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DIRECT OBSERVATION OF MOLECULAR ROTATION-TRANSLATION COUPLING

BY FAR-INFRARED SPECTROSCOPY

G.J.EVANS and M.W. EVANS

Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth SY23 INE, UX

Received 16 November 1982; in final form 1] February 1983

The differences between the far-infrared absorption of liquid (+) 3-methylcyclohexanone and the racemic mixture are
interpreted as supporting evidence for the direct observation of rotation-—translation coupling.

In a recent study, one of us observed a new and un-
expected phenomenon of the liquid state [1]. For the
first time in a computer simulation, the effect of a
molecule’s rotation on its own translation was observ-
ed in the laboratory frame in the optically active mole-
cule 1,1-fluorochloroethane. It was suggested that this
phenomenon should be observable by several-different
spectroscopic techniques.

The simulation was carried out with a § X 5 atom—
atom Lennard-Jones potential with partial charges [2]
at each site designed to represent electrodynamical in-
teractions. Dynamical data were stored on disk for the
computation of autocorrelation functions using run-
ning time averaging. A variety of autocorrelation func-
tions of various vectors associated with the molecular
motion were produced. Fourier transformation of ap-
propriate autocorrelation functions (ACFs) produces
spectra. In particular Fourier transformation of the ro-
tational velocity ACF provides a far-infrared spectrum
[3].

The simulation revealed that the orientational auto-
correlation functions of the P; and P, Legendre poly-
nomials (the first is obtained from the far-infrared spec-
trum) were the same for the R and S enantiomers but
different for the racemic mixture. This was a conse-
quence of the fact that two elements of the molecular
rotating frame matrix (v(¢)+*JT(0) are opposite in sign
for each enantiomer (this does not show up as a differ-
ence in the spectra) and vanish in the racemic, this
being the only observable dynamical difference in the
simulation. Here v is the centre-of-mass velocity and J
the angular momentum. The effect is directly attribut-
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able, therefore, to the interaction of rotation with
translation and was so large in this particular liquid that
the far-infrared spectrum was shifted from ~35 cm~!
in the enantiomers to ~65 cm~! in the racemic mixture
(the Debye loss time was approximately halved). This
effect is as large as any shifts observed in the far infra-
red, including dilution of a solute in a non-polar sol-
vent or the effects of temperature and externally ap-
plied pressure, and reveals a considerable difference in
the molecular dynamics.

In a molecule now being simulated, 1,1-fluoroiodo-
ethane, the effects are not so pronounced and only 2
small shift in ¥, (the far-infrared peak frequency) is
found which may even be in the opposite direction.
These results will be presented in a later publication.

The R and S enantiomers of the l,l-ﬂuorochloro.-
ethane and the 1,1-fluoroiodoethane have not been 15
lated, so we have chosen (+) 3.methylcyclohexanoné
(a naturally occurring product) and its racemic mixture.
The two spectra are shown in fig. 1. There is a ma{ked
difference between the spectra, certainly in intensity-
There is also a suggestion of a difference in the frequet
¢y of maximum absorption of the broad band ‘ft thf
lowest frequency of the enantiomer and racemic m”:r.
ture. This is the so called “Poley’” absorption Chafac.tes
istic of all molecular liquids at far-infrared freq“e“ain-'
The intensity differences are displayed moré Cleafly :
fig. 2 where the integral transmission [the transm‘tvte,
power over a complete frequency range (50-250¢%
in this instance)] has been monitored for chang®®
sample thickness. The racemic mixture is consid!
more absorbing than the enantiomer even thoug
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a consequence of the beam splitters (Melinex) used in
the instrument. Results using completely polarized
radiation indicate the same differences in spectral in-
tensity between enantiomer and racemic mixture so
that these spectral differences may only be attributed
to dynamical differences between enantiomer and
racemic mixture. '

