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DIELECTRIC RELAXATION AS A MULTIPLICATIVE
STOCHASTIC PROCESS

I. GENERAL THEORY
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A rigorous and general approach is developed to the relaxation of molecular dipoles on the
microscopic scale, embodied in the orientational time-autocorrelation function. The usual
difficulties of using the stochastic Liouville equation (SLE) are bypassed by replacing the
cumulant expansion with a continued fraction. This reduces to that of Sack or Gross in the
appropriate limit.

The autocorrelation function is formed from approximants of this continued fraction, which is
ideally suited for numerical computation, and as a basis for the newly developed technique of
semi-stochastic molecular dynamics simulation. The numerical solution automatically produces
the spectral moments of interest to order of truncation, so that the number of unknowns is
reduced to one at each and every stage of approximation. This concerns the rate of energy
dissipation, denoted by B, a scalar, tensor or super-tensor according to the nature of the diffusion
process under consideration.

The new continued fraction can be used to describe spatial rotational diffusion of the
asymmetric top using the appropriate Fokker-Planck diffusion operator. It is a considerable
improvement therefore on a model such as the planar itinerant librator, an approximant of the
Mori continued fraction,

1. Introduction

Inertial effects in relaxation processes have been treated rigorously by
Sack!), who produced a continued fraction expansion of the dielectric res-
ponse function. The problem has also been considered by Gross®) on the basis
of a generalised Liouville equation. He obtained the following expression for
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the frequency response of the polarization:

p*(w)/po=l—— {‘“’+p/[1+""+23/(2+ +. )]} (1.1)

This means that although a single microscopic fluctuation mechanism is
considered, a macroscopic description (of the far infra-red and dielectric
spectrum) in terms of the usual relaxation concepts (Sack) would involve an
infinity of discrete relaxation times, whose reciprocals form an arithmetic
progression. The leading longest relaxation time (7o) is the original one of
Debye.

The last decade has seen the evolution of zero-THz frequency dielectric
spectroscopy>®) to the point where it has become obvious that eq. (1.1) fails
qualitatively to serve as a simple description of the observable spectral
features in the far infra-red’) while seeming to work at lower frequencies.
Many explanations have been proffered, based for example on the reduction
of the Liouville equation by Mori to a continued fraction. Evans®) in 1976
showed that an approximant of Mori’s continued fraction corresponded
exactly in physical terms with the planar itinerant librator model of Coffey
and Calderwood”). Subsequently this approximant/model has been examined
for its ability to reproduce zero-THz spectra by Evans, Reid et al.'"%) in the
liquid and related phases.

Both the phenomenological approximant and the mode! have several con-

ceptual weaknesses, discussed elsewhere'®), and in practical terms are ham-
pered by the involvement of too many effectively unknown phenomenological
quantities. Perhaps the most pervasive fault in both approaches has been the
purély technical necessity of disposing of non-linearities such as those present
in the (Euler) equations governing rotation of the asymmetric top in 3
dimensions. This means that itinerant libration was considered in the context
of the asymmetric top diffusing with its permanent dipole constrained to two
dimensions. This implies, of course, that the Mori approximant is also devoid
of non-linearities in the behaviour of the total angular momentum vector J
and of the dipole p. The non-linearities are projected into the noise term of
the Mori equation'’).
- Notwithstanding the greatly improved ability of these approximant models
(and offshoots'?)) to match the complete zero-THz profile a fresh look at the
problem is needed in order (a) to cut down the use of adjustable parameters to
the absolute minimum; and (b) to consider rigorously the effect of non-
linearities on rotational diffusion.

The technical reasons for the failure in the far infra-red of theories such as
those of Sack and Gross, and lately of McConnell and co-workers"”) is well
known by now to be rooted in the nature of 8 in eq. (1.1). This has evolved
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hand in hand with the theory of non-equilibrium statistical mechanics') from
a friction coefficient, invariant with time, to a correlation function of the
random forces on a diffusing molecule. The new theories inject a sense of
history into B8 which has become a memory function®). Yet the implied
generalisation of Sack and Gross has not been accomplished, partly because
of the difficulty of unravelling the memory function from the linear frame-
work of the Mori continued fraction'®). Mori's theory works in the context of
additive stochastic processes, while those of Sack, Gross, McConnell et al.
deal with multiplicative stochastic processes constrained by Markov’s hypo-
thesis on B; i.e. its statistical behaviour is taken as independent of past
events. Of course at short times (or at f.i.r. frequencies) this conflicts
diametrically with the self-evident fact that the “‘free rotation” of a molecule
is governed exclusively by past events according to the fundamental laws of
dynamics.

