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Abstract—The reorientation in the liquid crystal mesophase of a molecular dipole vector (i) is
coupled analytically to the centre of mass translational velocity (v). The resulting equations for the
complex permittivity (¢*) contain three phenomendlogical friction parameters, v,, v, and ¥,.,Ys.
Here v, is the orientational friction, 7y, that opposing the centre of mass translation and v,,7,, a
product of coupling frictions (off diagonal elements of the tensor ¥). The Cole-Cele plot of €* can be
flattened, split and skewed using different combinations of the elements of v. It is possible to obtain
more than one relaxation time from a given rotational friction vy, provided that the orien-
tationalftranslation coupling is properly accounted for. The theory is developed to include inertial
and memory effects. Dielectric phenomena across the nematic to isotropic phase transition are
reproduced in a natural manner by taking into account the fact that when the macroscopic sample
becomes isotropic the autocorrelation functions (pu(0) - ¥(1)) and (v(0) - u(r)) vanish using symmetry
rules concerning parity, reflection and time reversal.

1, INTRODUCTION
In the classical theory of dielectric relaxation in
isotropic liquids (DEBYE[1]) the reorientation of the
molecular dipole is opposed by a scalar friction
coefficient y. This has its origin essentially in the
fact that Debye considered the rotational diffusion
of a spherically symmetric molecule within which
is embedded a permanent dipole moment,
PERRIN[2] has of course extended the basic idea to
the asymmetric top, where y is a tensor, assumed
to be diagonalizable, and where there appear
(theoretically) three relaxation times. In an iso-
tropic liquid such as nitrobenzene these cannot be
resolved experimentally. However, it is well
known[3] that the dielectric spectrum of an alig-
ned nematogen is composed of more than one loss
feature, depending on whether the measuring and
aligning fields are parallel or perpendicular. These
are easily resolved in molecules which can exist in

a nematic state but which are otherwise similar in -

shape and size and in electrical properties to
nitrobenzene, except that they usually have long
alky! chains attached to the aromatic framework.

Up to now the explanation of such features has
rested on a hydrodynamic basis involving the use
of the director potential [4-6]. The molecular origin
of this is not discussed. Therefore there is no real
basis for its use other than the purely
phenomenological. The “director” is a macros-
copic idea, and there is no basis for its existence in
the microscopic Liouville equation of the molecu-
lar ensemble.[7]. It is possible, however, to
manipulate the Liouville equation by the use of
projection operators into a form which is more
convenient for use in dielectric spectroscopy in
the range from static to THz (far i.r.). The mole-
cular Liouville equation can for example be writ-
ten as in equation (1) below, first developed by
Mori{8].
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This has proven to be of great value in explain-
ing, for example, features of depolarized Rayleigh
scattering of light[9] (first discovered in the late
sixties) using in some cases molecular theories as
opposed to hydrodynamic. This is essentially
because it is possible to consider the time evolu-
tion of column vectors (A) made up of dynamically
independent variables. For the purposes of this
paper we will write

a=[]
Y

where u is the molecular dipole moment and v the
centre of mass franslational velocity. The reason
will become clear as the paper is developed.
Equation (1) below may then be used to calculate
the behaviour of the autocorrelation function
(a.c.f.5) (u(0) - v(1)) andfor {v(f) - u(0)} where { )
denotes an ensemble average over the macros-
copic sample of dielectric. It is well known[10]
that these a.c.f.s will vanish if u and v: (a) have
different time reversal symmetry; (b) have
different parity; and (c) are different in reflection
symmetry. These rules apply however only in an
isotropic medium. In the aligned nematic phase
these symmetry constraints do not apply and the
a.c.f.s mentioned above can exist.

