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1 Introduction

In a dilute gas the molecules move freely with a spread of velocities given by the
Maxwell-Boltzmann distribution. After they have moved for distances many times
their diameters they collide with other molecules and are deflected into new
rectilinear paths. Their mean motion over a long time is measured by the coefficient
of diffusion, which can be expressed in terms of the angles of deflection of the
colliding pairs.’

In liquids matters are not so simple since each molecule is in perpetual interaction
with its neighbours; there are no mean-free-paths and no binary collisions.
Molecules can also rotate in an irregular manner about one or more axes under the
influence of the torques exerted by their neighbours or by an external field. The
molecular motions can be studied on a macroscopic scale by measuring, for example,
rates of diffusion or dielectric relaxation, but the relation of these crude macroscopic
averages to what is happening at a molecular level is a difficult task. The purpose of
this review is to describe the progress that has been made in this field in the past ten
years.

Sections 2 and 3 introduce the statistical language used to describe molecular
motion, the language of correlation functions and their spectra, or Fourier trans-
forms. Perhaps the greatest advance of the past ten years has been the systematic use
of this language to describe ever-increasing regions of chemical physics: statistical
mechanics, the scattering of light, X-rays and neutrons, i.r., Raman and n.m.r.
spectroscopy are subjects which have gained in precision and unity from these
developments. Section 4 describes the measurement and computer simulation of the
correlation functions of a monatomic liquid. Sections 5—7 extend the discussion to
simple molecular liquids with emphasis on the study of orientational correlation
functions by far-i.r. spectroscopy and light scattering. We give no derivations or
proofs, only statements and references.

2 The Velocity Auto-correlation Function

A distribution function is an answer to a question of the following form: if there is a
molecule with a specified position, orientation, velocity efc, at a certain time ¢ =0,
what is the probability that there will be a molecule (the same or different) at a
position distant by r, with an orientation changed by b, with a velocity increased by v

1 .]f Ol.cHirschfeldcr, C. F. Curtiss, and R, B, Bird, ‘Molecular Theory of Gases and Liquids’, Wiley, New
ork, 1954, : : ‘
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etc., at a time t? Such a function can be very complicated but often we are not
interested in all these variables. Thus the equilibrium or thermodynamic properties
are described by a time-averaged distribution function, or, what is equivalent, by an
average taken over an ensemble of systems at a fixed time ¢ = 0. They are functions
of r and ¢ alone or, in a monatomic fluid, of r alone.* The dynamic and transport
properties in which we are here interested can be described only if we know the time
evolution of these functions, but then we can often ignore one of the other variables,
e.g. r or ¢.

The term correlation function (which we abbreviate c.f.) is used to describe a
distribution function which has been normalized so as to approach zero for large
values of the argument r and/or ¢ (as is appropriate). It describes the degree of
correlation between two events; such correlation is zero at large times or distances in
an isotropic fluid. The most familiar distribution function is probably the radial
function g(r), which describes the equilibrium probability of there being two
molecules at a separation r, and which can be measured from the X-ray diffraction
pattern. At large separations this approaches unity (see below, Section 3), and the
corresponding c.f. is therefore g(r)—1, which is usually called h(r), the total
correlation function. We consider below (Section 3) the generalization of h(r) to
include time-dependence but start first with a more simple one-molecule c.f., the
velocity auto-correlation function.

If a molecule has a velocity v(0) at ¢t = 0, and a velocity v (¢} at time ¢ then a suitable
measure of the degree of correlation of these velocities is the scalar product
v{0) - v(¢). After a sufficiently long time, e.g. 107'? 5, the magnitude and direction of
v{t) will bear no relation to that of v{0) and so the scalar product goes to zero. The
velocity auto-correlation function is defined as the average of this product over all
miolecules in a system at equilibrium, and is denoted (v(0) - v(¢)). Itis convenient to
use the symbol () for the normalized function {v(0) * v(1)}/{(v(0)?. The impor-
tance of this function is its close relation to the coeflicient of diffusion, but before
discussing this it is useful to examine the behaviour of correlation functions in
general, and this one in particular, as functions of time.

Consider first an almost collision-free gas in which a molecule has the same
velocity at ¢ as it has at t=0. Hence the c.f. ¢(1) is a constant, namely unity, since

(0(0) * v(1))=(v(0)*) =3KT/m (1)

where m is the mass of the molecule. A second idealized case is the perfect Einstein
solid in which a molecule vibrates about a site at a constant angular frequency wg;
here the c.f. is an oscillatory function proportional to cos {(wgt). A liquid behaves in
an intermediate fashion as is shown in Figure 1, which is based on a computer
simulation discussed in Section 4. The c.f. is constant or gas-like at short times
(typically t <1073 s), it oscillates weakly, and goes to zero at long times. The first
negative region is easily explained as the rebound as a molecule reverses its velocity
on colliding with a neighbour after travelling on average for the mean molecular
separation. '

2 (a) H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, ‘Physics of Simple Liquids’, North-
Holland, Amsterdam, 1968; (b) C. A. Croxton, ‘Liquid State Physics’, Cambridge University Press, 1974;
(¢) A. F. M. Barton, 'The Dynamic Liquid State’, Longmans, London, 1974.
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Figure 1 The normalized velocity auto-correlation function for a collision-free gas, for an
Einstein solid and for a liquid. The last is based on results obtained by computer
simulation discussed in Section 4

Each c.f. has a Fourier transform, and if the variable of the c.f. is time, as here, then
that of the transform is frequency. We define the transform of (t) by

- 1 o
o) =g j_m (e dt @)

and, conversely, we have also the important relation

1 ®
¢(¢)=WLD P(w)e™ dw (3)

The function ¢(w) is called the spectrum of (¢) since it can be regarded as the
‘sampling’ of (f) by a signal of frequency w. Itis often easier to measure the spectra
than the functions themselves. Equations (2) and (3) show that we can pass freely
from c.f. to its spectrum, and vice versa, providing we know one of them for all values
of its argument. In practice this is a considerable restriction.

The spectra of the three cases considered above can be found at once. If (f) is
unity, then y(w) is zero unless w = 0, and is infinite if @ = 0. That is,

- 1 oo . '
Yr(w) = W J;m e di = (211')‘1‘ 8(w) (4)

where 8(w) is Dirac’s delta function. This is zero everywhere except where its
argument is zero, where it is infinite, and it is normalized to unity,

J:_ F(x)8(x—x*) dx = f(x*) j 5(x)dx=1 (5)
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Figure 2 The Fourier transforms of the correlation functions of Figure 1. Those for gas and solid
are delta-functions, whilst that for the liquid has two broad components, a diffusive

mode centred on o = 0, and an oscillatory mode at frequencies comparable with wg of
the solid

Thus the spectrum of a collision-free gas is a sharp line at zero-frequency; it will be
seen below that the diffusion coefficient is then infinite. For an Einstein solid the c.f.
is obtained by integrating the product of e ™’ and cos (wgt), and this integral is zero
unless o = wg, s0 that the spectrum is now a sharp line at the Einstein frequency, or
r(w) is proportional to 8(w — wg). For a liquid we have again both features in the
spectrum. The integration of the curve in Figure 1 produces a spectrum with two
peaks, characteristic of diffusional and oscillatory motion, but both are now very
broad (Figure 2).

