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CHAPTER ONE

The Delta Project

1.1. INTRODUCTION

This book is intended as a survey of the new European Molecular Liquids
Group pilot project on a molecular liquid, carefully chosen for a combined
study under agreed conditions. It is also a companion to Molecular Dynamics
(Evans, Evans, Coffey, and Grigolini, 1982), which contains an introduction to
the statistical techniques needed to study the liquid state.

1.2. THE THREE DIMENSIONS OF THE DELTA PROJECT

There were two terms: the theoretical and the experimental. We were supposed
to make a theoretical hypothesis, test it experimentally, modify it and continue
the cycle. However, computer simulation is a new dimension which is now
being used to assist us. A new solution to the problem of understanding the
liquid state of matter can now be sought within the confines of a triangle. The
three corners basically refer to (1) spectral methods, (2) computer simulation,
and (3) analytical theory. If generalizations can be drawn from the ideas
expressed in contemporary literature on the liquid state, then it should not be
surprising to find the same three themes occurring in other disciplines. This
sideways method of progression has been labelled synergetic (Haken, 1977) and
is mentioned by Professor Grigolini in Chapters 7, 8, and 9. In Chapters 3 to 6
(and in Chapter 5 with Professor Schroer), Dr. Coffey takes the formal
mathematical ideas to the point where the computer is needed to solve the
equation of motion numerically. Chapters 3 to 9 are therefore concerned with
the theoretical corner of the triangle. However, an attempt is made in the first
two chapters to show how we expect to progress with the European Molecular
Liquids Group pilot project on one liquid species: dichloromethylene (methy-
lene chloride, CH,Cl,; see Fig. 1.2.1). This chapter is concerned with surveying
the breadth of the experimental effort involved in what has become known as
the “Delta Project.”
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FIGURE 1.21. CH,Cl, frame of reference, showing the unit vectors, the sign of the charge on
each atom, and the principal moment-of-inertia axes.

1.3. THE PROBLEM

Within the three dimensions envisaged by the.Delta Prpject (IE(;'%I;S 1?;1
Yarwood, 1981), we may hope to approach the various experimental di 1cu oS
of studying the liquid state of matter with r.efere‘nce to the same1 mo ;:cud .
species. Wherever possible, we shall refer. in this book to resu ts areat);
available on CH,Cl,. The new Delta PrOJec.t results obtained b){ lfomp;h c:s
simulation are specially exciting. These. provide us '(Chapter 2) w1tA mlsltical
into problems which have eluded precise analys1§ in other wz.lys.f na ):N -
effort to explain these new insights is underway within the Project frame

d is described later. ‘ _
. Ir:sdealing with the liquid state, the remarks of Hildebrand (1978) provide

us with a few basic criteria:

1. Do not accept concepts which are inconsistent with each other andt ;N;};
any one pertinent experimental fact. Examples.of such 're.dundant co.nce;l)1 e
holes, cells, clusters, cages, lattices, scaled particles, fluidized vacan”mes, yp
netted chains, and molecules with “solidlike degrees of freedom. The.: 901;1—
puter-simulation method is less dependent on devices sugh as thgse, but it is 1 y
no means free of the necessity, for instance, of modeling the intermolecular
pair potential (van der Avoird et al., 1980). . ’ .

2. A theory (in this context, a model) of the liquid state that 1shappro(;u:
mately consistent with all the known facts under gll the apcess1b1e t farmod yd
namic conditions can probably be made more precise. But it must be discarde
if it fails test (1).

3. The entropy of vaporization of all simplfa liquids (such as CHZ]qz?dt(-)
the same concentration of vapor is the same. Itis l‘arger for associated liqui 1s,
hence simple liquids are in a state of maximum disorder and have no regular

structure,
iqui by only a few percentage

. S?m le liquids flow freely when expanded .
4-1‘- .,.,.,.I.) .;.,;(,1 intrincic volumes. There is no room for holes, lattices, or
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jumps greater than a small fraction of the molecular diameter. Self-diffusion
occurs because thermal motion prevents any molecule from remaining in the
same spot.

5. We should define the molar volume v, as that at which “soft” molecules
begin to be sufficiently separated between collisions to acquire a fraction of
their momentum in free space. At volumes smaller than v, they are in fields of
force which may not be appropriately described by pair potentials. According
to Hildebrand, the role of temperature is only to determine the volume. This,
though, is arguable in supercooled liquids or those under intense hydrostatic
pressure. The value of v, depends upon the capacity of a molecular species to
absorb collision momentum by bending, vibrating, or rotating (Chapter 2).
Pairwise interaction of model intermolecular potentials (sometimes with ob-
scure physical attributes) is still a fundamental assumption behind computer
simulation. A major effort is planned during Delta to measure quantities such
as the second dielectric virial coefficient of CH,Cl, (Sutter, 1972). These are
required before any experimental progress can be made in dealing with the way
in which molecules such as CH,Cl, interact.