The rest of the paper is based on this fact and is
an attempt to outline very simply some of the
consequences for the molecular approach to
dielectric spectroscopy in liquid crystals, or more
specifically, in the aligned (and birefringent)
nematic mesophase of polar molecules. We are not
concerned whether or not the a.c.f.s exist, but only
with the fact that they may exist. Consequently
we are at pains (o point out that the statistical
autocorrelation of molecular & and molecular v
can be used to explain why the dielectric spectrum

W
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of an aligned nematogen peaks more than once
provided that the macroscopic sample remains
birefringent. We do not wish to make any
sweeping claim that this is the origin of all liquid
crystalline properties. We do not however have
recourse to the nematic director, which has a
hypothetical existence independent of that of the
molecufar entity[6].

The theory is consciously over simplified and
self-contradictory in that we do not wish to obs-
cure matters by considering anything other than
the Debye spherical diffuser coupled to its own
centre of mass translational velocity, This is of
course inconsistent with the fact that the mole-
cules of the nematogen are asymmetric tops; and
anything but spherical. Our basic theory is
however applicable more generally, i.e. to Perrin
rather than Debye. The complexity of this exten-
sion is well known. In the practical sense the
general theory of Perrin is rarely if ever useful in
isotropic liguids as mentioned already. Similarly, it
is very rare for more than two peaks to be
resolved in the dielectric spectrum of the aligned
nematic, These can be explained qualitatively by
the simple theory developed here. This is all we
wish to do. It follows dialectically that there is no
purpose in trying to match this with the details of
the experimental data. An oversimplified theory
can be forced to fit a set of data, of course, but to
little purpose. The correct way of embellishing the
present approach would be via ~molecular
dynamics computer simulation of (v(z)- u(0)) or
{p(0) - v(t)) in the aligned nematic.

The paper is developed as follows. In Section 2
we manipulate the molecular Liouville equation to
the point where it may be approximated suc-
cessively by utilising the Mori continued fraction.
The equation of motion in this case is for the

where v is the centre of mass linear velocity.

In Section 3 the autocorrelation functions of
interest are extracted from the theory and Fourier
transformed to produce the final spectral band-
shapes. We discuss how the number of free
parameters may be kept to a minimum by the use
of molecular dynamics simulations of the nature of
the molecular diffusion. If this is isotropic the
influence of rototranslational effects[11, 12] on the
spectrum is expected to be vanishingly small.

In Section 4 the results of some simulations on a
Ca,. Symmelry triatomic are presented as an illus-
tration of the strategy discussed in Section 3.

_ 2. EQUATIONS OF MOTION

The basic equation is the integro-differential
form’ of the Liouville formalism[13] developed
originally by Kupo{14) and Zwanzic[15]
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A(ty= i, - A(t) - J; ' drda(t — TJA(T) + FA(D).
M

Here 2, is a resonance frequency operator, the
matrix kernel ¢.(t} is the memory tensor and Fa(t)
is a ‘generalized force’ or ‘torque’ propagated by
projection from A(0). EvaNs, GRIGOLINI and
FERRARIO[16] have shown recently that equation
(1) may be replaced by a Markovian matrix equa-
tion

Veiw-V-a- V-0 V+®() Q)
where V is an n-dimensional column vector of m

components, which are, in turn, m-dimensional
vectors.

So we have
A, Q7 o 0 0
: 0 2 0... 0
V=1t b @Sle o g
A, 0 0 0 a;
[0 wy; 0. 0... | 0
a= Wiy 0 (2 %) 0 s o =0
0 (/219 0 wy 0
0 0 (4 7% 0 Was ...

D= F(1)

Equation (1) may be rationally approximated by
expanding the memory matrix in a continued frac-
tion

i 1
AZ-2+ 1P - iﬂn—l

A% =®(p)

1 2 .
lp _"-n‘ "‘+'y"Al+Ip"lnz. ) (3)

This allows us to define the grand matrices v, », a,
o and d in terms of the coefficients appearing in
the continued fraction. We have

Q=% Q,=Q.,

. 2 _ 2 _
~ A= sy ) — AL = @y O,

The first approximant of equation (3) corresponds
to equation (2) in the form:
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A= —wp A~y A +F(@)
@

A2=0.

