i(i), | @)

However, though this may explain superficially the observable translation it leaves open
the mechanism by which electric field gradient is transformed on a molecular scale into
cooperative translation, and therefore uniaxial translation of an individual molegule in
a preferred direction.

Conventionally it is assumed that the electric field interacts with the molecular field
via terms such as p - E; E - a - E etc. where « is the polarisability tensor. The presence of
an electric field gradient (which is generally taken to be the least requirement for dielec-
trophoresis) means that the quadrupolar terms in the molecular frame will interact in the
manner of field-gradient induced birefringence (Buckingham et al. [15]). However, in the

‘absence of autocorrelation functions such as {p(z) - J(0)> or {p(¢) - u(0)) these torque
terms (e.g. px E) will not be transformed into bulk translation.

In a liquid crystal phase such as a nematic [2, 6] birefringence is induced by a small
field E. The dielectrophoresis movement in a nematic is therefore likely to be pronounced
for small applied E. In general, a sample of liquid dielectric always translates when an
electric torque is applied via an inhomogeneous field. If a large enough homogeneous field
is applied the dielectric sample develops birefringence, it is easier for a molecule to translate
in one direction than in another as a direct result of the fact that the rotatlonal motion is
also anisotropic on both a microscopic and macroscopic level.

!

Illustratlon of orxentatlon/translatwn coupling

- A good example of rotation/translation coupling is of course the propeller [16].
Examples of orientation/translation coupling could be the Badminton shuttlecock, an
arrow or dart. The faster the centre of mass translates the narrower the solid angle open
to reorientation of the object when travelling under the influence of a field such as gravity.
The axis g and ’i_he velocity » are therefore correlated. The vector/u(t) will depend in mag-
nitude and direction on »(0). The factor which causes the orientation /translation coupling
is the air-friction on the flight of the shuttlecock.
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However, on the molecular scalchwe always have to comnsider the flight of more than
one “arrow”’. The angular brackets { ) would mean that for each # we have to average
the product u(0) - v(¢) for all the molecules in the system. After several collisions v(¢) will
be dependent on #(0) if <u(0) - v(t)) exists. As we have seen, the symmetry theorems really
tell us nothing about {u(0) - v(z)> except that this may exist. The mixed autocorrelation
~ function of momenta may exist m the presence of a symmetry-breaking field (an electric
_field or field gradient). Therefore if this is the case then it behoves us to look at the effect
this will have on the Debye theory as e¢xtended by Ford et al. [7] to include inertia.

The general case of three-dimensional asymmetric top motion is complicated by the
fact that the angular components cannot be related to the orientation vector in a linear
fashion. This means that the Langevin equation for the purely rotational diffusion motion
of the asymmetric top is non-linear in the components (J,, J,, J,) of J, the angular momen-
tum, or alternatively the angular velocity w(= J - I7Y). :

The rototranslational Langevin equations [17] are for components (i,j, k) of the
angular veloczty vector @, or velomty vector v: '

oy = ’I") Z@f{’w, HPo)+T 0 29)

. _
Uy = — 121 (’)’S)Uz )’i(l")wl)—f'Fi(t) 30)

where 7, j and k are cyclic permutations of 1, 2 and 3. In the isotropic phase the off-diagonal
terms 75" and (" of the friction tensor vanish and the equations decouple into separate -
rotational and translational parts. The corresponding Fokker—Planck equations for the
joint probablhty den51ty function p, may be written as

3

—— (0, @, ¥V, 5 o) = e P
Y (v 1vg :‘00 0) E { |:6a)i( I, (LS o)

I=1

3

0
+ E . (}’(r)a’z‘*‘?z(z" )Uz)'l‘ = (Yg)vz (")a))z
' dw; ov;

0 KT 8 kT ., kT\ @
+§ Il O e kY O ], 3
a0, [}'u m a0, +2(3’u ” +74 1. ) 2@, 20> (31)
7
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where again i, j and k permute 1, 2 and 3 cyclically. Tn these equations the elements are
those of the friction grand matrix:
[y(') y(n):'
J} =
y O

whose eIements are themselves matrices. I, I; and [, are components of the moment of
inertia tensor and m is the molecular mass.

