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1t is shown that the major result of a “computer experiment” on the transient regime after strong excitation canbe
accounted for completely by using the non-linear extension of the “reduced” model theory (RMT).

1. Introduction

In a recent paper [1], Evans raised a question on
the range of validity of the fluctuation—dissipation
relationship

840 = Cy(0), (M
where

A4 () = A()NKAO, (2)
C4 (1) = (A AN KA. 2

Note that the autocorrelation function C,(r) is evalu-
ated at equilibrium, whereas A , () is a transient prop-
erty requiring preliminary excitation of the variable
of interest 4. Evans [1] investigated that problem
by monitoring via computer simulation the time be-
haviour of a liquid sample after the instantaneous
removal of a strong external field of force £. He found
that at the point uE/kT = 12, A 4(t) decays consider-
ably faster than C((r) [1]. Here u is the dipole of the
tagged molecule and u is the energy associated with
the field of force E. 4 in that case is the component
of the dipole along the z-axis (see fig. 1 of ref. [1]).
The major aim of the present short note is to show
that these results can be explained within the frame-
work of the “reduced” model theory [2.3], provided
that non-linearity be properly taken into account.

* Permanent address: Istituto di Iisica dell’Universita di Pisa,
Piazza Torricclli 2, 56100 Pisa, Ttaly.

2. Linear and non-linear systems far from equilibrium

Under a wide range of conditions [4,5] the fun-
damental equation of motion
d4/dr=iLA (3

can be recast in the general form

dd/de =24 — j¢A(t— T)A(T)dT + F 4 (¢). 4)
0

Let us make a first significant assumption (i):

(F () =0. )
By a simple Laplace transform, from eq. (4) we have,
Ay(t)= Fy(0), ©)
where

F)=L M s =X +9,()}, ()

and ¢ 4 (s) denotes the Laplace transform L{p (D}
A further basic requirement for eq. (1) to be valid is
then that (ii) ¢ 4 (#) is a genuine equilibrium property-
However, Zwanzig [4] has shown that in the non-
linear case ¢ 4 (¢) also depends on the variable of in-
terest A. This means that if we excite that variable,
we can destroy the basic condition (ii) thereby pre-
venting A ((¢) from being identified with the equili-
brium property C4(¢) as implied by eq. (1).

Previous investigation on non-markoffian «xcitd-
tion—relaxation processes [2,6] were mainiy woncerm
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ed with cases satisfying condition (ii). The reason
why 2xcitation has an influence on the decay process
is then the breakdown of (i) via excitation, with pro-
found consequences on relaxation when the tine
scale of F(¢) is not well separated from that of the
variable of interest. In this paper, on the contrary,

we isolate for the first time the novel effect coming
from the breakdown of assumption (ii).

3, Tke non-linear version of the standard second-order
Mori truncation [7]

Because of the fact that the breakdown of (ii)
must be traced back to non-linearity [4], we are nat-
urally led to replace eq. (8) of ref. [2] with

§= w,
&=—ksin[N@ — ¥ +§)] — wf sin 6,

i=v,

p=xsin[N@ — ¢ +£)] — w% sin ¢

= T,v+£(1). (8)

This version of the non-linear itinerant oscillator |8]
shares with the models of refs. [9,10] the physically
appealing property of rotation via jumps, though in
a form compatible with the decoupling effects of
ref. [2]. £ is the average value of the angle between
real and “virtual” dipole when no external field is
present.