The rototranslational diffusion in space of a single
molecule is governed by equation (4) in the sim-
plest case where F(t) is both Gaussian and Mark-
ovian. To evaluate the mutual influence of the
orientational vector u and the centre of mass
velocity vector v it is sufficient to write

s=[if =[]

where T' is Mori-propagated from p and F is
Mori-propagated from v. In general the friction

grand-matrix is
|7 y,,,]
[ %

where v, and . are tensors for asymmetric
diffusion, but scalars for isotropic diffusion. The
off-diagonal elements are measures of the roto-
translational interaction. Equation (4) can now be
written as

#= =Y = Ve V+TI1) )
i=_‘}'vu."~'}'u'V'*'F(t)- (6)

By Laplace transformation

~

—pO)+pi=—vy,-V—y,.-a+F

RO FpA= — . A=Y 4T

so that
—v(0)+pv=[ Yo + 1p_’_%]v+l~‘
= _ﬁu(p)"'*'F’
where
PRI AT
lp+7u

If we now examine the memory kernel B.(p)in the

case |¥..), |1%..) € 7., 7 we may make the marko-
vian assumption

e
ﬁ.,(p)' Yo I'L—Llp T,
=% [1= Yo * Youl ¥ - Yo) 7
Similarly

BuP)=v M=y vodva .1 (8)
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Equations (7) and (8) imply that in the presence of
off-diagonal elements of ¥ translational and orien-
tational frictions are diminished if v,, and 1y,
have the same signs. Otherwise, the
rotation/translation interaction increases both the
rotational and translational frictions separately
considered.

The physical meaning of equations (5) and (6)
may be clarified’in the decoupled limit by noting
that the orientational equation of motion then
reduces to

==, p+I() 9

This is in turn the Langevin equation analagous to
the Favro equation[13] for rotational diffusion

(—;’; fQ,0=-M-D-M(Q, 10 (10

‘where D is a diffusion tensor and M is identical

with the quantum-mechanical angular momentum
operator. Here f(Q,1) is a probability density
function governing the set of Euler angles ()=
(8, ¢, x). Equation (10) can be converted into
equation (9) following the method used by NEE
and ZwANZIG[17]. This involves linearizing Euler's
equations and restricting the nature of the body
under. consideration to an inertial spherical top
undergoing, by implication, isotropic rotational
diffusion. The diagonal elements of 4 are in this
case all equal. Note that in equations (9) and (10)
memory effects can be introduced by making D or
¥ time dependent. In equations (5) and (6), there-
fore, the ys are scalars, -

Solving equations (5) and (6) for the orien-
tational auto-correlation function we have

{u(r) - p(O)) _ =g [ P+ ]
(”(O) ﬂ.(o» (p + 'Yv)(p + YM) YuvYou
(1)

> Z o+ ) (12)
when y,, = v..=0. The orientational autocor-
relation function is exponential [equation (12)}
only when rototransiational interaction is negligible.
Inverting equation {12) gives

(u(n)-

(u(0) - Il((g;; =c [COS (c=b)"%

zg—f—bzém sin(c~ b’)‘”t], c>b?

=g [cosh b2 —c)'%
+(—b¥%m sinh (b - c)‘“:], c<b:  (13)

{(p(7) - VO (0) « (0))
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— ‘yu“ e—'b! Sin (c__ bZ)lIZt’ c> bz

= —~y,, e ¥sinh(b*— )1, b'<ec. (14)

Here b =2y, + 7)1 €2 %% — YouVue The diclec-
tric complex permittivity is related to the Fourier
transform of (u(?): u(0)), but not straightfor-
wardly, because what is observable in zero-THz
spectroscopy is a macroscopic volume of interac-
ting dipoles. The task of relating the multi-particle
and single particle dipole correlation functions is
tremendously protracted, but progress has been
made recently using micro-macro theorems
(MADDEN and KIVELSON[18]). EVANS et al.[19]
have recently pointed out that the dielectric fric-
tion of NEE and ZWANzIG[17] has no effect on the
direct Fourier transform of {u(t)+ u(0)), but only
on the integrated intensity of the power absoption
coefficient {a(w)]. However, the effect on the loss
curve [€'(w)] is to displace it, as usual, to peak at
lower frequencies. If we are concerned with the
shape of the a{w) curve it is reasonable to neglect
all internal field corrections. In this case