Having regard to these criteria, there has been a tendency to model
liquid-state molecular structure and dynamics with simple ideas which do not
stand up to the experimental facts now available. The theory of rotational
diffusion (Debye, 1929) is an easily recognizable example of this, which,
despite its elegant mathematical self-consistency, is not and never was intended
by Debye to be a complete treatment of the problem of diffusing molecules.
The theory was designed only to explain the absorption at low frequencies
(< 10" Hz). It does not work in the far infrared range of frequencies for
reasons described later. The problem of describing how molecules move about
in a liquid stretches the resources of modern physics and mathematics to the
limit. The methods needed to construct the various solutions to this question
must be widely applicable, interdisciplinary in nature, and as simple as
possible. It appears that we can only begin to obtain an objective assessment
with the combined use of the three methods of spectroscopy, simulation, and
theory. Within the Delta Project, there is a variety of molecular-dynamics
simulation algorithms. Each of these is to be tested as thoroughly as possible
and compared with the new thermodynamic and spectral data now available.
We can use a much more realistic form for the intermolecular potential by
using the simulation method. This cannot, however, be regarded as giving as
much information about dipolar liquids as it does for other liquids. For
example, by using a combination of algorithm and experimental virial data, it
is possible to increase gradually the complexity of the model potential. Starting
from an atom-atom Lennard-Jones basis, we may gradually add the influences
of polarizability, multipole-multipole interactions, and vibrational effects,
dispensing with the pairwise-additive approximation if this becomes too coarse.
The problem of the reaction field (Molecular Dynamics, Chapter 3) is begin-
ning to be studied using computer simulation, specially in the fields of aqueous
phenomena (Berendsen et al., 1981). The algorithms written for water may
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i CH.Cl,, which has the same C,, symmetry. Newly
jlai/lgob:d z‘tflr?cr:rtlf:‘é:uil(;:)n'umg’ mzethods of computer simulatiqn can be used to
agvaml;ge when dealing with transport properties such as viscosity arzld ﬂ}llfl;
mal conductivity (Molecular Dynamics, Chapters 7, 8, and 12), and w

i ith cross-correlation functions.
dea’i‘llllleg :ggét:oscopic methods have been used. in the past to loli)k at :ll;;
molecular dynamics in liquid CH,Cl, in many different ways. They have nethe
been used in unison. Further, there havg been few attempts to coEllpare °
results from one technique with those gained from another. A nota he Excte;t)o
tion in the literature is the work of Brier and Perry (1977), whp were the ; lrls
emphasize that it is fruitless to increase? the complemty of hqufd-sta.te ecl);y
without intertechnique control. This pi)mtlof ]\il.ew. ;vaz} izsg):nmble, inter alia,
i of the European Molecular Liquids -
forﬁilfltirs ettt:;ngilslgovery of the far-infrared absorption band of liquids (Mulllel:r
and Rothschild, 1971; Chantry, 1971), it gradually became clear that the
spectrum of dipolar (molecular) liquids from zero tg teraher.tz frequencies
posed a fundamental and unsolved problem of theoretical physics. The seven-
ties have seen an intense but uncoordinatc(‘l effort to develop the_ nelcessary
computer software to deal with this situation. The software aw{allall)(? nov&;
includes molecular-dynamics algorithms apd algorithms for the 51musat;on o
the Liouville equation, as restyled by Mori et al. (196?, 1974, 198(.))'. (zi twgie
is also available for the numerical solutiog of various probablhty.- ensity
diffusion equations, such as Kramers’s equation (Kramers, 1940). Thle liequa;
tion often arises when modeling the liquid state. Later on, we test 'the ability o
these algorithms to process measured spectra of CH,Cl, in various environ-
me"lll";lsére have been many attempts to use the techniques developed by Kubg,
Scaife, van Kampen, Zwanzig, and others to reproduce the spectroscopuf:
broad-band data up to and including the far infrared. Rece_r}tly, a nu'mb.erk o
researchers (Evans et al., 1982; Coffey, Rybarsch anfl Scprog, 1982; Ris ;:ln
and Vollmer, 1978) have emphasized the role of nonlmca.nty in models of the
liquid state. They have described mathematical tec!mlques and computer
software for solving the nonlinear equations of motion at the root of the
problem. These investigations allow us to relate t‘he su})Ject of liquid-phase
molecular dynamics to the broader synergetic viewpoint sharc.zd by many
contemporary physicists and engineers (Haken, 197.7). The‘nonl.lnear view is
prevalent in those disciplines dealing with the evolution of biological proceljses
and energy transfer on the molecular3 levcgl (Kell, 1981). Some of these
s are described in Chapters 3 to 9. ' '
de‘iilotll):%:lt:r Project, however, we are primarily .concerned with contrqllmg
and focusing the developments of theoretical, experimental, -al:ld computational
work on carefully selected liquids at carefully chosen conditions agreed upon
by each laboratory involved. The conditions for CH,Cl,, CH,F, and CH,1 ;rc
fully desgribed in the literature (Evans and Yarwood, 1981; Molecular Dy-