The solution of these equations is not known analytically and they are over-elaborate
in that there are too many elements of y. However there are simplifications which can be
made to extract auto-correlation functions of interest such as {u(¢)  u(0)> where u is the
dipole unit vector. The simplest method is to make the assumption that the matrices ),

79, 97 and y© are each diagonal with equal elements, and to take I, ~ I, ~ I as a first
approximation. The equations then reduce to:
Io = ~ [P0 —yPmy+ T (32)
mo = —myOv—y w4 F (33)

which are linearised and soluble by Laplace transformation to give, for the normahsed
angular velocity autooorrelatlon function:

,@mzr{ py® ]
(0(0) a0 B+ (01—

- Lty o (35)

(34)

when y™ = 9? = 0. Eq. (35) is, of course, the classical Debye result, valid for isotropic
rotational diffusion. The inverse Laplace transtorm of this equation is:

. . __
O e fetiesrns it

®_ |
=" {COSh [(B* =)' *1]+ EQ_B%”)Z sinh.[(b%— )l/zt]}

where b — 2(])“) +,y(r)) c — y(‘)y(’)—y(")y(“)

We are now faced with the problem of calculating {u(t) - y(0)> from <w(t) - w(0)),
and this is tackled in the Appendlx

4. Results and discussion

Correction to Mori-Evans theory (1976)

Reid and Evans [3] have recently considered the evaluation of a range of microwave

and far infra-red data with Eqgs. (7), (10) and (11). The results have been tabulated for
twenty-three solutes in decalin solution in terms of the parameters K, K; and y. Using
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TABLE I
Effect of first order correction on Mori/Evans theory

——]

Corrected Original Time in reduced
Ang. Yel. a.c.f. Cut) Cut) Torque a.c.f. units
1,0000008 00 1,000000& 00 1,000000& 00 1,000000& 00 0,000000& 00
9,989756&-01 9,999709&-01 9,999750&-01 9,989257&-01 5,0000008-03
9,959101&-01 9,998913&-01 9,999001&-01 9,957109&-01 1,000000&-02
9,8375608~01 9,995814&01 9,996012&-01 9,829681&-01 2,0000008-02
9,747918&-01 9,993521&-01 9,993778&-01 9,735286&-01 2,5000008-02
9,638620&-01 9,990738&-01 9,991059&~01 9,621228&-01 3,000000&-02
9,511616&-01 9,987472&-01 9,987859&~01 9,488232&-01 3,5000008-02
9,3672298-01 9,983731&-01 9,9841858-01 9,337116&-01 4,000000&-02
9,206286&-01 9,979524&-01 9,980045&-01 9,168779&-01 4,500000&-02
9,029673&-01 9,974858&-01 9,975448&-01 8,984185&-01 5,000000&-02
8,838331&-01 9,969745&-01 9,970402&-01 8,7843598~01 5,5000008-02
8,6332458-01 9,964195&-01 9,964919&-01 8,570374&-01 © 6,000000&—02
8,415434&-01 9,958220&~01 9,959009&~01 8,343336&-01 6,500000&-02
8,185944&-01 9,951830&-01 9,952684&01 8,104385&-01 '7,000000&-02
7,945840&~01 9,945040&-01 9,945956&~01 7,8546758-01 7,500000&-02
7,696200&-01 9,937861&-01 9,938838&-01 7,595376&-01 8,0000008&-02
7,438106&-01 9,930308&-01 9,931342&-01 7,327656&-01 8,500000&-02
7,172639&~-01 9,922395&-01 9,923483&-01 7,052682&-01 9,000000&-02
6,900871&-01 9,914135&-01 9,915275&-01 6,7716118~01 9,5000008:~02
6,623866&~01 9,905542&-01 9,9067328&-01 6,485580&-01 1,000000&-01
6,3426648-01 9,8966338&-01 9,897868&-01 6,195704&-01 1,050000&-01
6,058290&-01 9,887421&-01 9,888699&-01 5,903073&-01 1,100000&-01 -
5771737&01 | 9,877922&-01 " 9,879239&-01 5,608741&-01 1,150000&-01
5,4839728-01 9,868150&~01 9,869503&-01 5,313728&-01 1,200000&-01
5,195927&-01 9,858121&-01 9,859506&-01 5,019013&-01 - 1,250000&-01
4,908499&-01 9,847849&~01 9,849264&-01 4,7255328-01 1,300000&-01
4,6225458-01 9,838350&~01 9,838791&-01 4,434175&-01 1,350000&~01
4,3388838-01 9,826638&-01 9,828101&-01 4,145786&-01 1,400000&-01
4,058289&~01 9,815728&-01 9,817211&-01 3,861157&01 1,450000&-01
3,781492&-01 9,804634&-01 9,806133&-01 13,581031&-01 1,500000&~01
3,509179&-01 9,793370&-01 9.794883&-01 3,306098&~01 1,5500008-01
3,241990&-01 ' |  9,781951&-01 9,783474&-01 3,036995&-01 1,6000008~01
2,980518&-01 9,770389&~01 9,771920&~01 2,7743088&-01 1,650000&~01
2,725310&-01 9,758697&-01 9,760234&-01 2,518570&-01 1,700000&-01
2,476364&-01 9,746890&-01 9,748429&01 2,2702598~01 1,750000&-01
2,235631&-01 9,7349788~01 9,736518&-01 2,029805&-01 1,800000&-01
2,002018&-01 9,722975&-01 9,724512&-01 1,797585&-01 1,850000&-01
1,776386&-01 9,7108918~01 9,712424&-01 1,573925&-01 1,900000&-01
1,559047&-01 9,698738&-01 9,700265&~01 1,359105&-01 1,950000&-01
' 1,350273&-01 9,686526&~01 9,688046&~01 1,153356&-01 2,000000&-01
1,150289&~01 9,674266&-01 9,675776&-01 9,568628&-02 2,050000&-01
9,592793&-02 .| 9,661967&-01 9,663467&-01 7,697678&-02 2,100000&-01
7,773888&-02 9,6496398&-01 9,651127&-01 5,921701&02 |- 2,150000&-01
6,0472128-02 9,637290&-01 9,638765&-01 4,241287&-02 2,200000&-01
4,413429&02 9,624929&-01 9,626390&-01 2,6566408-02 2,240000&~01
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TABLE 1 (continued)