Independently, the non-equilibrium statistical mechanics (classical and
quantum) of a very wide range of excitation/relaxation processes has been
developing at an ever accelerating pace. The stochastic concepts have been
extended to describe intramolecular phenomena such as radiationless decay
and fluorescence of molecules excited by transient laser pulses. Lately
Grigolini and co-workers have removed!”?) some of the conceptual difficul-
ties of linear response theory and have shown also how to remove Markov’s
constraint by working with multidimensional vectors of dynamically in-
dependent variables in both quantum and classical regimes.

The main aim of this paper is to describe a new approach to the evaluation
of the spectrum of the variable u, for example an electric or magnetic dipole
moment. The relaxation of p is described by:

d . ,
& =iLsu+ (1) x p, (1.2)
where the Liouvillian Lg is concerned with the variable of interest (@) and 12,

for example a molecular angular velocity or a Larmor frequency, is in turn
driven by a Liouvillian Lp as follows:

%‘} —iLa 1. (1.3)

Eqgs. (1.2) and (1.3) form a multiplicative stochastic system developed by
Kubo™), who neglects the contribution to the time evolution of £2 due to the
interaction between Lgs and Ljy. As described in refs. 17 to 28 it has been
possible to rewrite the exact motion eq. (1.3) as an additive stochastic, but
multidimensional, equation similar in structure to a matrix Langevin equation:
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d
2 A=ra+F, (1.4)

where A is the column vector

Jo

f
A= (1.5)

In
consisting of the dynamical variables fo, fi, . . ., f2(2 = fo). The dynamics of f,
reduce to those of £2 when fi=---=f, =0, i.e. when n =0 any non-Markov

behaviour in {2 is disregarded.

One of the major benefits™ ) of replacing eq. (1.3) with (1.4), and con-
sequently of Mori’s equation®) with (1.4), is that it enables us to construct
easily the Fokker-Planck equation for 2. We shall denote this by

2 P(A, 40| 1,0)= DAP(A, 40| 1,0), (1.6)

where D, is the diffusion operator and P a conditional probability.

Eqgs. (1.2) and (1.3) represent the theory'**?) of the stochastic Liouville
equation (SLE), whose major feature consists of replacing the Liouvillian Ly
with the diffusion operator of the stochastic variable £. If use is made of
suitable left-eigenstates®™) eq. (1.3) may be rewritten as

d

ar 2 =D} a.7n

(Dnp denotes the usual Markoffian diffusion operator), where {2 is now
regarded as an operator in the space spanned by the eigenstates of Dg. In ref.
19 it was demonstrated that SLE theory may be generalised to non-Markov 2
by replacing eq. (1.7) with

d
5 @ = D,Q. (1.8)
Eq. (1.2) may then be written as

%’ti = Sop (1.9)

where

Po=iLs+ L+ D,
=iLs+ % +D,. (1.10)
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It is important to note that %, is a dynamical operator which is neither
hermitian nor antihermitian. .

Eq. (1.10) expresses the generalised SLE in operator form™). In ref. 19 it
was used to deal with a column vector with a single element only. From a
purely computational point of view the mathematical approach of ref. 19
rapidly becomes intractable as elements are added to the column vector of
interest (i.e. as u, for example, becomes multidimensional or non-Markovian).
This is because the problem is dealt with by building up the diffusion equation
for the process involving both u and £2. This makes the numerical diagonal-
isation of the diffusion operator a costly business in terms of time and
storage.