To simplify our calculation we shall assume v to
be an infinitely fast variable, thereby providing

0=,
O =—k sin(NA) — w% sin 4,
A= —(x/T,) sin(NVA) + w

— (w31, sin[V(8 + £ — A)] + ()T,

AS9 -y, )

which is the non-linear extension of the second-order
Mori truncation [7]. In the absence of external field,
asimplified picture approximately equivalent to
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that of eq. (9) oo be obtained, povided that A be
assunied to be much {aster than ¢y, This assumption
allows the adiabatic elimination procedure (AEP)
developed within the context of the R T [3.11] fo
be applied. 1t is then possible to show that the long-
time behaviour of eq. (9) is roughly equivalen: to
that provided by the following markoffian, but non-
linear, Langevin equation [3,12,13]

w—~7w+7w + 1), Ch)

where (we disregard the r-3 contributions to y)

v = kN(cos(NA/T (9"
¥y = (kN3 [6)cos(NA W/, ")
r=xN/T,. 9"

The calculations used to arrive at eq. (9") are basical-
ly the rotational counterpart of those described in
detailed way in the work of ref. [3], which, in turn,
can be regarded as being an application to molecular
dynamics of the approach developed in ref. [12].
The detailed discussion of how the non-gaussian
stochastic force F(r) is related to f(¢) (which is under-
stood to be gaussian) will be given in a more extended
report.

In section 4 we shall basically rely on eq. (9") to
account for the major result of Evans’ “‘experiment”

[1].

4. Discussion of the “‘experimental” results

We shall assume 6 to be a slow variable compared
with . Then by using again the AEP [3,11,12] we
obtain for the probability distribution of the variable
8, 0(8;1), the following generally valid equation of
motion

80(9 ) ift AN GDY (10)
—_- 0 971

Since @ has been assumed to be almost markoffian,
the higher-order derivatives should not play an impor-
tant role. This allows us to obtain the diffusion equa-
tion:

da(8; £)/dr = D(r) 3% o(0; 1)/302, (11)
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where

I3
D(t) = f ds [(w(t) w(s)) — (wN{w(s)]. (12)
0

Due to the overall symmetry constraints on a non-
rotating mojecular liquid sample, (w(t)) ={w(s)» =0
even in the transient region.

We have to face a final difficulty consisting in
evaluating (in the fall-transient regime) the non-sta-
tionary correlation function

o, Y=L w(t ~ 7N

= [ dewdA(e! 07 w) woy (w, A1 D). (13)

I'y is the Fokker—Planck operator of the (w, A) system

and

og(w, Ast) =K elof
X f do exp{[k cos(NA)/N + w% cos f

+o)% cos(0 +E*A)f%w2]/(w2>eq}, (14

i.c. the state of the (w, A) system at a time ¢ far from
the sudden removal of the field, X is a suitable nor-
malization factor and (w?),, denotes the equilibrium
value of (w?), which is independent on whether or
not the external field is present.

To evaluate this non-stationary correlation func-
tion we shall assume the variable w to be much
slower than the “virtual” variable A. This allows us to
envisage a simplified approach to the evaluation of
the transient correlation function of ¢q. {13) as fol-
lows. In the short-time region soon after the sudden
removal of the external field, A gets its equilibrium
distribution thereby determining a change of the -
distribution from its equilibrium state. By neglecting
this short-time contribution to (¢, 7), we can write

¢(t, 7) = A'/f deodA(e! 07wy w

X exp( 0)2/3<w2(0}>)0m(ﬂ)- (15)

where A’ is a suttable normalization factor, (Juq(A)
oexplh cz)s(j\’A)//\K(,gl}w Vand (o_>2(0}> denotes the
vadue m”(m‘)'(f)) at the time 7" far from the sudden re-
moval of the external {ield when this average value

4 » £ B .
attains its largest deviation from <™, It is. there-
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fore, understood that this has to be regarded as being
the new origin of time (note that 7 is much shorter
than the relaxation time of the variable w). Through.
out the analysis of this section, a parameter of basic
importance will be

- 2 2 -
R=(w(0) —{w )qu (16)