€"(w) = (e~ €,)wp L m(u(t) -u(0)) cos wt dt
- (15)

€'(w) = gleg— e,)wo]: (u(t) - u(0)) sin wt dt.
(16)

Here u= pf|ul; and ¢, is the high frequency limit
of €'(w). This is not e, of the semicircular Cole-
Cole plot if we wish to take into account the far
ir. part of the dielectric permittivity or power
absorption coefficient. Using equations (15) and
(16) we have:

()= (e~ )wlw’y, + 7 (yyu — y N
[YoYu = YurYou ~ @’ + [y, + 1,1
~ (60— e)wy e+ y2] i vy, =0

(a7

& — (€0 — e,_.)_w’[*yf,-i— Vi Yo + @71
[V = YoV = 0°F + 0y, + 7.1

e(w)=

2
€~ (€~ €, )0
-,

(71 s 'O

if Yo =0. (18)

The power absorption coefficient is given by the
solution of Maxwell’s equations

~ N2e"(w)5
(@) = [T+ @D+ o)™

with @ =277pc.

If the influence of centre of mass translation on
orientation is strong”the complex permittivity is
likewise affected as shown in Fig. 1.

It is well known that Markov statistics cannot be
used to account for the intense Poley absorption

-
-

\I. e v . P
2
o 1 !
5 10
€'
(a)

Fig. 1. {2) Effect of strong rotation-translation interaction

on the semicircular Cole-Cole plot. (1) vy, =v.=

10 X107 875 9,9, = 56 X10* 57%; (2) 7, = 7, = 10 X }0'2

5715 9y, = 90 X 10% 572 (3) semicircles. (b) Loss curve
for strong orientation/transiation coupling,.

encountered in the far ir. region for all dipolar
molecules in the liquid state[20). Equations (17) and
(18) are therefore inadequate to extract the effects
of the orientation-transiation interaction from the
complete zero-THz profile (inclusive of the far i.r.)
except by concentrating on the low frequency loss
alone. However, strong effects of rotation-trans-
lation coupling have been observed recently by
tracer diffusion experiments{21] where the area
beneath the linear velocity auto-correlation func-
tion is measured. (The diffusion coefficient is
related to this quantity.) In our treatment of this
effect the velocity autocorrelation function is
given by an expression similar to equation (13).
The response of this a.c.f. 1o orientational coupling
is shown in Fig. 2 as a function of Y., Ve

To improve the basic description of the com-
plete experimentat zero-THz profile it is necessary
to expand the system of equations (4). It is con-
venient to truncate the system at the level cor-
responding to an exponentially decaying second
memory tensor. In the limit of vanishingly small
rotation-translation interaction the equations of
motion separate into their translational and orien-
tational components. The former corresponds
identically with the translational itinerant oscillator
model of DAMLE et al.[22}, and/or COFFEY et
al.[23). The latter corresponds exactly with the
orientational theory developed by QUENTREC and
BEZOT[24), BAROIJAS, LEVESQUE and
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Fig.-2. Response of the velocity autocorrelation function
1o an increasing coupimg parameter ¥, Y. (1) I
10 x 10" s7; -wa' T YT = 10X 10% 572 (2)
y.~10x10'2 3 Y —-IOX]OHSi‘,Y, Yo =90 X 10% 573
3) -y,—]()xl()“ 3 = 1010 s -1, 7.,,.7,..-so><m?‘
7% (4) 7.—-10)(10" 31, =10x10% sty o,
10X10* 52 (5) 5, = 2x|o"2 sy, = 10X 107 s
YouYus = 10X 107572, Abscissa: ps.
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QUENTREC[25], and EVANS et al.[26] for molecular
dynamics results and for zero-THz profiles of
liquids, plastic crystals and nematogens. The un-
coupled orientational theory of this system forms
the basis of the macro~micro theorem developed
by Kivelson and Madden and also the extension to
include memory effects of the NEE-ZWANZIG
theory{17] by Loso, RoOBINSON and
RODRIQUEZ[27]. In the multi-Markovian represen-
tation the complete orientation~translation system
may be expressed as

Ai=—wp A~y A +F(1)

A2= ~wy A~y Ay

. _ (19
A= ~ Wy Ay — it Ay

A4=0.