Nee and Zwanzig®) have studied the problem®) of calculating the autocor-
relation function of the variable u of eq. (1.2) when Ls=0. They found that
the correlation function may be described by the following non-Markov
equation:

;%(n - p(t) =~ 2] dsD(t — s)p - p(s)), (1.11)

where D(t) is obtained from the inverse Laplace transform pf the tensor:
D(w) = L{(N4(1)) (1.12)

in an isotropic sample of dielectric.

In section 2 we generalise the equations used by Nee and Zwanzig (NZ) en
route to developing a solution to (1.10) suitable for application on a computer.
This reduces to NZ when p is Markovian. The new solution contains matrices
which can be diagonalised in a way depending only on the size of A without
the added difficulty of degrees of freedom resulting from the inclusion of 2 in
the set of stochastic variables.

In a forthcoming paper we shall apply the new theory to zero-THz results
using a fast FORTRAN algorithm capable of calculating to any order the
spectral moments of (uu(0)) (as defined by Gordon™) from successive ap-
proximants of a continued fraction which is a generalisation of that of Sack or
Gross. We note that the latter leave all spectral moments undefined. The
theory of section 2 is in fact effective in building up a general algorithm for
many fields of excitation/relaxation, including that of semi-stochastic com-
puter simulation®) of molecular dynamics.
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2. General theory

In section 1 we defined the problem of evaluating the spectrum of a variable
p governed by eq. (1.9). Mori'') develops the solution through a continued
fraction which is valid only when the dynamical operator %, is antihermitian.
In appendix A we show that Mori’s solution can be generalised to involve the
use of non-hermitian Liouvillians. This seemingly trivial extension has wide
reaching practical implications which include:

i) the development of a zero-THz theory with none of the disadvantages of
section 1; ’

ii) the development of a rapidly convergent continued fraction for use in
semi-stochastic simulations.

Define the ket or state |fo) as (the state |po(42)) is the equilibrium eigenstate
of Dy, i.e., Da|pe) = 0 and {p| is its left conjugate): '

|fo) = m|po(42)). 2.1
If we write eq. (A.47) for k = 0, we obtain

110 = - [ Il DAPE = 5) ds +17i(e) 22)
0

As shown in appendix A this is obtained with a suitable definition of scalar
products. If the state |fp) is to be given by eq. (2.1) it is convenient to define
the scalar product as follows. Take the observables @ and 8 as

a = p(y)f(A), (2.3)
B = y(v)q(A), (2.3)

where ¥ is the physical space of the variable p. Then the scalar product is

8@ = { [ dr () - olrywin [Eda* W (Alpo) 2.4)

where wg(y) is the equilibrium distribution.

Eq. (2.2) is an important result whose physical meaning is as follows. It is
possible to replace a multiplicative stochastic process*) with an additive one
provided that we introduce a memory kernel. In other words, a non-additive
stochastic process is equivalent to a non-Markovian one. Similar results have
been indicated by Mori and Fujisaka®) and by Hynes*).

The major advantage of the theory in appendix A is embodied in the
continued fraction, eq. (A.44), which is the key to fast computation of the
spectrum of variables satisfying eq. (1.2). This result is as easily applicable to
EPR spectroscopy™) as it is to dielectric relaxation, and is directly compar-




DIELECTRIC RELAXATION AS A STOCHASTIC PROCESS. 1 261

able to perturbation theories such as that of ref. 29. This will be the subject of
a future numerical paper.

The application of the generalised SLE to relaxation involving rotational
Brownian motion consists therefore of replacing eq. (1.2) with (2.2).

In order to emphasise the generality of this procedure we point out the
physical conditions required to obtain from eq. (2.2) the results by Nee and
Zwanzig®). Firstly we have to assume that part of the total hamiltonian is
zero, Ls= 0. This is always the case for dielectric relaxation.