namics, Chapter 12).
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The experimental situation prior to the Delta Project on CH,CI, has been
evaluated by a literature search (a few hundred of the key papers consulted are
listed in Molecular Dynamics, Chapter 12). In order to introduce some experi-
mental techniques of Delta, we briefly summarize some of the main results of
this search. A great deal of uncoordinated work has been carried out using
infrared and Raman bandshapes and nuclear-magnetic-resonance (NMR) re-
laxation on several nuclei of liquid CH,Cl,. An intense effort was made to
study this liquid with acoustic spectroscopy, but it waned without a clear
outcome in the early seventies. There is more work reported on the intermolec-
ular potential of CH,Cl,, a crucially important area, which suffers to date
from a complete absence of data on second dielectric virial coefficients. There
is also a poor appreciation of second pressure virial coefficients. In the Delta
Project, we hope to rectify this situation. It should provide the available
molecular-dynamics algorithms with a satisfactory (experimentally derived)
parametrization of the potential-energy surface between two interacting CH ,Cl,
molecules. The aim is to replace the contemporary use of models, such as the
atom-atom Lennard-Jones-plus-charges model used in Chapter 2. This would
allow the molecular dynamics algorithm to produce a complete range of
theoretical spectra for further analysis. There is a small amount of modern
electro-optical work available on CH,Cl,, but to our knowledge, only one
Kerr-effect study. The polarizability of the CH,Cl, molecule is known, but the
anisotropy of the polarizability tensor is known much less accurately. Some
estimates of the effective charges on each atom have been made, but moments
higher than the molecular dipole moment j have not been measured.

There is therefore an imbalance of effort as reported in the literature, and
this is typical of the situation in molecular liquids in general. It is evident that
the molecular liquid is often chosen for technical convenience with little
thought of interpretation of the resulting spectrum. Despite the number of
papers, there is little attempt at coordination among techniques, even though
they may all be available in the same laboratory. Prior to Delta, agreement
between laboratories was apparently almost nonexistent when it came to how a
particular molecular species could best be studied. (There are, however, exem-
plary exceptions to this.) Brier and Perry bring out these methodological
weaknesses very clearly in their critical review article (1977) on the NMR
relaxation and neutron-scattering work on liquid CH,Cl,.