Thus the c.f. and its spectrum enable us to describe succinctly the essential features
of translational motion in a liquid more accurately than was possible with the
‘models’ of the liquid state that used to be so popular; in which diffusion, for example,
might be treated as an activated jump from one site to another. However, if we are to
use these correlation functions we must be able to observe them or their spectra, to
relate them on the one hand to macroscopic properties such as diffusion coefficients,
and on the other to intermolecular forces by the methods of statistical mechanics. In
the rest of this section we say something of the second of these problems, and touch
on the fringes of the third. The first, the measurement of correlation functions, we
cover in Section 4. |

The connection between correlation functions and macroscopic properties is a
consequence of two broad and related generalizations which lie at the root of our
present understanding of transport properties. These are linear response theory and
a theorem linking dissipative processes and the regression of fluctuations. Neither is
new, for specialized versions of both were used for many years by Einstein, Onsager,
and others, but the realization of their power and generality is much more recent; it
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stems from the work of Callen, Green, Kubo, and others®*® during the years
1955—1965. Linear response theory describes the behaviour of two weakly coupled
systems, as for example, when a beam of light or neutrons interacts with, and is
scattered by a liquid, or when a beam of sound is absorbed and dispersed. Because
the coupling is weak it follows that the response of the liquid can be calculated from a
knowledge of its behaviour in the absence of the stimulus. This behaviour is
described in terms of correlation functions of the appropriate dynamical variables
(velocities, energies, eic.) in which the averages denoted by angle brackets are, it is
important to note, averages over a system at equilibrium. By suitable ingenuity
(sometimes called ‘indirect Kubo methods’) the stimulus can be chosen so that the
response can include diffusional or viscous motion, or transport of thermal energy,™*
and so we are able to relate these transport, or non-thermodynamic, properties to
averages over systems at equilibrium.

The theorem on fluctuations stems from a hypothesis due to Onsager which lies
behind his reciprocal relations between coupled transport processes. Every system
at equilibrium exhibits small departures from the average values of unconstrained
dynamical properties (e.g. fluctuations of energy in a system at fixed temperature).
These fluctuations regress with time and Onsager’s result is that the average rate of
their regression is governed by the usual macroscopic transport coefficients (e.g.
thermal conductivity for thermal energy).” Again, we have this direct relation
between a transport or dissipation process and a purely equilibrium phenomenon,
viz, fluctuations.

These theorems lead to simple relations between the transport properties and the
correlation functions, relations which can now be derived in at least six different ways
of different assumptions and rigour,” and about whose truth there can now be no
doubt. The first relation, due originally to Einstein, is the one most directly
connected with the subject of this review for it shows that the coefficient of diffusion
is the time-average of the velocity c.f.

D =J {v(0) + v()) dt (6)
o

or, from equation (3)

D=2 i) 7

It is characteristic of hydrodynamic properties such as diffusion and viscosity, that
they are related to the zero-frequency intercept (Figure 2) of  and similar functions.

In fact the spectrum of a time~dependent c.f. can be regarded as a frequency-~
' Tk | [r—-n‘lh-_usi-_l-- k- = e e e —
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The second problem, the relation of a c.f. to the underlying molecular behaviour, is
more difficult and largely unsolved. One useful route which has been much followed
recently is to express the c.f. in terms of so-called memory functions, which are
believed to have more simple structures. This idea has a lot in common with the
reduction of the total (static) correlation function A(r) by expressing it in terms of the
apparently more simple direct correlation function c¢(r) of Ornstein and Zernike.”'°
This reduction, which was re-introduced into modern statistical mechanics by
Rushbrooke and Scoins,'! has proved to be particularly fruitful, for it is easier to
make intelligent approximations for ¢(r) than for h(r); for example, the Percus-
Yevick approximation which lies behind much recent work on the static structure of
liquids.*'® The introduction of memory functions into the time-dependent correla-
tion functions is leading to equally fruitful approximations.

This approach is best described by discussing first the problem of Brownian
motion, or the diffusion of a particle of essentially infinite mass m. Its motion may be
described by Langevin’s equation®

mo(t) = —meo+ K(1) (8)

which separates the total force into two parts, a frictional retardation proportional to
the velocity (¢ is a constant), and a randomly fluctuating force K(¢) which arises from
the impacts of the molecules of the liquid in which the particle is suspended. The two
forces are not unrelated for interaction with the molecules of the liquid is also the
cause of the frictional retardation. This relation between the random and the
systematic components is a very general phenomenon and when put into precise
form becomes the mathematical expression of the fluctuation-dissipation theorem.*

Since the molecules hitting the Brownian particle are light, and their impacts
frequent and (almost) independent, it is usual to assume that K(f) is a Gaussian
process with a correlation time negligibly short compared with the time steps of the
Brownian motion. That is

(K(0) - K(1)yoc 8(1) (9)

It follows®*® that the velocity c.f. of the Brownian particle is an exponential in the
magnitude of the time:

(0(0) * v(H) ={v*) exp (—c|t]) (10)
and
D=kT/mc (11)

where ¢ is the constant in equation (8). Such exponential decay is a valid solution for
a massive particle but it will not do if the particle is itself one of the molecules of the
liquid. The results in Figure 1 show that (¢) is more complicated than (10), and,
moreover, it is an even function of time whose derivative vanishes at ¢t =0, for at
infinitessimally short times v(f) must be the same as v(0). Langevin’s equation has

¢ L. 8. Ornstein and F, Zernike, Proc. Acad. Sci. Amsterdam, 1914, 17, 793, reprinted in ‘Equilibrium
Theory of Classical Fluids’, ed. H. L. Frisch and J. L. Lebovitz, Benjamin, New York, 1964,

10 A, Miinster, ‘Statistical Thermodynamics’, Springer-Verlag, Berlin, 1969, Vol, 1, Chap, 14,

¥ G. 8. Rushbrooke and H. 1. Scoins, Proc. Roy. Soc., 1953, A216, 203,
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therefore been generalized for the discussion of molecular motion by the replace-
ment of the constant ¢ by what is, in effect, a frequency-dependent coefficient of
friction. We write

mﬁ(t)=—m‘[ v(t—t)Mp(t') dt’ + K(r) (12)
0

where My(t) is a memory function which describes the past history of the friction,
which is itself a correlation function, and which therefore has, in turn, a memory
function which describes its own evolution.® That is, there exists a function M, (¢)
defined by

¢

My(t) = —J My(t— )M, (") d’ (13)
Q

This argument can be extended indefinitely to M,(#), M;(t) etc. If we take the
correlation of (12), (13}, etc. with v(0), use the fact that this velocity is not correlated
with K(1),

(v(0) - K(1))=0 (14)

and take Laplace transforms™ of each expression, then Mori showed that we obtain
the transform (p) of the original c.f. y(f) as a continued fraction.®

This approach is useful only if the memory functions are more simple than the
original c.f. The first My(t) will show a peak at =0, representing the quasi-
Brownian or inertial motion of the molecule, and a tail at longer times representing
the damped oscillatory motion. (The memory function of an oscillator of frequency
wg is a constant, wg.) One might hope that, if not the first, then one of the low-order
memory functions could be adequately approximated by a §(¢), thus truncating the
continued fraction of Mori. In Section 4 we discuss the computer simulation of the
velocity c.f. and in Section 5 extend the discussion to the rotational velocity c.f. and
its memory functions, but first introduce, in the next section, a more general
two-particle c.f.