Because

D,lpo(A)) =0, (2.5)
then by using eq. (A.8) we can write
Ifa) = (1= P)AL,+ Du)|fo}

= (1—- P)iLilfo). (2.6)
We also have
(Po(A)|82{po(A)) = 0. (2.6"

This is because the physical meaning of this matrix element is the average
value of the molecular angular velocity at equilibrium.
We can write the memory kernel of eq. (2.2) as follows:

A, (t) = — (Folfoy "FilfiXFilfy ™!
X (fol i%:1(1 - P) exp{(1 ~ P)%at}Lulfo)

= — (folfo) "{fo|Lo(1 — P) exp{(1 — P)Lot}L\[f0). 2.7)
To obtain the result of NZ we must assume
(=Pt — o Dat 2.8)

and using eq. (2.6)

A D(t) = = (Folfo) '(fol 2 X Q(t) X plpo(A2)). (2.9)
In an isotropic specimen
{ap) = Kp), (2.10)

where | is the identity matrix and {---) denote an average evaluated as
follows:

(papss) = j dym(YImily). @.11)

If we apply the definition of scalar product given in eq. (2.4), we obtain
(folfod = KD
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By applying again the definition of eq. (2.4) and the isotropic assumption we
have

(Folf2 02 X plpo( D)
= (pul | V(PR = Dy(DDp)

- nz(ﬂz(t)}h - \Qx(t)p'z)]lp())
=~ A0 ). (2.12)

In order to obtain this result we have assumed that the rotator is a spherical
top. Consequently: '

A D(t) = 2(0(1)), (2.13)

which is the result of Nee and Zwanzig.

Eq. (2.8) is an approximation which can only be valid when £, is small
compared with D,. In other words, the result by NZ is correct only as p tends
to the limit of Markovian behaviour. Any continued fraction based on (1.11),
such as that of Quentrec and Bezot”), is not realistic in any other limit, as has
been pointed out by Evans et al.*®), who have tested out the continued
fraction expansion of eq. (1.11) with zero-THz spectroscopy. This is fully in
agreement with a recent paper by Ferrario and Evans®) who used a less
efficient cumulant-based theory (appendix B). The neglect of cumulants of
higher order than the second is incorrect (appendix B) when the stochastic
variable {2 is multidimensional.

The theory of appendix A and this section is unaffected by any inaccuracy
of this kind and can be regarded as a general and rigorous approach to the
problem of dielectric relaxation as considered originally by Sack or Gross. In
particular we can avoid the use of cumulant expansion when attempting to
relate (£2($)£2(0)) and {(u(t)u(0)), for 3-D diffusion a hideonsly complicated
problem. We would also like to stress the fact that in principle we have no
need even to assume that the stochastic variable {2 is Gaussian (a prerequisite
of cumulant methods®™) when we have available the relevant Fokker-Planck
equation.

In a subsequent paper we shall evaluate (u(t)p(0)) and (£2£2(t)) numerically
as indicated in this section. To indicate the nature of the specific calculation
we provide here explicit expressions for Ao, AT and A, as defined by egs.
(A.36) and (A.41), from which:

Ag=0, (2.14)
(ol 23| po) + (Bol %oy, - {pol2:|pa), ~ (BolfdA1:|po)

Al= — (polfit, |po), (Bol 23|po) + (ol 23Ipo), — (pol2.03,Ipo) (2.15)
— (Bolfixt2:|po), — (Bl Qyi2:|po), (Bol23lpo) + (Aol 3po)
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> (Boldy [P Elpil Sy |po)
! - 2: (ol By P Eidpi|lpey - Z (Pol .| p:) B il 3| po

+ 2 (Bolulp) Ex(pi/ (k| po)
Z (Dol €3 pi) Ei(pi] €3] po)

+2<ﬁod

= 2 Bolhlp)Epililpe  — 2, (oldh P Exdi|B:[po)

Ar=(ad -2 (Pol D) E{pi| B, | po) - 2 (Bold2. |p) Ei (5| Dy | po)

«|Pi) Epi| Q| po)

Z Bol P Y E(pi| xlpo)
+ 2 (ol |pi) E(pi| By po)

(2.16)

where the E’s and the |p;)’s are the eigenvalues and the eigenvectors
respectively of the diffusion operator D, defined by

D,\p:) = Ei|pi). (2.17)

The order of magnitude of the matrix A? is that of the mean square
molecular angular velocity. The matrix A, has the same order of magnitude as
the rate of energy dissipation of the molecule. When |A;| <|A4| the truncation
results from assuming A3= 0. This is a “medium memory” case. When the
memory is small, |A,|<|A| is equivalent to the Markov limit. A strong
dynamical memory (such as in the free rotor limit) will require the evaluations
of several subsequent contributions, a straightforward numerical procedure,
which automatically gives up the spectral moments A%, A%..., A% i.e.
provides sum rules to order n.