Corrected Original Time in reduced
Ang, vel. a.c.f. Cult) CulD) Torque a.c.f. units :

2,872843&02  9,612563&-01 9,614009&-01 1,167605&-02 2,300000&-01
1,4254098&-02 9,6002008-01 9,601631&-01 ~2,263200&- 03 2,350000&-01
7,075670&-04 9,587847&-01 9,589262&-01 —1,525955&-02 2,4000008-01

—1,191796&-02 9,575509&-01 9,576908&-01 —2,732423&-02 2,450000&-01 .
—2,353222&-02 9,563193&-01 9,543476&-01 —3,847124&-02 2,500000&-01
—3,4447678-02 9,550905&-01 9,552271&-01 - | —4,871716&-02 2,550000&-01
—4,437933&-02 9,538648&-01 9,539998&~01 —5,808094&-02 2,600000&-01
—5,344456&-02 9,526328&-01 9,527762&-01 ~6,658368&-02 2,650000&~01
—6,1662908-02 9,514249&-01 9,515567&-01 = | —7,424845&-02 2,700000&-01

Eq. (22) we have recalculated the microwave and far infrared spectra for these solutes.
" The results are typified in Table 1, for 109, v/v bromobenzene in decalin at 293 K.

As the Table shows, the correction is very small, two orders of magnitude inside the
experimental uncertainty. This means that the Mori-Evans theory of 1976 is adequate for -
use in the great majority of cases without the corrections of Ford et al. These may be more
important as the limit of free rotation is approached. Higher order corrections fiave an
even smaller effect.

|

Mixed autocorrelation functions

It is important to note that Egs. (29) and (31), although extremely difficult to solve
analytically are simple in concept because they carry no memory in the friction matrix.
That is to say the random torque and force terms are statistically Markovian in nature.
Such concepts carry no weight in the far infra-red (THz) region [2] of the complete zZero-
-THz frequency range over which the molecular dynamical evolution takes place. A nume-
rical method of dealing with rotation/translation is computer simulation [2, 18] where
the equations of motion of the asymmetric top are solved (numerically) with model potent-
jals for some hundreds of molecules at a time. Finally in this paper we present direct
evidence for the existence of the analogous mixed a.c.f.’s: {J(£) - T,(0)> and {T(r) - J(O))
from a simulation [4] using 108 triatomic asymmetric tops of C,, symmetry subjected
to an external torque near the thermal level, i.e. comparable in magnitude with k7. Here
T, is the resultant molecular torque. _ _ '