3 The Density—Density Correlation Function

‘The velocity c.f. of the last section describes the motion of one molecule. Itisequally
important to be able to discuss the motions of pairs for two reasons; first, the
intermolecular forces in a liquid are, to a first approximation, the sum of the
interactions of the molecules in pairs only, and so we must know the static ¢.f. for
pairs even to obtain the thermodynamic properties of internal energy, pressure efc.,
and, secondly, because the observed scattering of electromagnetic radiation by
matter is a coherent interference of the scattering from two different centres.

Let the limitingt density on a molecular scale at point r = 0 and at ¢t = 0 be denoted

- * A Laplace transform differs from a Fourier transform by the replacement of the oscillating function
exp (-—‘icut) by the manotonically decaying function exp (—pt), so that (p) can be regarded as the result of
sampling (1) by a probe with a relaxation time of p . The integration in a Laplace transform is over all
>0,

T The limit is the ratio (N/&V) of the number of molecules SN with centres in a volume &V containing the
point =0, as §V goes to zero.
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n(0,0), and that at r and ¢ by n(r, t). We define a density—density distribution
function g*(r, t) by
g*(r, 1y =n""(n(0, 0) n(r, N (15)

where n is the mean number density, or N/ V. If we average over an ensemble at a
fixed time, say t = 0, then we obtain the static or, as it is commonly called, the radial
distribution®? g(r)

ng(P=n"Yn@n(r)y (r=0) (16)

We have, however, specified that there is a molecule at r =0, and so we have there a
density described by the delta-function 8(r), and we have shown in (16) that the
probability that there is a second molecule at r is proportional to ng(r). Hence

g*(r, 0)=8(r)+ng(r) (17)

The two terms are called the self and the distinct parts of g*. As time passes the first
broadens out into a curve as the molecule originally at r = 0 diffuses away, and this
curve finally collapses to a line g, = 0. The second term also loses its structures with
time and goes finally to the constant valueg(r) = 1, (Figure 3). We therefore form the
c.f. corresponding to g* by subtracting this long-time limit and the result G(r, 1) is
called the van Hove c.f.'?

Glr,)=g%*r,)—n (18)

The Fourier transform of this c.f. over the three dimensions of space and one of
time is S(k, w), the structure factor,

= (2;)2 , J. G(r, ) exp[i(r - k—ot)] dr d? (19)

G.(r,t
P (r,1)

et Gd(ri O)

U Gs(r, 0)

~1

¥

Figure 3 The self and distinct parts of van Hove’s correlation function G(r, ), At zero time the self
partis adelta-function atr = 0 and the distinct is the (static) pairc.f. h(r)=g(r)—1. At
infinite time both parts go to zero

12 1., van Hove, Phys. Reu., 1954, 95, 249,
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It is the structure factor which is measured by the radiation (electromagnetic or
neutron) scattered by the liquid. An incoming wave of length A is characterized bya
vector k, which has the direction of the wave and a magnitude of 27r/A. The wave
scattered with vector k, has an intensity which is proportional to S(k, w), where
k =ko—k, and e is the change of angular frequency. Alternatively, we can say that
this wave has suffered a change of momentum of hik and of energy hew.

Neutrons scattered from a monoenergetic (or monochromatic) beam can be
analysed for change of angle and speed, and so S(k, ) can be measured as a function
of both variables, at least over limited ranges. The scattering can be either incoher-
ent (from one centre) or coherent (from a pair of centres), according to the nature of
the nucleus. Different isotopes of one atom behave differently in this respect. The
former arises from the self-part of the c.f. and the latter from the distinct, and 50, in
particularly favourable cases, both parts of the transforms of G can be studied
experimentally. Thermal neutrons have a wavelength of ca. 1A and so k™! is
comparable with the intermolecular spacing, and the coherently scattered beam
yields useful information on G ggunc(r, t) on taking the inverse transform.3

If the analysis by speed (or energy) is omitted then what is obtained is an integral of
S(k, w) over all w, which is therefore a function of k only, S(k). Information on the
time dependence of the c.f. has now been lost, and the transform of (k) yields only
the static distribution function g(r). With a beam of X-rays all the scattering is
coherent, analysis by energy is virtually impossible and so only S(k) and g(r) can be
observed. Neutron scattering has therefore told us about the dynamics of liquidsina
way which was not possible with X-rays,

Visible light is scattered coherently with negligible change of momentum, and the
spectrum observed is therefore S(0, w). The change of frequency is small but
observable if the incident light is from a laser and so highly monochromatic.
Measurement of the intensity and angle but not the spectrum of the scattered light
tells us only about the static properties. In particular S(k=0) is related to the
compressibility’ ¢

QRS =0)=n f [g(r)—1]dt= kT(gg)T— 1 (20)

Such scattering is small in a normal liquid but intense near the critical point where
(dn/8P) is infinite. :

The spectrum of the scattered light is more useful for it has three distinct peaks,'*a
Rayleigh line at w = 0 and two Brillouin lines at w = £ Ws,,, where W is the speed of
sound in the liquid and s,, the wavenumber of the particular sound wave responsible
for the scattering. The Rayleigh line arises from density (or more properly, refractive
index) fluctuations arising from fluctuations of local entropy at fixed pressure. Such
fluctuations do not propagate through the fluid and so the Rayleigh line is centred on
@ =0. It may also contain a weak and very broad depolarized component, discussed
in Section 6. The Brillouin lines arise from fluctuations of density due to fluctuations
of pressure at fixed entropy. Such fluctuations propagate as sound waves which are

'* 1..G. Powles, in ‘Chemical Applications of Thermal Neutron Scattering’, ed. B, T. M. Willis, Clarendon
Press, Oxford, 1973. :

14 D. Mclntyre and J. V. Sengers, in ref. 2(a); H. L. Strauss, in ‘Chemical Applications of Lasers’, ed, C. B.
Moore, Academic Press, New York, 1974.
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present in all liquids at equilibrium, and which diffract the light at the appropriate
Bragg angle. The frequency shift is a Doppler effect of the moving ‘grating’, and
since the sound wave of appropriate length and orientation can be moving in either
direction, a pair of lines is produced, one on each side of the incident frequency.

The Rayleigh and Brillouin lines provide a wealth of information, even for a
monatomic liquid. The total intensity yields the compressibility (20), the ratio of
intensities yield C,/ C,, the width of the Rayleigh line yields the thermal diffusivity,
and the displacement and width of the Brillouin lines yield the speed and coefficient
of absorption of sound at frequencies above 10'° Hz, that is, above the range
accessible by mechanically generated sound waves.'”

4 The Simulation and Measurement of Correlation Functions in
Monatomic Liquids

The study of the dynamics of liquids by computer simulation started with the work of
Alder and Wainwright'® in 1959, who solved Newton’s equations of motion for 32
hard spheres moving in a cubical box. It has progressed rapidly, hand-in-hand with
the advances in computer speed and capacity, but even now it is clearly impossible to
handle systems of 10?* molecules; the present practicable limit is about 10°, or
perhaps up to 10* for particularly simple systems. In a sample of liquid of this size
many molecules would be near a wall and so not representative of those in a bulk
liquid. This problem is solved by surrounding the cubical sample on all sides by
replicas of itself so that even molecules at a side or edge interact only with molecules
in a similar environment.'” In these conditions even a sample of 1000 molecules is
amply large enough to study the dynamics and thermodynamics of a liquid, since
correlation functions decay virtually to zero over lengths of the order of 10 molecular
diameters, except for liquids near their critical points.