The study of liquid CH,Cl, under kilobars of applied pressure—an almost
blank field spectroscopically—was first studied thermodynamically up to 30
kbar by Bridgman (1940). Again, when CH,Cl, solutions are supercooled, the
zero-to-terahertz-frequency loss and dispersion spectram ( Molecular Dynamics,
Chapter 7) is spread over an enormous frequency range compared with the
spectrum at room temperature. There are at least three distinct observable
features in the supercooled condition, labeled a, 8, and y by Reid and Evans
(1980). The y feature (a small part of the overall spectrum) appears at the
far-infrared frequencies. It is therefore within the range of some complemen-
tary technique such as Rayleigh light scattering. The time scale of the complete
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(a, B, Y) molecular-dynamical evolutioq, however, ap}_)roaches hglf the life of
the universe measured in decades, posing a unique }nterpretatlve.chgllenge.
This challenge can be met to some extent by the nonlinear stochast{c dlﬂ"erf:n-
tial equations of the synergetic approach. The task qf the e)fpenmentallsts
attached to Delta will be to provide a coherent set of wide-ranging spectra for
comparison with the theoretical prledictions about the molecular dynamics of
in suitable supercooled solvents.
CH’[glfelzp;Ict‘tfll:ams of in?erpreting each individual spectrum are well known and
are described in Chapter 6 of Molecular Dynamics. In CH2C12 they haye also
to be solved but are somewhat reduced. Particulfir attention has bec_n given to
the presence of collision-induced absorption, dispersion or scattering avoid-
ance of band overlap in the infrared, etc. In some areas the challe.nge 1s greater
than in others, but fundamentally we have to relate chroscoptc,_freguepcy—
dependent observables to molecular motions'and iptf.:racgons evolving in time.
This requires the intermediacy of a ﬂuctuatlon—dlss‘lpatlon,theorem l?ased on
the linear response of an appropriate molecular variable Fo a ‘measurmg field.
The inapplicability of linear response theory to some situations of mf)df:m
electro-optics (for example using pulses of intense mode-locked }aser radlfmon
to induce transient birefringence) is surmountable by the theoretical techmqpes
described later in this volume. Development of theoretical methods for deahng
with nonlinear systems is fundamental to any advance using Fhese elcc.:tro-‘opt.l-
cal techniques. This is because the transiept response triggered in liquid
CH,Cl, by a mode-locked laser is highly nonlinear in the megawatt }aser field.
The same is true of the Kerr-effect transient, mentioned later 1n'th1s chapter.
In Section 1.4, we consider some of the outstanding interpretative prob}ems,
several of which have been ignored in the literature (agaig with exceptions).
Computer simulation (Chapter 2) is used as an aid in solving these wherever
possible.

1.4. SPECTRAL PROPERTIES OF LIQUID DICHLOROMETHANE

1.4.1. Infrared Spectroscopy

We must emphasize the role of vibration-rotation mixing when. discussing the
correlation functions obtained by Fourier transformation of infrared bax}d-
shapes. A factorization of the complete rotational—vibrationz‘ll autocorfelatlon
function into its constituent vibrational and rotational parts is not stral'ghtfor-
ward. Perhaps the best way of proceeding is to compare the expeqmental
correlation function (obtained, if necessary, after correction from the infrared
band) with the purely orientational autocorrelatiqn funguon pr'oduced py
computer simulation (Chapter 2). Figure 1.4.1.1 is an 111ustra'uon of thp
method for CH,Cl, at 293 K. van Woerkom et al. (1974) han: discussed this
problem for CH,Cl, using isotope-dilution methods over a w1d§ temperature
range in an attempt to separate predominantly vibrational contributions from
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FIGURE 1.4.1.1. Curve 1: computer simulation of the orientational autocorrelation function
Py(e4) of the dipole unit vector e, 293 K, 1 bar. Curve 2: P,(¢,). Curves 3 and 4: the same
functions taken from a paper by van Konynenburg and Steele (1972). Curve 3 is derived from
analysis of an infrared band, and curve 4 from light scattering. The match is clearly unsatisfactory
and indicates the need for more work (as in Delta) to sort out the difficulties.

rotational ones. Computer simulation of intramolecular vibrational effects in
the liquid environment of CH,Cl, will be an important aspect of the Delta
Project.

1.4.2. Raman Spectroscopy

The relevant orientational autocorrelation function for Raman spectroscopy is
the second Legendre polynomial, denoted P, (Fig. 1.4.2.1). Raman spectra, like
their infrared counterparts, are essentially rotational-vibrational in nature, and
share the same factorization problems. However, both Raman and infrared
spectroscopy in liquid CH,Cl, are favored by the presence of proper modes
with transition-moment vectors or polarizability components parallel to one of
the principal moment-of-inertia axes. Therefore, the anisotropy of the molecu-
lar diffusion may be studied using different infrared and Raman bandshapes.
Isotopic broadening factors are negligible compared with other sources of
uncertainty in CH,Cl,.

Progress in the interpretation of Raman bands of liquid CH,Cl, has been
based, in the past, on the rather dubious process of “decoupling” the rotational
relaxation from vibrational dephasing. This allows the experimentalist a method
of deconvoluting the isotropic Raman spectrum. It is achieved using informa-
tion derived from infrared or depolarized Raman spectra.