We believe that the results presented here provide
support for the simulation. This is significant because
together they reveal a profound influence of rotation—
translation coupling on the molecular dynamics of all
molecular liquids. Simulations on optically inactive
molecular liquids have indicated the existence of rota-
tion—translation interaction in most liquids which may

e F)g 1. The far-infrared spectra of (+)3-methylcyclohexanone be very strong in some (CH;CN #). However, the ef-
“and a racemic mixture of 3-methylcyclohexanone. *, results fects of this interaction are normally concealed in the
: for the racemic mixture using 2 200 gauge beam divider; o, laboratory frame because a molecule such as CH3CN
ith results for the racemic mixture u§mg a 35 gauge beam d{v1.der; . t opticall tive. Th ity of v is diff 't
id that = -, results for the enantiomer using a 200 gauge beam divider; 1S not oplically active. ? parity 0_ v Is ditterent to
cm=1 o, results for the enantiomer using a 35 gauge beam divider. that of J and autocor‘relatlon functions such as
ikture o;dmate «(v) (neper cm™1), abscissae: wavenumber (cm™!), (Uz(t)-J 2(0)) mu§t va?msh (note however, that
This - Wi J (0)>' exists in the laboratory frame).. The ef—
infra. “ fects'of the interaction are (?nly observed directly in a
sol- densities of both liquids are the same (to the third r9tatmg fr'ame of reference in these §y§tems. Ip an op-
ap- ~decimal place in g/cm3). The origin of the absorption tically active system the effes:t of this }nteractlon on
cé it © (at~110cm~1), composed of a series of absorptions, an orientational autocorrelation function may be ob-
: will be the subject of a future discussion. served directly through the spectral differences be-
‘odo- . The beam from our spectrometer (a Grubb— tween the enantiomer and its racemic mixture; Com-
ya - Parsons/NPL cube interferometer) is partly polarized, puter simulation reveals that this difference arises from
)is differences in the rotation—translation interaction.
P The authors know of one other direct observation
i _ of the large effects of rotation—translation interaction.
5 Ewing et al. [7] reported spectra for dilute solutions
\iso- of Hy, D, and HD in liquid argon in which the rota-
¢ tional and translational transitions are easily distin-
ture, guished and where the complications of interpreting a
ed broad and featureless spectral profile are removed. For
y. H, and D, the frequencies of the rotational transitions
len: do not differ from those calculated for the unperturbed
gas-phase molecule. However, the far-infrared spec-
- trum of HD in liquid argon shows much larger half-
ef- widths, erratic frequency shifts, and additional absorp-
5. tions arising from the relaxation of rotational selection
1 . . ) \ 0 rules. These anomalous characteristics are explained

0-01 0-03

{ Fe Variation of the integral transmission (50—-250 cm™!)

with pathlength of (+)3-methyicyclohexanone and a racemic
mixture, o, recemic mixture, o, (+) 3-methylcyclohexanone..
Ordinate; volts, abscissae: pathlength (cm).

by a consideration of rotation—translation coupling
when transitions corresponding to AJ = +2, +3 and
+4 become allowed through a mixing of rotational
¥ CH3CH: ref. [4]; CH3l: ref. [5]; CHCljy: ref. [6].
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wavefunctions, a direct consequence of the rotation—
translation coupling perturbation. This significant per-
turbation arises because of the asymmetric mass dis-
tribution of HD. This effect, so pronounced in this
most simple of systems, must also be present in other
fluids [8] but is concealed and not easily distinguished
when individual fine structure is not resolved. The op-
tically active systems considered in this letter provide
another subtle way for observing these effects (see al-
so the work of Baranova and Zel’dovich [9]).

This poses significant problems for the molecular
dynamicist. The natural development of the field [3],
since the pioneering days of Debye, has been through
the elaboration of molecular models based on the ro-
tational motions of molecules and the effects of rota-
tion—translation interaction have been neglected. The-
ories for the latter are either intractable or contain nu-
merous adjustable parameters, its development still
being in its infancy. The neglect of this coupling inter-
action may be part of the reason for the slight confu-
sion that exists between results obtained from differ-
ent experimental techniques [2,3]. However, there are
still significant uncertainties associated with the exper-
imental techniques themselves and with the subse-
quent reduction of the data to a form suitable for com-
parison with theory [3].
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