Before we can solve the equations of motion we must choose an intermolecular
potential, and the most popular for simulating the liquefied inert gases has been the
Lennard-Jones (12, 6) potential,' which is a reasonable compromise between simp-
licity and realism. Geometrically more complicated potentials are now being used to
simulate diatomic molecules;'® one of the most complicated that has so far been used
is that chosen by Rahman and Stillinger'® for a simulation of water, -

The first, and still perhaps the most informative simulation of the properties of a
monatomic liquid was Rahman’s study® of 864 Lennard-Jones (12, 6) particles
confined to a cubic cell of side 10.2 o at a reduced temperature of kT/& = 0.786,
where o and & are the collision diameter and depth of the Lennard-Jones potential.
The density and temperature were chosen to simulate argon at 1,374 gem™ and
94.4 K. The velocity c.f. and its transform are shown in Figures 1 and 2. From the
area under the curve in Figure 1 or, equivalently, from the intercept at zero
frequency in Figure 2 we get a diffusion coefficient of 2.43 % 107 m?s™', which is the

15 D, Sette in ref, 2(a).

16 B, J, Alder and T. E. Wainwright, J. Chem. Phys., 1959, 31, 459.

17 B. 1. Alder and W. G. Hoover, and W. W. Wood, in ref. 2(a).

14 ], Barojas, D. Levesque, and B. Quentrec, Phys, Rev., 1973, A7, 1092; P. 8, Y. Cheung and I. G. Powles,
Mol. Phys., 1975, 30, 921,

2 A, Rahman and F. H. Stillinger, J. Chem. Phys., 1971, 55, 3336.

20 A, Rahman, Phys. Rev., 1964, 136, A405.
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Figure 4 The mean-square displacement as a function of time (schematic)

same as that of liquid argon®' at a temperature of 90 K. However, the full curves give
much more detailed information on the molecular motion than the value of the
macroscopic or hydrodynamic coefficient of diffusion, and, in particular, show the
inadequacy of the unmodified Langevin equation.

It is instructive to calculate the mean-square displacement, (r®), of any one
molecule as a function of time (Figure 4). This was computed directly by Rahman,
or, in principle, could have been obtained from the self-term of van Hove’s c.f.

(r*(e) =j r*Gy(r, ) dr (21)
Q

Atshort time (r?) grows quadratically with time; that is, the motion of the molecule is
unretarded, as in a perfect gas. For a crystal, in which the average is taken, from a
fixed zero time, over the unrelated phases of the oscillators, (r*) settles down to a
constant value, For a liquid the initially unretarded motion quickly passes into a
linear dependence of {r*) on time, which corresponds to a constant rate of diffusion.
For ‘argon’ this linear or hydrodynamic regime is reached after ca. 2.5X107"%s, a
time in which 2 molecule has moved, on average, through a distance of about o. The
hydrodynamic regime is thus reached surprisingly quickly.

At high temperatures, or at densities substantially lower than those of a typical
liquid, the negative region of the velocity c.f, disappears, and there is a monotoénic fall
with this increasing time. In this region the dissection of the c.f. into memory
functions has proved useful.?® Much recent interest has centred about this decay to
zero atlong times of this positive c.f. in a fluid of moderate density. The decay is slow

2t I. Naghizadeh and 8. A. Rice, J. Chem, Phys., 1962, 36, 2710.
22 D. Levesque and L. Verlet, Phys. Rev., 1970, A2, , 2514,
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(i.e., not exponential) and the consensus of opinion®” is that at long times it goes as
3. Such a slow decay gives rise to an anomalously large coefficient of diffusion at
these densities. The cause of the tail is probably to be found in a weak vortex
pattern which a moving molecule apparently generates. If a molecule is moving
along, say, the x-axis at a particular time then its very motion will tend to establish a
pattern of motion in the neighbouring molecules which resembles a vortex ring with
cylindrical symmetry about the x-axis. The motion of the molecules in this ring gives
an impetus to the first molecule along the x-axis, thus tending to prolong its motion in
that direction.?® Such long tails in the c.f., and the complicated molecular motions
which give rise to them, are clearly going to make it difficult to develop a statistical
theory of transport for fluids of densities between those of the dense liquid and the
dilute gas. That is, no early truncation of the memory function expansion is likely to
do justice to the complexity of the motions,

The measurement of correlation functions for a real liquid is more difficult than
their computer simulation. In Section 3 we saw that their spectra can be obtained
from scattering experiments but these rarely cover a sufficiently complete range of k
or w for their successful Fourier inversion. If we want to study the one-molecule
correlation functions then we must use incoherent neutron scattering, and so are
restricted to substances containing atoms at least one of whose isotopes has a large
incoherent cross-section. The best is the proton, with an incoherent cross-section of
79.7 barn and a coherent of 1.8 barn, and after that the best is apparently sodium for
which both areas are 1.7 barn, For argon (incoherent 0.4 barn and coherent 0.5
barn) Dasannacharya and Rao** have obtained G,(r, f) at 85 K, but only with an
accuracy of ca. 15%. From this result we could go to the diffusion coefficient by
calculating (r*) from equation (21), and then obtaining D from the limiting slope of
Figure 4, or we can use the fact thatif G, at time ¢ has a Gaussian shape (as they aver)
then its width w(¢) is related to the velocity c.f. by *+'*?°

w(t) =2 L (w(0) - o))t — ') dF (22)

For liquid sodium the results are more extensive although, judging by the
agreement between different workers,*'® not necessarily more accurate. Figure 5
shows a spectrum of the velocity c.f., which resembles that for a liquid of Lennard-
Jones molecules (Figure 2) more closely than either resemble the Lorentzian form
predicted by a simple Langevin equation. The coefficient of diffusion calculated

from the intercept of the spectrum at zero frequency is ca. 2.8 X 107° m*s™, which is

in only rough agreement with the experimental value® of 4,3 X 107° m?s™".

*3 B, J. Alder and T, E. Wainright, Phys. Rev., 1970, A1, 18; T. E. Wainright, B, J, Alder, and D. M, Gass,
Phys. Rev., 1971, A4, 233; R. Zwanzig, in ‘Statistical Mechanics - New Concepts, New Problems, New
Applications’, ed. 8. A, Rice, K. F. Freed, and J, C. Light, University of Chicago Press, Chicago, 1972, p.
241; Papers by B. J. Alder and J. M. Deutch, and the discussion on them, in ‘Transport Phenomena —
1973, ed. J. Kestin, American Institute of Physics, 1973.

24 B. A, Dasannacharya and K. R, Rao, Phys. Rev,, 1965, 137, A417, .

25 B. J. Berne and G, D, Harp, Adv. Chem, Phys., 1970, 17, 63; B. J. Berne, in ‘Physical Chemistry, an
Advanced Treatise’, ed. D. Henderson, Academic Press, New York, 1971, Vol, 8B: B, J. Berne and D,
Forster, Ann. Rev. Phys. Chem., 1971, 22, 563; R. T. Bailey, in ‘Molecular Spectroscopy’, ed. R. F,
Barrow, D. A. Long, and D. J. Millen, (Specialist Periodical Reports). The Chemical Society, London,
1974, Vol. 2, p. 173. ‘

26 P, A. Egelstaff, ‘Introduction to the Liquid State’, Academic Press, London, 1967, p. 4.
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Figure 5 The experimental Fourier transform of the velocity c.f. for liquid sodium® compared with
the form of this function predicted by Langevin’s equation

5 Absorption in Molecular Liquids

In this Section and the next two we describe how we can study the rotary motion of
molecules by means of the bandshapes of their spectra, which are linked to
orientational auto-correlation functions. Let u# be a unit vector along a convenient
axis of the molecule (usually along the permanent dipole moment, if any), and J the
angular velocity vector, which is perpendicular to u in a diatomic molecule. We shall
use the following correlation functions; the first in this section, the second in Section
6 and the third in Section 7.