The a.c.f’s {J(¢) - T,(0)>/<J(0) - J(O)> and {T(¢) - J(0)>/{J(0) - J(0)> (in normalised
units) are mirror images of each other (Fig. 1) and are comparable in absolute terms
with the individual a.c.f’s {J(¢) - J(0)> and (Tq(t') * T,(0)>. The algorithm used is called
TRI2 and was written initially by Renaud and Singer. The sample was thermostatted to
220 K at a molar volume of 10~*m?. The molecules interact with a 3 x 3 atom-atom, Len-
nard-Jones potential with no electrodynamic (multipole-multipole) terms. A constant
steady torque was applied along the laboratory Z axis in order to tilt the ey axis of the
molecule into the Z direction. This simulates the interaction of an external electric field
E; with a “dipole” along ey. This simulation is not designed to reproduce the real inter-
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action of an electric field with a real system, but rather to get at the essence of what happens
 when a dipolar sample is subjected to an intense electric field. The work could easily be
-extended to real systems using, for example, the water algorithms now available. In the
_alignment of a nematic with an electric field this kind of torque is presumably amplified
millions of times as discussed by van Vleck [19]. A greater amplification must be effective
when a nematogen is aligned with a magnetic field because the magnetic dipole is so much
weaker than the electric in a diamagnetic, dipolar molecule.

Fig. 1. Mixed autocorrelation functions (1) <J(r) - T,(0)> and (2) <T,(r) - J(0)) in a computer simulation,
Here J is the angular momentum and T, the torque

The torque applied along the Z direction does not disturb equilibrium properties such
- as the total energy. The mean square angular momeptum in the torqﬁe off case is (in
reduced units) 3.57x1073%; and in the torque on case 3.51 x 10-3°. The application of
a torque does however have the effect on the time dependence of angular momentum
autocorrelation function illustrated in Fig. 2, and causes this function to become_amsotroplc
e.g. {J(6)J(0)> and <{J,(1)J(0)> now behave dissimilarly, and each is different from
(@) - J©0)). We have (JX0)) = 2.24x10-32; (JX0)) = 3.40x 10-33; {JEHO0)Y = 3.5

i
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x 10-3° over the 20 ps of our simulation. The external torque also has this effect on the
linear momentum autocorrelation function (Fig. 3). If we define an angle 6 between ey
of éach molecule and a laboratory fixed axis, then we have (P, cos 6(0)> = 0.585. These
vanish in the absence of an external perturbation. Here P, denotes Legendre polynomial
in the usual way. The anisotropy in thz orientation may be quantified by <e2 (0)> = 2.51

x [0-%; (e2,(0) = 2.55x10-3; (e} (0)> = 1.38x10-2,
The Science Research Council is thanked for financial support.

' APPENDIX A
For convenience we write:
A, = A(a,) = A(—a,); B, = B(a,) = B(—a,).
The integrals in Eq. (14) can now be written as follows:"

t ty m

2 ) Ay
I ’(;) = j dt, J dt, Z B exp(—_qn(tl—t;))

0 0 n=1
m

L% = 5 ke

n=1
m.

| o A, (a - 1+¢e™)
L7190 = T —
® B, a’

n

n=1
- . ol e ] An
IR = | dey .|ty E B exp (—a,(ty—t;+13—1,))
n=1 "

_ YA,
I = | dt, ... dt,,Z 7 €Xp (—a,(t +1,—13—14))

J J B
o o n=1
(4) An 3 29-1
LIl (t) = B’ [p (p+a") :l
) n=1 ! '
Com , .
L—II({”(t) - E 1;,’, I:% (a.t) —2a,,t+i—»(a,,t+3)e "‘] |
n L a,

n=1

m

4

B, a,

() = z 5 [% e 4+(“n’+.1)e‘°"‘+1/4e‘zant].

n=1

Other integrals may be evaluated straightforwardly from Ref. [7].

(AD

(a2)

- (A3)

(A%)

(AS5)

(A6)

(A7)

(A8)

(A9)
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APPENDIX B

Calculation of (KT|I)* correction termr to Mori-Evans theory

~

m

kT\? Ay [ at—5/d+(at+1)e” " +L ¢ 2
2 Na —B;; Py .

a,
n=1

"In 3 variable Mori-Evans theory we have:

A 1 ’ F

m=3 —=Z=—; =-2=X+iY; iii—éx—-z'Y-
B i+I'’ B, > B -

_ ¥ = (ay +a, )

T 20140)° 2p(1+1)°

ay = 0y; a; = oy +iff;  az = o, —ip.