Unfortunately, this approach makes too many unjustifiable assumptions
about 9%V /dq?, where V is the intermolecular potential energy and ¢ a normal
coordinate. It is known that coupling of vibrational and reorientational de-
phasing occurs when these depend on the relative orientation of two interact-
ing molecules. Clearly this is always the case, and therefore the Delta Project
will seek to use the self-consistent results from molecular-dynamics simulation.
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FIGURE 1.42.1. The anisotropy of the P, functions in liquid CH,Cl, at 293 K, 1 bar: computer
simulation. Curve 1: P,(ep); curve 2: P,(e%); points: Py(ec). (Refer to Fig. 1.2.1) The simulation
indicates that the diffusional rotation in CH,Cl, is highly anisotropic. The anisotropy of the P,
function has been investigated by infrared analysis in an early paper by Rothschild [J. Chem.
Phys. 53, 990 (1969)). He finds correlation times 7( P, (€,4)) = 0.5 ps, 7(Py(€p)) = 1.1 ps. These are
far too short compared with either the dielectric relaxation times for CH,Cl; (1.45 ps) or those
from the computer simulation (respectively 1.2 and 3.8 ps). The infrared 7( Py(€,)) of Fig. 1.41.1,
curve 3 is, on the other hand, the same as that from the computer simulation (1.2 ps). We need a
coordinated effort to overcome these difficulties. The inverse of the dielectric-loss peak frequency

in pure liquid CH,Cl, is 1.45 ps at room temperature. This is roughly comparable to the °

single-molecule simulation result, 1.2 ps: the decay time of (€,4(¢) - €4(0)). The time T(Py(€p)
from light scattering (< 1.85 ps); see Fig. 1.4.1.1) seems to be too long; and the neutron-scattering
(P,) correlation time between the center of mass and 0.56 ps (Brier and Perry, 1977), is too short
by a factor of nearly 2 compared with the computer simulation and dielectric—far-infrared results.

The P, dielectric relaxation time for CH,Cl, (liquid) is 1.45 ps.

For example, Figs. 1.4.1.1 and 1.4.2.1 illustrate P, and P, (respectively the first
and second Legendre polynomial autocorrelation functions) as simulated from
a model CH,Cl, potential. These are compared with the available infrared and
Raman data at or near the same state point. It clearly shows that vibrational
decay influences the rotational motion in tiquid CH,Cl,. Comparison of
techniques is thus made more accurate through the intermediacy of the
simulation algorithm. It can be made to turn (or model experimentally derived)
intermolecular potentials V into a variety of spectra in a self-consistent
manner.

1.4.3. Relaxation of Nuclear Magnetic Resonance

The presence of various isotopes of C, H (D), and Cl nuclei in CH,Cl, is a
great advantage to NMR relaxation spectroscopists when dealing with aniso-
tropic molecular diffusion in the liquid. It is possible to use spin—spin relaxa-
tional measurements and, with a wide enough temperature span, spin-lattice
relaxation. There has been much experimental work prior to Delta using this
technique in liquid CH,Cl,. Some of this covers the necessary broad range of
temperature, and in a few cases hydrostatic pressure has been applied at one or

¥
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TABLE 1.4.3.1. Co.mparisfon" of NMR Correlation Times and P, Correlation Times
from a Computer Simulation of Liquid CH,Cl, (293 K, 1 Bar)

Method Vector Correlation Time (ps)
H, intramolecular H-H
D, quadrupole 033006
relaxation C-D
) 0.80 + 0.10
;:C—H, dipolar C-H 0.70 + 0.07
Cl, quadrupole o
relaxation c-a 1.20 + 0.10
Computer simulation’ e, 0.50°
e (= C-Q) 0.9°
e (H-H) 0.51°

“For source references see Brier and Perry (1977).
bRelaxation times (e !).

two state Points. However, Brier and Perry (1977) criticized this work in their
review article. The fact that the NMR literature on liquid CH,Cl, is incon-
51ste{1t makes interpretation more uncertain. Brier and Perry werezunable to
obtain clear.indications of the nature of anisotropic rotational diffusion in
CH2Q12. This was despite using a combination of NMR spectra on different
nu‘clel, neutron scattering, and relatively straightforward analytical theory.
With the help of computer simulation, this uncertainty will be reduced.
Nevertl?eless, a coordinated effort with the various NMR techniques availablel
is required to rectify the basic experimental differences between different
ilteﬁaﬁureb gourc;s. /l\ better analytical grasp of the available NMR data is
apidly being developed by the D j ici i i
Py Jong de Chagters- y elta Project theoreticians. This work is
Following the review article by Brier and Perry, there appear
Sandhu (1978). This was on the spin-lattice reli?),(ation tilflgs o?}):ofjlf: rarl:c)ll
deuterons in oxygen-free samples of liquid CH,Cl,, CD,Cl,, and mixtures
from the melting points to the boiling point at one bar. A réi)etition of this
\york over a kilobar pressure range is planned under the Pilot Project condi-
tions. The rotational correlation times in Sandhu’s paper disagree with the
values calculated by means of simple theoretical models. In Table 1.4.3.1 they
are compared with a molecular-dynamics simulation of CH,Cl, at two state

pomts.‘App‘arently, spin rotation makes no contribution to the measured NMR
relaxation times in Sandhu’s paper.