(IR)III(I) ={u(0) - u(1))
(R)d’(t) 2%(3[!‘(0) . u(t)]z—" 1) (23)
P (t) = (F0) - HOY/{I*O0))

Here (IR) stands for infra-red, and (R) for Rayleigh rather than Raman since we shall
be considering scattered light that is symmetrically disposed about the exciting line
and not about a line displaced from it.

The Fourier transform of “®¢(¢) is related to the dielectric absorption?”* that
arises from the attempt of dipolar molecules to respond to a small perturbing electric
field, which may oscillate over a wide range of frequencies. Energy is absorbed
because they cannot follow the applied field F instantaneously. More than fifty years
ago Debye discussed this phenomenon in terms of a rotational Langevin equation, in
which the torque on a dlpole i at an angle 8 to the field F is opposed by a
frequency-independent microscopic coefficient of friction ¢ which arises from the
force-fields of neighbouring molecules.

pAXF= —g‘é _ (24)

27 N. E. Hill, A. G. Price, W. E. Vaughan andM Dav1es, ‘Dielectric Properties and Molecular Behaviour’,
Van Nostrand Reinhold, London, 1969, .

2® S. Kielich, in ‘Dielectric and Related Molecular Processes’, ed. Mansel Davies, (Specialist Periodical
Reports), The Chemical Saciety, London, 1973, Vol, 1, p. 192. '
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The Langevin equation per unit moment of inertia is then (¢f. equation 8)
6(t)=—16(t)+T(1) (25)

where I'(#) is the random torque imposed on a molecule by the motion of its
neighbours. If ¢(f) is the angle between u(0) and u(¢) then®>*”

(u(0) * u(1))=(cos $()) (26)

These equations describe adequately the rotational dynamics, and so the absorption,
up to field frequencies of ca. 10'* Hz. Aswe move into the far-i.r.region®° of 10'* Hz
(i.e., for molecular motion at times of 107'? s) then the same limitations apply to these
equations as applied before to the translational Langevin equation. An obvious
weakness appears if the absorption is expressed in terms of a(w), the absorption
coefficient per unit path length. Integration® of equation (25) gives an absorption
coefficient a(w) proportional to w?*(1+w?®) ™", which means that at high frequencies
a(w) has a plateau, and spectral transparency is not regained.

The trouble lies, as before, in the neglect of molecular inertia, and so the
assumption that the random torque I'(¢) has an infinitely small correlation time. Only
then is ¢ independent of time. Equation (25) is the truncation of the rotational
equivalent of Mori’s continued fraction® (Section 2) so that the memory function is a
peak at f=0;

MR A1(1) = DS(1) (27)

where D is a rotational diffusion coefficient equal to kT¢/I. If I'(t) is to be
non-Gaussian,>® and if  is to be a function of time, then we must generalize
Langevin’s equation, in the same way as we went from equation (8) to equation (12});

AR4(r) = | (s — 1) IOM() de +T() (28)

0

This equation has been used recently to describe the far-i.r. absorption of furan and
chloroform.>! The memory function ®™M,(¢) which replaces the delta-function of
the simple Langevin equation is the c.f. of the random torgue

T My(8) = (1(0) - T(2)) (29)

Since ™ M,() is itself a c.f. it has its own memory function "™ M,(¢) defined by the
analogue of equation (13), and we can again extend the series indefinitely. Mori’s
continued fraction for the Laplace transform starts

™) ™)
p+TOM(p) p + M 0)/(p+r" M, (p))

TR (p) = = elc, (30)

Table 1 summarizes how this series can be used as a framework into which to fit some
of the widely used models for molecular rotation, The rotational, like the transla-

29 G, Wyllie, in ref, 28, p. 21; G, Williams, Chem. Rev., 1972, 72, 55. .

30 C, Brot, in ‘Dielectric and Related Molecular Processes’, ed. Mansel Davies, (Specialist Periodical
Reports), The Chemical Society, London, 1975, Vol. 2, p. 1.. '

3t B, Quentrec and P. Bezot, Mal. Phys., 1974, 27, 879,
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tional velocity c.f., is necessarily an even function of time,> and has a Taylor
expansion

2 4
(a(0) - w()) = 1= S G (O) + (OB — - - 31)

The mean angular velocity (i%(0)) of a linear molecule is 2kT/I. The mean square
acceleration (ii*(0)) comprises two terms; a radial or centripetal acceleration due to
the fact that the vector u is of fixed length, and a tangential acceleration. The first is
independent of the molecular interactions and is 8(kT/I)?>, and the second is
{0*(V))/I where O(V) is the torque that the environment exerts on the molecule via
the intermolecular potential V. The substitution of these expressions into equation
(31) gives the equation of motion of an ensemble of interacting molecules. The
equation shows the value of the c.f. representation in isolating the short-time
behaviour from that at long times. The former can be followed analytically but the
latter can be obtained only by invoking statistical arguments which usually lead to an
exponential tail in the c.f.

Gordon® and others®® have calculated the first few terms of the expansions of
MRy (8), B (£), and Py (1) ; each contains the torque, a functional of the intermolecu-
lar potential V, (O(V)), orits time derivative. The true c.f, is even in time and Table 1
shows the degree to which particular models satisfy this condition. Gordon’s M and J
diffusion models are zeroth-order truncations of Mori’s series and so have a term in
£*, and all higher odd terms. In these models the torque is not defined at the moment
of impact (i.e., it becomes instantaneously infinite) and so although transparency is
regained in the far-i.r. (as 0 ™), it is regained more slowly than is found experimen-
tally* for many dipolar liquids, and for those solid phases in which translational
freedom is lost but rotational is retained. More recently®'~* the truncation at M,(?)
shown in the last section of Table 1 has been used to ensure evenness to t'. The
torque (0(V)) is now well-defined at all times although its derivative (G(V)), which is
part of the term in %, is not. This is because the truncation at M,(¢) implies that the
angular acceleration is randomized in direction at each impact, so that its derivative
has an infinite singularity. The absorption spectrum « (@) is the Fourier transform of
(Ry(£) and behaves asymptotically as ™ at high frequency. Itreduces® to a Debye
curve when o* « @?, as is shown in Figure 6 where it is compared with experimental
results®® for liquids and rotationally-free solids. Further comparisons with experi-
ment can be found in the papers of Quentrec and Bezot*! and Evans and Evans.®

It is remarkable that, although the agreement of a(w) with the experimental
results is good over several decades of frequency, the overall memory function,
URIM(1), is even only to t>, This function is another equilibrium property and so
should be even in time. One possible remedy would be to truncate Mori’s series at

32 R. G. Gordon, J. Chem. Phys., 1966, 44, 1830; Adv. Magn. Resonance, 1968, 3, 1; R. E, D. McClung, J.
Chem. Phys., 1972, §7, 5478,

33 1, W. Larkin, J.C.S. Faraday Symposia, 1972, 6, 112; R. Haffmanns and I, W, Larkin, J.C.S. Faraday II,
1972, 68, 1729; M. Evans, M, Davies, and L. W. Larkin, tbid., 1973, 69,1011, I. W. Larkin, ibid., 1973, 69,
1278;1. W Larkin and M, Evans, rbrd 1974,70,477; L. W, Larkm ibid., 1974 70,1457, M. Bvans ibid
1975, 71, 2051.