The soluticn in terms of the orientational (dipole)

. auto-correlation function is

() p(0)) = .2’“[p(p +A7)p + 1) +v.)
= YouYus)
+pYAY(p+ 1)+ ATD + 7,.)]
+AFHAYD +(p + v )AD G(P) (20)
where

G(p) = (p*+APRp*+ ALY
XD + V)P + Y) = YousTor)

{m(e) - m(0)

+pl(p + %)AFAT +(p + 7,)A7A8Y)
+p’[ATHp + 7))+ AP(p + ¥)].

The autocorrelation function is intractable analy-
tically from equation (20) but the loss and permit-
tivity may be extracted by Fourier-Laplace trans-
form. When YouTiuo = 0 equation (20) reduces to

P+ y.p+AY

-1
=< P +y“,,2+(A“’+A5‘2)p+Az Yu

(u(0) - 1(0))

which has been discussed at length in the
literature [26]. The equilibrium A averages which
appear in equation (20) are defined generally as

= (DONI((0)); A5 = (AHONKpO));

_{5%) {5*m). () IRON ()

=50y oy A = oy oy

Ay’

so that A{? involves the equilibrium mean square
torque and Ay? the equilibrium mean square force,
both of which may be simulated in a molecular
dynamics run. The loss and permittivity from
equation (20) are therefore obtainable by Fourier—
Laplace inversion.

3. BANDSHAPES AND COLE-COLE PLOTS

Although the Cole-Cole plot is usually the least
discriminating method of presenting the results of
dielectric measurements it is well known to have
some general features which are interpreted
empirically: for example the COLE-DAvVIDSON
skewed arc and flattened arc of the Fuoss-Kirk-
waod treatment[28). Figures 2 and 3 illustrate that
the skewness and flatness can be reproduced from
equations (17) and (18) by introducing different
types of rotation-translation coupling. For exam-
ple, when the translational friction is greater than

- the orientationa) friction and the two motions are

moderately coupled we obtain the beginnings of a
Cole-Davidson skewed arc. When the rotational
and translational frictions are interchanged, the
Cole-Cole plot is skewed in the other sense.
Finally when both orientational and translational
frictions are equal and strongly coupled (Fig. 1)
the Cole-Cole arc is flattened. Flattening of the
Cole-Cole arc occurs when there is a strong
mutual effect of orientation and translation. In the
limit of strong interaction (y,¥, = ¥..7..) the loss
curve is split into two distinct relaxations (Fig. 1),
although only one purely rotational relaxation time
is used. This may be thought of as being equivalent
to the Rytov splitting{9] observable[29] in the
spectrum of depolarized, scattered light, where the
phenomenological Mori equations are identical
with equations (17) and (18), except that the quan-
tities v,, y» and ..y, have a different physical
meaning.
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Fig. 3. Skewing the Cole-Cole plot with coupling

parameters.(1) v, =2 X107 5, = 10 X 10757, y,,7,, =

10x10* s (2) »= 1010 s 4, =10 %101 53

Yoo¥ou = 10X 1045 (3) 5, = 10 x 102 5T, =2 x 107 57;
Yo You = 10X 102 52,

Note that in deriving equations {17) and {18) we
have made the simplification of neglecting the
effects of geometrical and diffusive anisotropy (of
both rotational and translational kind). I1f aniso-
tropy of diffusion is taken into account the equa-
tions (17) and (18) will be complicated by the
presence of three translational frictions, three
rotational frictions and three rototranslational
friction elements. NEE and ZwANZIG[17] have
shown that it is possible to reproduce the Cole—
Davidson skewed arc by considering rotational
diffusion constrained to the surface of a cone by
an imposed external potential. By incorporating
the effect of rototranslational coupling and using
the model of anisotropic diffusion most of the
empirical forms can be reproduced analytically.