The correction term should be purely real.
Constant term (1):

_i[£+ X+iY X—_iY]
Lo T erid) T =i

Bl

o« (o + 82"

[z, 2Kt~ 60+ )+ Y(4a?ﬁ—4rx1ﬁ3))]

t term (2):

itz AT AY o [ EFIBN?
7[5 +(X+'Y)(a§+ﬁ2) “X‘Zy)(awz)]

_ ! [ Z | 2K 30,87+ Y(soc%ﬂ—ﬂ3))]

2§ @i+ p%°

Exponential term (3): g

A

o @tiB  @—ip)”

3 [Ze"“z‘ 2¢”* cos fit

N [Ze'“"" L, X Hie T (XuiY)e"(“‘*“”‘]

4

Tt e K= G5+ Y(adf )

2¢” "' sin ft

T ET (X(4e3f—~dot, %) — Y(ai’—6a§ﬁ2+ﬂ4))] |
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Bxponential term (4):
ze—‘zazf (X_Fiy)e—Z(al-f‘iﬁ)t (X_iY)e‘Z(al—fﬂ)!]
+ - :
[ o; - (g +iB)* (o0, —if)*
l:Zé“z“z’ + 2e 2% cos 28t
a3 (@i +84)"

(Xt —60ip” + %)+ ¥ (dai — 40, f7))

+2e™ 24 sin 2BH(X (402 B —doty B2) — Y(a1 —6a2p*+B* ))] (i + %)
t term (5):
' B I[Ze"’z' N Je” ™ cos Bt
I o (ab+p%)°

(X (o3 — 30, %) + Y32 — B%)

2e” " sin Bt |
+ (o 1+ﬁ )3 (X(3a 1/3 ,3) Y(a1—3°‘1ﬁ )):I

" We have the usual rélations between (Z, X, Y, oy, ay and B) and (K,, K; and y of the
angular velocity a.c.f.). The expression is now ready for evaluation because K, K; and
v have been evaluated carefully in the uncorrected theory by Reid and Evans. Correction
to order (KT/I)* is possible but laborious.

1976 Evans theory is equivalent to:

UT ,
- Cu(n) w(©) ~exp[ — I ’(t)}

and m = 3. This is Shimizu’s equation (1964), quoted by Wyllie (1972) and rigorously '
valid only for planar libration (the Coffsy case), when the factor 2 is replaced by 1.

~

APPENDIX C

Rotationftranslation.

In this case we have:

Alp)
B_(p)

The roots of the denominator may be written as:

= (Y I[P+(O+9)p+ (OO =],

2[ (},(r) +y(t)) + [(.},(r) +.},(t)2 4(),(r) ()] ,y(ft).y(tr))] 1/ 2]

so that & =x+iy, a;=x—Iiy
where

=~ +y)2;

y = % [(},(r) +,},(t)) 4(},(1') ®_. (tt) (ﬂ))]llZ
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when
(y(r)+,y(t))24 < 4(,},(1-'),},(t)_,},(l‘.1)y(tr))'
We have:
A (YO @y 9D 2y iy(r® =) iy
= = 1
B | Q2x4+7 49 492

_ A,

and — = X—iY.
B,

We have therefore:

m

1O — A, (a~1+e™™)  —[2X(x*—y*)+4Yxy] 24[xX+yY]
R e R 2

]

n=1 .

2X(x*—y")+4¥xy _ 2Y(x*—y*)—4Xxy __,
2 a2 ¢GOSyt e
(X" =y ) +4x°y (x*—y") +4x%y

sin yt.

19 — —~10 [X(x* — 6x2p% + y*) + Y(4xPy —4xy?)
2 4 (x2+y2)4
o [X(xs —~3xyH)+ Y(3xZy—y?)
(x*+y%)°
2¢™ cos yt '
W T e Yy )]
2e” " sin yt
Ay O =00~ Y =657y 4 )]

e *™ cos 2yt

+31
2 (xz +y2)4

[X(x*—6x?y*+ y)+ Y(4x* y —4xy*)]

e~ 2% sin 2yt

+3 i) [X(4x®y —4xy®) - Y(x* —6x%y* + y*)]
2te” "' cos yt
T TX(x3=3xy)+ Y(3x2y—?
Py K3+ YGxy—y)]

2te” " sin-yt : -
Ei [XGx’y=y*)—Y(x* —3xy™)],
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"~ We have:

. . . 2 .
Cu(t) - w(0)> = exp [ —2 (kTT 1)+ (’;—T> .IS,“’(t))]

in this approximation.

ot
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