34 F. Bliot, C. Abbar, and E., Constant Mol. Phys., 1972 24,241; F. Bhot andE Constant, Chem. Phys.
Letters, 1973 18, 253; 1974, 29, 618

3% G. I. Evans and M Evans, J’ CS Faraday 11, 1976, 72 in press,
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higher and higher order, but this introduces an inacceptably large number of
averages "M,(0), . .., ™M, (0), which cannot be obtained analytically and which
would therefore remain as phenomenological coefficients. A limitation of Mori’s
approach is that it does not give a natural picture of the long-time or hydrodynamic
tail of the c.f. of angular velocity "y (t), as emphasized in many papers at a
conference in Paris.>® The long-time behaviour of Py (t) appears to go as t 3, as for
the translational case discussed in Section 4. Such a limit is expected also for “®y (),
at least for spherical tops, but this tail would distort the spectrum only on the
low-frequency side of the Debye absorption,

It is natural to expect i.r. absorption associated with the rotation of a dipolar
molecule in a liquid, but not so obvious that non-dipolar molecules also absorb in the
far-i.r. and high microwave region.’” This arises from the small, temporary, dipole
induced in a normally non-polar molecule by the fluctuating fields of moving
neighbours. The reciprocal of the half-width of the absorption band is of the order of
the lifetime of the induced dipole, which is generally ca. 0.2 X 107*% s, The associated
c.f. is one of orientation coupled with interaction, and it falls to zero much more
rapidly than its purely orientational dipolar counterpart ™y (¢).

Mori’s approximation injects a unity into the description of both permanent and
induced dipolar absorption, as can be seen by the ease with which the truncation at
M,, which was successful in reproducing the permanent dipole absorption (Figure 6),
also reproduces the induced dipole absorption in a range of liquids from nitrogen to
benzene (Figures 7 and 8). For these liquids both M,(0) and M,(0) are multi-
molecular in origin since an isolated molecule would not absorb. Both averages are
related to (0%(V)), although not in a simple way, and so can be used as rough probes
for the change with pressure and temperature of the mean-square torque.*®

6 Depolarized Rayleigh Scattering—a Study of ™ (1)

We saw in Section 3 that light scattered from a monatomic liquid had two compo-
nents, a Rayleigh line of the same frequency as the incoming light, and, surrounding
it on either side, a pair of Brillouin lines shifted by an amount proportional to the
speed of sound in the liquid. In a molecular liquid there is usually also a weak, very
broad depolarized band, centred on the incident frequency which leads to the
so-called Rayleigh wings. It is now generally agreed that this band arises from the
re-orientation of single molecules, an interpretation which differs from that of
collective (shear-wave) modes which prevailed®® before the c.f. formalism was
introduced about ten years ago. However, both mechanisms may be involved in the
long-time tails on the c.f. ®y(¢) which molecular dynamic studies have shown to be
present. As with the corresponding tails in the translational velocity c.f. (Section 4),
these probably arise from a coupling of the motion, in this case orientational, of a
single molecule with the hydrodynamic transverse velocity gradients.*

36 ‘Molecular Motions in Liquids’, ed. J. Lascombe, Reidel, Dordrecht, 1974.

37 M. Davies, Ann. Reports, 1970, 67, 65; M. Davies, G. W. F. Pardoe, J, Chamberlain, and H. A. Gebbie,
Trans. Faraday Soc., 1970, 66, 273; G. W. F. Pardoe, ibid., p. 2699; G. J. Davies, J, Chamberlain, and M.
Davies, J.C.S. Faraday IT, 1973, 69, 1223; G. I, Davies and J, Chamberlain, ibid., 1973, 69, 1739; G. J.
Davies and M. Evans, ibid., 1975, 71, 1275. o ‘ '

38 (3. J. Davies and M. Evans, J.C.S. Faraday II, 1976, 72, in press.

32 1. L. Fabelinskii, ‘Molecular Scattering of Light’, Plenum Press, New York, 1968.

40 1.-L. Greffe, J. Goulon, J. Brondeau, and J.-L. Rivail, in ref. 36, p. 151,
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If the incoming light is travelling in the x-direction, if it is polarized in the
z-direction (vertically), and is observed in the y-direction, polarized in the x-
direction (horizontally) then the scattered spectrum is Iyy(w), and it arises from a
dipole induced in the x-direction by a field along the z-direction. Such a dipole is
proportional to the xz-element of the electric polarizability of the scattering volume. |
For a system with isotropically polarizable molecules (e.g. CCl,), this element is zero. |
Gordon*? showed in 1966 that this depolarized component is the Fourier transform |
of the average motion of the polarizability tensor and so, for self-correlationina '
linear or symmetric top molecule, of the c.f. ™y (t). The depolarized light scattered
from liquids with anisotropic polarizability arises from local fluctuations of the
orientation from the random isotropic average. Ifitis assumed that the movement of
neighbouring molecules is uncorrelated then the scattered intensity at frequency w
from the exciting line is

Fn() < (eg=a)? | Pye de (32)

This expression is similar to the quantal equation® for the rotational absorption in
the microwave and far-i.r. bands;

a(w). 2 (7 awy —iwt '
A(m)ocm[l_m{p K kD] -L, P(Ne™ " dt (33)

Ivif(w) and A(w) have quantitatively the same features. The low-frequency
 Lorentzian*' of the scattered light corresponds to the low-frequency Debye relaxa-
“tion in dipolar absorption. This Lorentzian is imposed on a broader background
- which extends to ca. 100—150 cm™ corresponding to the far-i.r. Poley absorp-
‘tion.?”*® Beyond this the intensity falls exponentially with frequency.

The Lorentzian behaviour at low frequencies implies that the long-time behaviour
of both “™®y (1) and ®™y(r) is exponential with relaxation times of 7y and mg
respectively, the reciprocals of the half-widths of the Lorentzians. Details of the

st D, A.Pinnow, 8. J. Candau, and T. A. Litovitz, J. Chem. Phys., 1968, 39, 347; H, Dardy, V. letarta, and
T. A. Litovitz, J.C.S. Faraday Symposia, 1972, 6, 71; J: Chem. Phys., 1973, 59, 4491,
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molecular motion are reflected in the deviations from the exponentials at short times,
and give rise to an added background or shoulder in the scattered light, and to the
Poley absorption in the i.r.

A simple comparison of 7y with 75 tells us something of the mechanism of
re-orientation; for example whether it is by large rotational jumps or not.** Thus if
motion about an axis can be described by a model of rotational diffusion with
individual time steps of a short time 7, then Hubbard’s equation*? links 1, 7, and 15

If the Rayleigh scattering is observed as a function of temperature*' then, in
principle, the different contributions to the scattering can be assigned different
energies of activation which can be compared with those obtained from viscosity and
dielectric measurements. For the substituted benzenes*' good agreement with
experiment can be obtained by attributing the spectrum of linearly anisotropic
molecules to a single mechanism of re-orientation. However, the far wing of the
Rayleigh scattering contains also information about intermolecular properties since
a weak exponential scattering is observed here even with molecules with scalar
polarizabilities** such as CCl,. Bucaro and Litovitz** used a simple binary-collision
approach to model this scattering for spherically polarizable molecules. However,
the spectra of anisotropic liquids show the same quasi-exponential tail and also a
shoulder around 50—90 cm™ which cannot be accounted for by this simple,
distortional, binary mechanism.