The use of computer simulation to counter the
problem of too many parameters may be illus-
trated by simulating the component autocor-
relation functions of linear velocity {v() - v(0)) and
angular momentum (J(¢) - J(0)). This reveals the
areas beneath {v,(f)v,(0)); i =x, y, z and provides
an idea of the differences between the translational
frictions ¥{”, ¥{” and ¥ and rotational frictions
9, ¥ and y{’. This is described for a2 C,
triatomic in Section 4. '

4. SIMULATION OF COMPONENT CORRELATION TIMES

The purpose of this section is to illustrate the
appearance of orientational and transiational auto
correlation functions as computed in a molecular
dynamics simulation of an isotropic liquid. In
principle, if the total sample under consideration is
not isotropic, as in the aligned nematic, it would be
possible to simulate functions such as {u(7) - v(0))
and investigate them in detail. The technique of
molecular dynamics simulation is important in this
context because it provides a means of building up
a function of theoretical interest which is ac-
cessible experimentally only through the inter-
mediacy of generalized Langevin theory.

A molecular dynamics simulation of a triatomic
molecule (aBa) was carried out with a two-step
predictor/corrector method . (U.M.R.C.C. CDC
7600). The molecule was given a bond length of
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1xX107"°m, an included angle of 60°, an « atom
mass of 2.5x 1072 kg and a 8 atom mass of 2.5 X
10"% kg. Thermodynamic conditions were set at
220K, with a volume of 10~* m’. The equations of
motion were solved with a two-step predictor-
corrector algorithm written by RENAUD and
SINGER([30] and communicated to the author. It
was subsequently modified to calculate autocor-
relation functions over a total span of 3000 time
steps of 0.01 ps each, using a recording interval to
magnetic tape of 0.03ps. The molecules interact
via a 3%x3 Lennard-Jones atom-atom potential
with parameters ¢k =173.5K, o =3x10""m.
Autocorrelation functions of the velocity and
angular momentum components are illustrated in
Figs. 4 and 5. In neither case is the anisotropy of
the motion very pronounced, but even in the iso-
tropic diffuser CH,, for example, cog-wheel effects
are known from neutron-scattering spectra to
produce strong mutual interrelations between
orientational and translational diffusion[31].

5. DISCUSSION
The points developed in this paper may be
summarized as follows:
(1) In the aligned nematic environment it is
possible to consider directly the mutual interaction
of orientational and translational diffusion using

the equation (1) with the column vector

veorotange e

g { { {
200 400
Time steps

Fig. 4. Angular momentum autocorrelation functions,

simulated by molecular dynamics on a Cy, triatomic, ~ =~

3(1) - XON/O) - JO));—T, ()], NI, (0 ,(0)); ®
(L (DT ON(0)T.(0)).

Time steps
200 400
T T T
., T
L)
o,
= o‘.
o \.\
(X3 \\ "
T Y -
Pom .- — e e e e end
®
- ..‘.‘
Ty
Ok ‘.’-‘3 ® !
I 1 ! |

30 100
Time steps
Fig. 5. Linear centre of mass velocity autocorrelation
functions simulated by molecular dynamics; ——(1)
V() - vOKV0) - v(0)), @  (0.()n,(0))(v,(0)e,(0));
—Q)  (OPONO0Y); @ (A0
(PA0WHOY); ~—~ (v VI0)N/{pUO)LUO)).
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4=[3]

where g is the dipole orientation vector and v the
centre of mass linear velocity.

(2) The Debye equations are then modified in
such a way that Cole-Davidson skewness, sym-
metrical flattening and splitting of the Cole-Cole
plot can be incorporated within the same analytical
framework.
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