1.4.4. Light Scattering and Ultrasound Relaxation

}l?inllouin scattering and ultrasound relaxation may be used together to provide
gh- and lower-frequency information, respectively, on the propagation of
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sound waves. This propagation is, in molecular terms, a collective phenome-
non. Phonon modes in the solid become shearing modes (transverse and
longitudinal) in the liquid. These can be interpreted with correlation functions
built up from a long-running computer simulation. The latter can sometimes
supply us with considerable supplementary information on the interaction and
coupling of collective modes of molecular motion. This is one of the most
interesting areas of research in the Delta Project. The results from supercooled
media might well be as revealing as those already available in the related field
of zero-to-terahertz spectroscopy. Here we use dielectric methods at lower
frequencies than the high gigahertz range, and far-infrared spectroscopy in the
terahertz range. The Brillouin peaks in scattered radiation are often observable
in the gigahertz range. These have been measured in liquid CH,Cl, by Caloin
and Candam (1972) as a functiqn of temperature and scattering angle. They
were interpreted on a thermodynamic level by assuming a single or double
relaxation of the vibrational specific heat. The study covers the necessary
broad range of temperature. However, no molecular interpretation of the
spectra is given. This occurs frequently in the fifty or so papers available on
acoustic spectra in liquid CH,Cl, (Molecular Dynamics, Chapter 12). In this
instance there is considerable dispersion of the velocity of sound in the range
60-700 MHz, but no dispersion from 700 MHz to the gigahertz range. In the
region of 0.2-3 GHz there is a scattering contribution to the absorption
coefficient of sound, the acoustic dispersion producing vibrational relaxation.
Hypersonic velocities of the thermal wave have been measured by Brillouin
scattering spectroscopy between 4.8 and 7.2 GHz. In this range no hypersound
dispersion was observed. The volume viscosity in CH,Cl, is much greater than
three times the shear viscosity. These are interesting spectral and molecular
dynamical features hitherto uninterpreted as such. Molecular-dynamics simula-
tion cannot yet reach down to the megahertz range for the collective correla-
tion functions involved. However, the Delta Project has already produced
interesting supplementary results on the center-of-mass autocorrelation func-
tion and, in particular, rotation—translation coupling (Bellemans et al., 1981).
The Rayleigh scattering of light by liquid dichloromethane has been in-
vestigated by van Konynenburg and Steele (1972) at one temperature and
pressure. The frequency range covered is the same as that used in the technique
of far-infrared spectroscopy. The two spectral techniques supplement each
other in the way they regard the molecular dynamics. Both types of spectra are
affected by collision-induced contributions (Evans et al., 1982). These appear
to be more pronounced at short times in the light-scattering data than in the
far infrared. Van Konynenburg and Steele used several recently developed
models in order to interpret the long-time behavior of their correlation
functions (Fig. 1.4.1.1). Infrared vibration-rotation data for liquid CH,Cl,
were used to supplement the Rayleigh-wing data. The former were corrected
for refractive-index variability, isotope splitting, and hot refractive bands.
Stokes and anti-Stokes intensities were measured to about 100-cm ! shift.
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1.4.5. Dielectric and Far-Infrared (Zero-to-Terahertz
Frequency) Spectroscopy

Towards the end of the seventies some papers on liquid CH,CI, were written
by Reid and Evans (1980), in which they attempted to take the complete
(zero-to-terahertz) frequency spectrum as an entity for the purposes of inter-
pretation. They did this by treating both the dielectric loss, €”’(w) and power
absorption coefficient % (w) (neper cm™!) using one basic modeling technique.
They also opened up the possibility of working with supercooled solutions of
CH,Cl,, where the molecular dynamics are new and different. Their papers
report the discovery of the y process in dipolar molecules (illustrated in Fig.
1.4.5.1) for solutions of CH,CI, in supercooled solvents. In principle, the y
process may also be observed by other experimental techniques described in
this chapter. In consequence, the preset conditions of Delta include coordi-
nated experimental work on CH,Cl, under supercooled conditions. At very
low temperatures the molecular dynamical evolution (from time zero) in dilute
CH,Cl, solutions takes place in a continuing state of metamorphosis. Signifi-
cant features of this evolution are observable over picoseconds (the y process);

it then develops into 8 and a motions taking place on an immensely slower
time scale (Fig. 1.4.5.2). The theoretical challenge here is fundamental, because
we have to produce all three (a, 8,y) distinct loss features through the
intermediary of just one molecular orientational function. An explanation of
this would be a major achievement for the theoreticians. As we have mentioned

already, the conventional room-temperature zero-to-terahertz spectrum of liquid
CH,Cl, alone provides us with problem enough. In Fig. 1.4.5.3 we illustrate an

attempt to meet this with a computer simulation algorithm (TETRAH; see also

Chapter 2) of the Delta Project.