Finally we would like to emphasise the relation between the generalised
continued fraction, eq. (A.44) and that of Kubo, Gross or Sack. Kubo')
showed that in the monodimensional case when D, can be replaced by the
Fokker-Planck operator,

o= (A’m+.0) (2.18)

we have the well-known result
2
(@) = exp| =52 (¥~ 1+t)], @.19)

providing the bandshape

I(w)=;:- fexp[ (e""—l+Bt)—1wt]dt. (2.20)
0
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Kubo shows that this can be replaced by the continued fraction

1 1
I(m)—;im+A2
iw+ B +24°

iw+28+--- (2.21)

In appendix C we show that in this, the simplest case of isotropic rotational
diffusion, or when any of the matrices A; and A? are diagonal, eq. (A.44)
reduces to eq. (2.21), which is Sack’s eq. (4.11).

As far as the state of the art in this field is concerned the most significant
recent reference is to the work of McConnell et al.”), who re-derived eq.
(2.21) for planar rotational diffusion. Subsequently Ford et al.'®) extended the
calculation for the asymmetric top to a higher order of approximation.
Without a higher dimensionality (or memory) the latter theories are not
suitable for experimental application®).
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Appendix A

We shall generalise the continued fraction expansion of Mori to the general
case where the equation of motion

-C% A=%A (A1)
involves a dynamical operator &, which is neither hermitian nor anti-
hermitian.

We shall use a quantum-like formalism where the scalar product between
two observables B and C is denoted by (B | C). The “state” |C) is the usual
hermitian conjugate of the operator C.

We shall build up a chain of *“states™, the first of which is

|fo) = |A). (A2)

According to the quantum-like formalism introduced above we can write the
starter projection operator P, as follows:

Po = |foXfo | fo) {fol- (A.3)
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We can then write

[£o(£)) = Polfo(1)) + (1~ Po)lfolt))
= {foyPu(t) + |fa(1)),

where

Do(t) = (fo| foy " \(fo | fo(t))

and

[£6(t)) = (1 = Po)|fo(t))
By using the following definitions:
L= (1- Py
f1) = Zilfo)
and from eqgs. (A.1), (A.4) and (A.6) we obtain

dét' |£5(8)) = LilF6eD) + IFi(t))Polt).

It is convenient to define

[£i(£)) = exp{L:it}L\|fo) = £\ exp{Zit}|fo).
From eq. (A.9) we obtain

e = [ 1t - sH@uts) ds.
0
Eq. (A.4) may therefore be written as
Ifo(t)) = [f) Do) + j it ~ $))Ps) ds.
0

In order to extend this result to kth generator state we define

|fic} = Ll fi-1)s
[f(t)) = exp{Lut } Lk fic-1),
where
&= (1= Pi- )1
From eqs. (A.13) and (A.15) we obtain
)= (1= Pe-)(1 = Pua) - - - (1 — Po) &Ll fi)-

265

(A4

(A.5)

(A.6)

(A.D
(A.8)

(A9)

(A.10)

(A.11)

(A.12)

(A.13)
(A.19)

(A.15)

(A.16)
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It is convenient to define a left-state to be associated with the right-state |f,)
in the following way:

(Fil = (-1{Lo(1 = Po) - - - (1= Py 2)(1— Pyy) (A.17)
and

{Fol = {fol. - (A17)
The ‘projection operator’ P, can then be written as

Py = |fXFilfi) ™Gl (A.13)
which, of course, satisfies the indempotence property

Pi=P. (A.19)

When %, is not hermitian, however, the hermitian property of the projection
operators is also lost. In the following we shall have to avoid the use of this
property. We shall only use eq. (A.19) and

PP, = PyP:. (A.20)

The validity of eq. (A.20), in turn, depends on the fact that, by construction,
the vectors |fi) are orthogonal to the vectors [fi)) eq. (A.16) according to the
formula