After subtracting the collision-induced component of ® (), Dardy et al.*! found
that a molecule such as benzene behaves much as a free-rotator at short times. There
is an average rotation of ca. 15° between collisions. The long-time behaviour of
®lys(t) is found to be exponential, reflecting the ultimate diffusional behaviour. It
can be shown®**¢ that the short-time behaviour of a c.f, is revealed in greater detail
by an analysis of its second derivative; for example, ®J(f) is related to the
correlation of angular momenta and angular orientation. This c.f. shows**>*¢ that
there is not a complete loss of memory during collisions in molecules like benzene
and so the simple diffusion model which lies behind the Hubbard equation is
inadequate.

The Rayleigh scattering has been observed also as a function of pressure*” and
from these measurements the change with density of ®y(t) and ®/(t) can be
obtained. The mechanism of re-orientation appears to involve rotation which is
randomly affected by collisions but it is a process which is not described accurately by
the J-diffusion model. The c.f. ®4y(¢) has a negative region and oscillates [as is well
documented®*” for ®™(#)], thus showing that there is not a complete randomiza-
tion of the angular velocity at each collision. There is also evidence that memory of

42 F, 1. Bartoli and T. A. Litovitz, J, Chem. Phys., 1972 56, 413.

43 P, 8, Hubbard, Phys. Rev., 1963, 131, 1155.

44 J, P. McTague and G. Blrnbaum Phys Rev. Letters, 1968, 21, 661; W. 8. Gornall, H, E. Howard-Lock,
and S. P. Stoicheff, Phys. Rev., 1970, Al, 1288.

45 J, A. Bucaro and T. A. Litovitz, J. Chem. Phys,, 1971, 55, 3846.

46 T, Keyes and D. Kivelson, J. Chem. Phys., 1972, 56, 1057; ibid., 1972, 57, 4599; A.. G. St. Pierre and W.
A, Steele, J. Chem, Phys., 1975, 62, 2286.

47 J.E. Dill, T A. Litovitz, and J. A Bucaro, J. Chem. Phys., 1975, 62, 3839; P. van Konynenburg and W. A.
Steele, ibid., p. 2301; M. Perrot, J. Devaure, and I, Lascombe, Mol Phys., 1975,-30, 97,
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one impact is carried through to the next, and beyond. The oscillations in ™ (#) are
most pronounced in strongly anisotropic molecules such as benzene and suggest that
such strong anisotropic forces lead towards molecular libration.*® This mechanical
anisotropy is accentuated at high molecular densities. The J-diffusion model is
qualitatively adequate only for the simplest molecules, such as N, and CO.

From the Mori series for depolarized Rayleigh scattering we see that the trunca-
tion

®My(1) = Dg 8(1) (35)

is equivalent to the Debye model of dielectric absorption, and leads to the
Lorentzian,

Iyp(w)oc{ej—a,)*Dr(Dr+ 7)™ (36)

which is adequate only at long times. The shoulder***” found at higher frequenciesin

moderately and highly anisotropic liquids can neither be described by a Lorentzian
nor fitted by the distortional mechanism of Bucaro and Litovitz.*’
The truncation

B Mo(1) = M (0) exp (—vot) (37)

yields, on Fourier transformation of the corresponding "™(¢), the scattering func-
tion of the M-diffusion model, which is proportional to ~* at high frequencies and
reduces to a Lorentzian when w* « w?. The equilibrium average ®M,(0) is still, for
this model, a property of asingle molecule (no torque involved); for a linear molecule
itis 3kT/L

The limitations of the M- and J-diffusion models in their treatment of torque
(Section 5), and the false assumption of complete randomization of angular velocity
at each collision have been revealed by the measurements at high pressure. Thus the
J-diffusion model is adequate for the Rayleigh scattering in liquid CO, up to 100 bar,
but fails at higher pressures when the index n of the frequency dependence (w™")
changes to higher n at intermediate and high frequencies, This sharper asymptotic
fall-off with @ suggests that the truncation

M, (1) ="M, (0) exp (—y1 1) (38)

might lead to a suitable function for Iyy(w). A finite torque is now implied in

M®af.(0); for a linear molecule

2
0=t ~3(7) @

The function I',y(w) is again Lorentzian at low frequencies but now has a peak®
around 50 cm™', near the shoulder found by Dardy et al.*! in anisotropic liquids.
The complete spectrum of depolarized scattered light can be written as the sum of
three terms;
I{w)= I\(H(w) + Ieor(w) + vy con(®) (40)

where Ico,_(d:) is the collisional part of the intensity observable in molecules with
isotropic polarizability such as CCl,. The theoretical expressions from which the sign
and magnitude of the cross-term can be calculated are only crude, but its neglect*?
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does not seem to affect the consistency of the subsequent analysis of the results. In
anisotropic molecules Iyy(w) accounts for almost all the intensity and Ieo (@) is
restricted to the wings. Bucaro and Litovitz*® predict

2

IcoL{w) X w7 exp (—w/wo) (e > wp) (41)

where w, is calculated from a chosen intermolecular potential, usually of the
Lennard-Jones form. I.q;(w)is a Lorentzian if w < w,. The equivalent expression
in the far-i.r.*' is

26/7

acoL(w)Cw exp (—w/ wg) (@ > wg) (42)

but this fits the results much less satisfactorily*® than the anisotropic term shown in
Figures 7 and 8.

Bucaro and Litovitz®® emphasize the similarity between I.o;(w) and the
population-corrected dielectric loss factor in non~polar liquids, viz.

s"(m)[l —exp (2—;)]_1

They have shown that both are fairly well described by semi-empirical equations
such as (41) and (42). Both have separate high- and low-frequency portions, whereas
the generalized Langevin theory of Kubo, Mori, and others stresses that these peaks
inthei.r. (or shoulders in the Rayleigh spectrum) are to be treated as part of the lower
frequency orientational processes — a unifying formalism for both dipolar (aniso-
tropic) and non-dipolar (isotropic) molecules. It would therefore seem to be fruitful
to treat Icop (@) by invoking Mori’s truncation at first-order, with both ™M, (0) and
®IM,(0) as torque dependent parameters.

7 N.M.R. Spin-Rotation Relaxation—a Study of V(9

The relaxation of nuclear spins is determined by their coupling with the translational
and rotational motions of the molecule. For a nucleus of spin 3, the spin-rotation
interaction of a linear molecule has a Hamiltonian of the form —cf - J, where I is the
angular momentum of the nucleus, J is that of the molecule, and ¢ is the spin-
rotation coupling constant.®>** When this is the only part of the total energy which
leads to relaxation of the spins then the spin—-relaxation time T is

1
T

where (1) is the third c.f. defined in equation (23), and w, is the Larmor precession
frequency. In a typical liquid wy" is of the order of 107%s, and this is so much longer
than the time for the angular momentum c.f. to decay to zero (say, 10”'" s) that the
exponential term in (42) can be put equal to unity.

For a linear molecule the expansion®® of ?y(t) in powers of f* resembles those of
the ratios "™ (£) /"™y (0) and ®i(£)/®#(0). Gerschel, Darmon, and Brot*® showed
that the (IR) ratio oscillated at short times, and measurements of light scattering from
‘8 M. Evans, J.C.S. Faraday II, 1975, 71, 71.