1
2 4 6 8 10 12 14
109,0 (f/Hz)

FIGURE 1.4.5.1.. .Complete spectrum of 10% v/v CH,Cl, decalin. Curve 1: experimental curve at
110 K; curve '2: itinerant librator (two-friction version) at 110 K; curve 3: experimental points (@)
on the analytical curve at 300 K; curve 4: Debye process (no description of the ¥ peak possible).

The defect diffusion model is a combination of these processes. [Reproduced by permission from
C T Raid and M W Fvanc 7 Chom Sor Farndauy Trane IT TR 126G Ma7TN1
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FIGURE 1.4.5.2. Multidecade loss profile of 10% v/v chlorobenzene decalin at various tempera-
tures in the liquid, supercooled liquid, and glass (120 K). [Reproduced by permission from C. 1l
Reid, Ph.D. Thesis, University of Wales (1979); also C. J. Reid and M. W. Evans, J. Chem. Phys.
76, 2756 (1982).]
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FIGURE 1.4.5.3. O: Far-infrared power absorption of liquid CH,Cl,, measured with different
pieces of equipment based on Michelson interferometry, ®: Computer-simulation result consisting
of the numerical inverse Fourier transform of (€,(t) - €,(0)), using the experimentally measured
static permittivity (¢, = 9.08) to scale the absolute intensity of % (7) (neper cm ™). Solid curve:
Debye’s theqfy of rotational diffusion, which produces a plateau in the power absorption. Dashed
curve: Morita’s theory of asymmetric-top diffusion, which does not involve memory effects.
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1.4.6. Incoherent, Inelastic Neutron Scattering

The paper by Brier and Perry (1977) describes time-of-flight spectra for liquid
CH,Cl, taken at the high-flux beam reactor of ILL Grenoble. Restrictions on
the maximum rotor speeds available meant that the design resolution capabil-
ity of this spectrometer was not achieved. As a compromise between energy-
resolution and momentum-transfer requirements, the experiments were
performed with an incident neutron beam energy of 1.236 meV and an energy
resolution of 4%; scattering angles were 14-90°. The results (Fig. 1.4.6.1) were
presented as efficiency-corrected neutron counts per second of scattered neu-
tron flux for the given sample dimensions and orientation, normalized to unit
incident flux. Multiple scattering was an essentially unsolved practical prob-
lem. The conclusions of this study illustrate the motivation behind the Delta

20—
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30 10 5 2 1 0 meV (AE)
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FIGURE 1.4.6.1. Experimental neutron-scattering results for CH,Cl, compared with the Gordon
J diffusion model. Dashed lines, experimental; solid lines, model calculations. Scattering angles are
() 35°, (b) 53.8°, (¢) 73°, and (d) 88.4°. Ordinate: count rate [10® neutrons s ! sr~! (g s/m)"1].
Abscissa: time of flight (u s/m). [Reproduced by permission from Brier and Perry (1977).]
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Project. We quote:

Firstly there is the problem of assembling reliable dynamical data for a given
molecular liquid. In this connection it is vital to be aware of the limitations and
assumptions involved in both the measurement itself and the subsequent analysis
to yield an autocorrelation function or a correlation time. Secondly there is the
problem as to whether the available data are sufficiently varied and accurate to
make a critical test of any model of the liquid dynamics. Here, the importance of
adjusting reported measurements to common conditions, particularly tempera-
ture, and retaining realistic uncertainty limits is supreme. Thirdly, there is the
general problem of the lack of theoretical models for the case of non-isotropic
angular motion.

Recent progress on the third problem is described in Chapters 4 to 9. With
sufficient experimental effort, the resolution of the first artd second problems
mentioned by Brier and Perry will be completed.