(Filfir =0, for kk-. | (A.21)
By repeating the approach which led us to eq. (A.12) at k‘th-order we obtain

t
) = [P0+ [ [fenst = NP5} ds, (A22)
0
where
&, (1) = (fic | " "(Fic | Ful))- (A22)
We focus our attention now on the following equation of motion:
£ )l = ko)l (A23)
Its solution is given by
(Fol)] = (ol €' = {fo] €. ' (A.24)
The vector (fo(t)| is not the usual dual vector associated with |fo(t)), i.e. is not
{ot)] = (fol exp{L;t}- (A.25)

Therefore, in the hermitian case of ref. 8 we have

(Folt = (ful = D). (A.26)
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If we define

{FD)] = Fimr Lu exp{&it),
where

%= Lio(1- Pey)
and

Fo= %o,

we can obtain the left equation corresponding to eqn. (A.12):
t
ot = BeCt)Gil + [ BrlsHfuoitt — )] ds,
0

where
&(s) = GGl

Egs. (A.19) and (A.20) give
B ()i | fi) = (fi | FidDi(2),

or
AR AOEX AGKAT S

and
(il exp{Lutlficen) = i %[ frn) = Gu(Olfis)-

For example, by expanding in series the exponential operator:

(i exp{Lutficer) = it L1~ Po) - - - (1 = Pic)
X exp{(1 — Px-1) - - - (1 = Po)&Lot X1 — Pi) - - - (1 — Po)&Lolfi)

= 41
=3 11 Gl L1 = Po) - - (1= Picy)
=0 4. 1 times

U N

267

(A.27)

(A.28)

(A.28')

(A.29)

(A.30)

(A.31)

(A.31)

(A.32)

X[(A=Peep) - - (1= P)Lo(1 ~ P} - - - (1 — P))Zo(1 = Pi—y) - - - (1 — Pp) L)

X(1=P)- -+ (1= Po)Lolfi)
LY

- %%(ﬁ_dgoa —Pg) - (1= Piy)

[ times

X[ZAl=Pg) - - (- Pe)@o- - - (1= Pg) - - - (1- Py &a]

X(1=P)(1=Py) -+ (1= Pe)(1~ P)(1 = Piey) - - - (1 = P& fi)

= {fir| L1 = Pg) - - - (1= Py—y)
x exp{&t}1— P)(1— Pyy) - + - (1 — Po)Lalfi)
= (fk‘ Cz"“fnu)-

{(A.33)
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From eq. (A.14) we obtain
SR = BN = exp{ LI Lilfe). (A.34)

By using eq. (A.13), and the property 1= Py + (1= Py), eq. (A.34), in turn, can
be written as follows:

;,‘-'t- Ac()) = exp{LutNfidAx + exp{Lit}lfir), (A.35)
where
A = (G| £ 7 Fl Lelfi)- (A.36)

Eq. (A.35) can also be written in the following useful form:

ad; £ () = [fulWAe + |fX Pl fi) il exp{Lit Y fis)
+(1- Pi) exp{Zit}{fe+1)- (A.37)
Eq. (A.32} allows us to replace eq. (A.37) with

L1 = RO+ XL e
+ (1= Pi) exp{Zt}{fi+0)- (A.38)
By inserting eq. (A.29) into eq. (A.38) we obtain
a% 1£c(0)) = |fl@)Ai + | fi)XFic | fi) ™! f &, (5)Fers(t — 8)|fierr)
0
+ (1= Po) exp{ZLut Yfur)
= L+ [ 1) 1507 Bils) (s = 5)
0
X {fis1 | frer) ds + (1= P) exp{LutHfr1) (A.39)
and by using eq. (A.31)
L inen = | 2 iyt —5)d
SO = LM~ 1fe) [ B AL raslt = 5) s
0

+ (1= Px) exp{&t}|fi+1), (A.40)
where

Ai-ﬂ == (fk'flc)-l(fkulfkn)- (A.41)
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By multiplying eq. (A.40) on the left by

(fk Ifk)—‘kaly
we obtain
d )= ;
37 PO = PO~ [ D) AT Din(e — 5) ds, (A42)
0

which gives by Laplace transformation
&y (2) = D(0)z — Ax + AL Drn(2) 7 (A.43)

The Laplace transform of the correlation matrix of the variable of interest,
@,(t), is thus given by

1
By(z) =
Z‘A0+A%___1_____2 1
Z—A 'f'Az____.__.2
l Z—A2+A3.

.A: 1
z—Apy + Akn(2) (A.44)

This result is more general than that of Mori because the parameters A; and
A? are complex numbers with, in general, non-vanishing real and imaginary
parts.