The absolute value of this parameter strongly depends
on the intensity of the “virtual” dipole. Via numerical
evaluation, we could also assess that for positive
values of R to be obtained, non-vanishing values of ¢
are required. This can be understood on physical
ground when remarking that tor £ =0 strong fields
do not change the average value of the angle between
real and ‘“virtual” dipole, while preventing large fluc-
tuations around this mean value from taking place,
The field-on equilibrium distribution is, therefore,
associated with values of the corresponding potential
energy smaller than those in the absence of field, When
assuming, for example, that NV =1, ¢ = 7, the effect of
strong fields is to reduce the angle between real and
“virtual” dipole from 7 to 0, thereby resuiting in an
effect which is the reverse of that above described.
This makes it possible to obtain positive values for R,
If our attention is focused on the slow re-equili-
bration process of w, by using the results of the AEP
mentioned in section 3 we can replace eq. (15) with

gp(t,r)=fdww(eerTo))exp(»—w2/2<o)2(t)>), (17)

where " 4 is the effective operator to be associated
(according with the AEP) withi eq. (9"). To explicitly
evaluate the dependence on time of (w2(1)> we can use
the following mean-field approximation to eq. (99

w=—ywt 7'(wz(t))w + F(1), (18)

and solve that by following Suzuki [4]. This results
in

( 7(_) <w2>cq+R(y+<w2>eqy')e Wiy RY)
W) = —— - —

1 +1\’716727[/.(7 - RYD (19

It is possible to show that in the case of strong not-
linearity (large ¥y and/or significant excitation
{large positive values of R) ey, (19) resulisin a sort

of Tocking of the process ot exchange of energy be-
s . o v Tlader n.
tween w and ity thermal bath (fig. 1), This. in tur

makes faster the decay of {cos 0(r)) according to €4

y




—

Volume 95, number 6

Fig. 1.

(11). We have, in fact, that eq. (17) gives
o1, 7) = {w(0) exp {— [y — ¥ (w2 ()] 7). (20)
Egs. (12) and (11) then result in

!
(cos O(£)) = exp (- S D(t')dt’) (cos 6(0)) (21)
0

for the fall transient of {(cos 8(¢)), where

!

D) = [t 7ydr. (22)
0

and y(¢, 7) is defined via eqgs. (20) and (19). Note that
in the absence of excitation (R =0) eq. (22) reduces
to the well-known Kubo result for the stochastic oscil-
lator [15].

Fig. 2 shows that the “experimental effect” of ref.
(1] is completely accounted for by the analytical
theory of the present paper. Of course, we do not
claim for a quantitative agreement, the attainment
of which would also require a more detailed discus-
sion of the dependence of R from both w, and &,
and, perhaps, more accurate “‘experimental” results.

Finally, we would like to stress that the RMT is a
theoretical approach for finding simplified models
satisfying the rigorous formal constraints of the gener-

CHEMICAL PHYSICS LETTERS {8 March 1983

Fig. 2.

al theories of relaxation [6]. This property has been
shown to be fundamental for the major findings of
Evans’ “experiments” [1,2] to be reproduced. The
short-time formal constraint [2] prevents us from
directly affecting with dissipation the variable of in-
terest thereby accounting for decoupling phenomena.
When the “reduced” model is given a non-linear
character, the long-time behaviour of the correspond-
ing part of interest is shown to be the same as that
resulting from rigorous theories more formal in na-
ture [3]. The slowing down of w (and thereby, in a
complete qualitative agreement with “experiment”’,
the accelerated decay of {cos 0(¢))) are shown to be

a natural outcome of the form of this long-time
behaviour. A stimulating investigation on the role of
the *“virtual” dipole should be promoted by our find-
ing that Evans’ “experiment” seems to imply non-
vanishing values for &,

Models of the same kind as that studied in the
present paper are currently introduced on a simple
phenomenological ground [16]. It should be stressed,
however, that within the context of the RMT we
found a simple way of exploring the response to
strong excitations, whereas the current approaches
are restricted to linear response cases [8,16]. Note
also that we are in a position to check our analytical
theory by an *“‘exact” calculation based on the con-
tinued-fraction procedure of ref. [17] whichisa
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further outcome of the theoretical background behind
the RMT. Preliminary calculation based on this com-
putational procedure did result in a complete sup-
port of the analytical theory developed in the present
paper.
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