49 J, A, Bucaro and T. A. Litovitz, J. Chem. Phys., 1971, 55, 3585: T, A. Litovitz, in ref, 36, p. 613.
30 A. Gerschel, I. Darmon, and C. Brot, Mol Phys., 1972, 23, 317,

Cz o0 )
T J._ (J(0) - F(r)ye 0" dt (42)
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liquids at high prcssures’” have shown that the (R) ratio does also. There has been
little if anything reported from n.m.r. studies of the full time dependence of My (s),
but Berne and Harp?® have made computer calculations which show that it is
negative for an interval of time if the pair potential is anisotropic. It remains positive
and changes little over an interval of 10712 s if the pair potential is of the L.ennard-
Jones form.

If there is no molecular interaction then (0?(V)) is zero, the c.f. ¢ (¢) is unity, and
its memory function ®M(¢) is zero. Hence " M(¢) can be looked upon as a molecular
memory of the interactions. In contrast, "™ M(r) and ®’M(s) are non-zero decaying
functions even in the absence of torque since there is always a distribution of
frequencies of rotation. If Py (t) is, at any time, negative, then “M(z) must be
non-zero; that is, a molecule retains some memory of its interactions. Berne and
Harp® find that in simulated CO ®M(1) goes almost to zero within 0.3 X 107'?s, and
that there is then a much slower decay, with a final positive tail. The time of
0.63 % 10~ *? s is roughly that taken by a molecule to move from the centre of its ‘cage’
and meet one of its neighbours at the ‘wall’.

An example of an n.m.r. study of spin-rotation relaxation is the work of Rigny and
Virlet®! on the relaxation of the fluorine nuclei in UFs, WF, and MoF, all of which
are liquid at temperatures little above room temperature. They are unusual in that,
contrary to the behaviour of most liquids,’® the spin-rotation interaction is the
dominant mechanism of relaxation even at temperatures well below the critical. The
molecules retain their angular momentum for a long (correlation) time, but the
rotation is not free since they can move only about 1 radian at 343 K before their
angular momentum changes.

These conclusions are revealed by using the generalized Langevin equation which-
now takes the form

J(t) = ~J: Dpg(e~ NI () di’ +Ty(0) (43)

where I'y(¢) is the random torque and M the memory function, The associated
spectrum is then

Iy T i oD .
<-J‘é’2))>) = L (J(0) » J(1))e 0t dt

(44)

="(0)liwg + "M(wo)]’
where w, is the L.armor frequency of spin precession, This is again sufficiently small
to be neglected so the exponential term is unity. That is, I'){t) fluctuates so rapidly
that its c.f., which is related to "M(w) by

L
(J3(0))

is a delta function. The simple Langevin equation is thus regained with @M
independent of frequency. Therefore

DM (w) = _[]m (T5(0) - Ty())e ™" dt (45)

1 (= DG0) _ay 7
7<), 0 deecy =0y (46)

51 P, Rigny and J. Virlet, J. Chem. Phys., 1967, 47, 4645,
52 J, G. Powles, in ‘Molecular Relaxation Processes', ed. M. Davies, Academic Press, New York, 1966.
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where 7;is the angular momentum correlation time, inversely proportional to T, the
spin-rotation relaxation time. As the temperature is raised the torque fluctuates
more rapidly, the ‘friction’ isreduced, and so T, decreases. Itisfound in practice that
this decrease follows an Arrhenius law.?’

For spherical tops such as CH,, CF,, SF,, and the hexafluorides above, the
contribution of spin~rotation interaction to the n.m.r. lineshape is comparable with,
and greater than at high temperatures, that of spin-spin magnetic dipole interaction.
The latter is the contribution to spin resonance relaxation from the interaction of a
pair of identical nuclei in the same molecule of spin quantum s, and a separation
defined by the vector u and the scalar distance b. The spin—spin relaxation time is

1 29R%s(s+1) ™
I:’-T'z(ﬂ-’)]s.t:1 m_%_)' X

®y(r) dr (47)
where v is the gyromagnetic ratio. This relaxation time provides therefore a method
of measuring the area under the ®y(¢) curve, which is a correlation time and is to be
compared with a diffusion coefficient in the translational case, equation (6). It does
not, however, tell us anything about “®y(¢) itself as a function of time. Such n.m.r.
results can be compared usefully®® with those of dielectric measurements,?2*
particularly at temperatures near the triple point where rotational diffusion might be
a useful concept. At the boiling point and at higher temperatures the mechanism of
reorientation is generally interpreted with the help of the spin-rotation component
of T,, thus taking advantage of the increased periods of rotation. The principal
interest of such work is to study any anisotropy of motion; sometimes the rotation is
almost free about one axis and diffusional about another perpendicular to it.*

The integral of ®¢(r) over all time defines a correlation time . In the limit of
rotational diffusion this is related to r; by Hubbard’s equation,**

TRTI= I/6kT (48)
and in the limit of a rarely perturbed free spherical-top rotation by
| TR =T1/5 | (49)

For the intermediate region McClung®? has discussed the relation between Tr and 7y
for spherical tops in terms of the M- and J-diffusion models. These approach the
limits of equations (48) and (49) when 7, is very small and very large. Sillescu has
extended® the Debye model of Brownian motion and the random jump model?® of
rotation to take account of temporal fluctuations in their rates. Further develop-
ments in the use of n.m.r. in this field can be found in the comprehensive reports
edited by Harris.>*

We conclude by applying the formulation in terms of memory functions to spin
resonance relaxation. From the equipartition of kinetic energy over two degrees of

53 D. K. Green and J. G. Powles, Proc. Phys. Sac., 1965, 85, 87:T. T. Bopp, J. Chem. Phys., 1967,47, 3621;
D. E. Woessner, B. S. Snowden, and E. T. Strom, Mol, Phys., 1968, 14, 265; J. Jones and T. M, Di
Gennaro, J. Chem. Phys., 1969, 50, 2392; A. A. Marryot, T. C. Farrar, and M. S. Malmberg, ibid., 1971,
54, 64.

34 H. Sillescu, J. Chem. Phys., 1971, 54, 2110.

5% ‘Nuclear Magnetic Resonance’, ed, R, K. Harris, (Specialist Periodical Reports), The Chemical Society,
London, 1971-1975, Vols. 1-4,
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rotational freedom we have

KT =(I*(0))/21 (50)
so that

7= Lm Dyi(e) dt (51)

When “M and ®M are both delta functions we have

(52)

and ; and 7 are linked by Hubbard’s relation.

The mean field of force due to the neighbours tends to hold a given molecule in a
fixed orientation for a variable time while superimposed on this time-smoothed field
is a rapid fluctuation due to the actual molecular motions. This is approximated in
Brownian theory by a random torque of simple character superimposed on a steady
orientating field. If the constraining field is strong the molecule moves as a damped
gyrostatic pendulum, If the constant is highly anisotropic the motion about one axis

may approach free rotation. If the molecule is a spherical top its components of |
rotation behave independently. All these different modes are not describable bya - |-

simple exponential c.f, and the introduction of memory functions will probably lead
to more satisfactory descriptions. Thus

DMy(1) ="' M(0) exp (—t/ 7)) (53)

is likely to lead to a better account of the dependence of the correlation time 7y on
temperature. In the M-diffusion model the product 7,75 goes through a minimum,
dependent on (6%(V)), which is more realistic than Hubbard’s relation, equation
(48). With the truncation

M (1) ="My (0) exp (~1/7) (54)

we have that (T")sz depends both on (0%(V)) and its time-derivative, so that the
product 7,7z might behave ever more realistically. These applications have, how-

ever, still to be explored.

B T - - .