We can easily find a generalised equation in motion for the variables |f,). By
taking the Laplace transform of eq. (A.22),

f(2)) = fi) B (2) + [finr(2)) i (2), (A.45)
and inserting in eq. (A.43), we get

[fie(2)) = (i) + feei@INz — A+ AZ i Brai(2)) (A.46)
and

2lfu(2) = 1fie) = (DA — AFBur(2)) + [fias(2)). (A.46)

Inverse Laplace transformation gives, finally,

ad_t () = [f () ~ J Ifi(sN@e(t — s)ds + [fesi(1)), (A.47)
0

where

©(s) = AL Dy (s).
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Appendix B

Assuming {2(t) to be a stochastic process, cumulants can be used to solve
the kinetic relation

u(t) = () x u(t), (B.1)

which defines u(t), the dipole unit vector, as a multiplicative stochastic
process. However, several difficulties arise mainly because of the vectorial
nature of the rotational diffusion process.

Nee and Zwanzig®) assumed £2(t) to be a Gaussian process and came to
the erroneous conclusion that only the first two cumulants are non-vanishing.

First of all, even in the case of Markovian relaxation for £(t), the Gaussian
assumption which this implies is very rough indeed becuase a non-linear term
is present in the Euler-Langevin equation, even for the spherical top. It is not
generally possible to reduce the analysis to only two cumulants as non-
cummutativity occurs when dealing with the same matrix at different times®),
and destroys the rules which lead to vanishing higher order cumulants in the
monodimensional case. Only when the lifetime of the correlation (£2(t)427(0))
is very short, and approximable by a delta function 6(t), are Nee and Zwanzig
correct, but this is in any case Debye relaxation®). ,

Consequently, even when we are looking at spherical top molecules
with moment of inertia I and relaxation time 1/B for the Markovian process
£ (t) the orientational correlation function is:

13,34)
’

(u(t)u(0)) = exp{®(1}}, (B.2)
where <¢(t) is an infinite series of terms in the adimensional parameter
(kT/1B?).

Although the nth cumulant contributes to only the term in (XT/If?" and to
the higher order ones, when B is small convergence is not achieved very
quickly, and it is not even clear whether the cumulant series is convergent. In
fact®) in the limiting case B —0 the cumulant approach fails to reproduce the
correct free rotor limit which can be found from eq. (B.1) only by dropping
the stochastic nature of the process £2(t) so that eq. (B.1) becomes a purely
kinematic description of each molecule in the ensemble.

Appendix C

When dealing with the problem of the stochastic oscillator we can assume

iLsm=if). (C.1)
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The stochastic variable (2 is assumed to be driven by

a9 (i2 9
Do=B 75 (A aﬂ+a). (C.2)
We can expand Dy on the basis set of its eigenstates:
12— 0 0?
o) = (@) 122, (Y expf - 1. C3
pa((2) = [2w}"n!] Via) Pl 547 (C.3)
If we define
|fo) = |A)po(€2)), (C.4)

where A is the variable of interest with the fluctuating frequency 2, we
obtain

|f ) =[1— (| AXAD(po2)Xpo(2)))] i(Ls + £2 — iDn)| A)po(£2))
= i|A)|p1(£2)Xp1(42)|2|po)- (C.5)

The kth order generating state is

Ifi) = LA PL(O))(pe | 21D - - - (P1|2]po).

It is then easy to show that

Ao = Fi | Fio) " Fel Lelfi) = iwog — kB, (C.6)

where wg is the proper frequency of the variable |A) ((A|iLs|A) = iwo).
Using suitable properties of hermite polynomials®) we obtain

AZ = —(fu | f ) Fam1 | for) = nAZ (C.7
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