1.4.7. Vibrational-Population Lifetime of Liquid CH,Cl,

A paper by Laubereau et al. (1978) is available on C—H stretching modes in
liquid CH,Cl, excited by picosecond pulses of infrared laser radiation. The
excess excited-state vibrational population is monitored by anti-Stokes scatter-
ing of subsequent ultrashort (subnanosecond) probe pulses. The observed time
constants vary between 1 and 2 ps, depending on the individual molecules.
Theoretical calculations of its immediate environment show that rotational
coupling, Fermi resonance, Coriolis coupling, and resonance energy transfer
can strongly affect the vibrational-population lifetime. The results for CH,Cl,
are such that the anti-Stokes scattering signal decays rapidly at first, but slows
considerably after 40 + 10 ps. This is the pattern at several different thermody-
namic-state points using infrared laser radiation at 2985 and 3005 cm~!. Both
the », and », C—H stretching modes were excited using pulses of bandwidth
A7 = 30 cm™!. The initial rapid decay of the measuring signal is explained on
the grounds of the fast transfer between the neighboring C—H stretching
modes. The longer relaxation time is for transition to overtones and combina-
tion modes of the molecule.

1.4.8. High-Field-Induced Birefringence

With the availability of very powerful monochromatic laser fields, the transient

induction of birefringence in liquid CH,Cl, is a potential source of new

information on molecular dynamics. Birefringence may be induced using
electric and magnetic as well as electromagnetic (laser) fields, and the process
may be simulated (Evans, 1982) on a computer (Fig. 1.4.8.1). Examples of
some techniques involved are:

1. High-Field Dielectric Spectroscopy. To date, this consists essentially of
inducing birefringence with a pulsed electric field of up to 10° Vem™ L The rise

4
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FIGURE 1.4.8.1. Top to bottom: variation of rise transien
: t . 4 . 2
applied electric field decreases. (@) (a3 ©) (ehr)s ) (b)) as
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FIGURE 1.4.8.1. Continued {
and fall transients are monitored with a measuring electric field (electrodes).
The inducing field could also be a magnetic or a laser field. The birefringence is _
therefore expressed in terms of the dielectric permittivity and loss. If the . R I
electric field strength (E) inducing the birefringence is increased indefinitely, ¥ 0 4 JB
ps
(a)

the probability distribution function underlying the molecular motion becomes
nonlinear in E. As a consequence the usual linear-response theory is no longer
valid. The fluctuation—dissipation theorem cannot be used to relate the macro-

scopically observable spectral features (rise transients) to Macroscopic autocor- 09
relation functions of the molecular motion. The analysis of the spectral data in (‘312327
the presence of arbitrarily strong driving fields is described later.

2. Dynamic Kerr Effect (Bdttcher and Bordewijk, 1979). This is very
similar to technique 1 insofar as it consists essentially of the induction of
birefringence by an intense electric field applied to liquid CH,Cl, as a pulse.
Information may be obtained about molecular motion from the shape and
duration of the rise and fall transients of induced birefringence, depending on
the length of this pulse (or series of pulses). It is possible, in principle, to study
the second Legendre-polynomial correlation function of the molecular reorien-
tational process instead of the first, as in technique 1. This can be done by
monitoring the latter with a weak polarized laser field. Otherwise techniques 1

and 2 share the same interpretative need for nonlinear response theory.
Computer simulation can be used as an interpretative aid for any strength and
any type of inducing field. This is because we can extract directly the
autoccfrrclation functions of interest (Evans, 1922).

8 ps
(b)

FIGURE 1.4.8.2. Rise transient (e i i i i
; . Bz) (curves 1-4) following an intense applied oscillatory fi
of increasing frequency; (b) Curves 1-3: increasing frequency. PP oy field

17
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Both techniques have the disadvantage that it is technically difficult to
produce a pulsed electric field less than nanoseconds in duration. In the Delta
Project we shall explore two ways of overcoming this by using techniques 3

and 4 below.
3. Far-Infrared Birefringence.

external driving field (electric, magnetic,
on the refractive index of liquid CH,Cl, in the far infrared range of frequen-

cies. Here, the molecular dynamics manifest themselves in an interesting way.
The change in the refractive index will be monitored at spot frequencies
throughout this terahertz range of frequencies (picosecond and subnanosecond
time scales) with a tunable far-infrared measuring laser. Alternatively, we can
use a bank of carcinotrons. The enormous (megawatt) power available in
modern mode-locked lasers will induce a measurable birefringence of the
refractive index in the far infrared. The results will be analysed during the
Delta project, using a combination of theory and computer simulation. Far-

_infrared birefringence may also be induced with an alternating or pulsed
electric field, whose period is not important, since we

are not, in this case,
dealing with transients.

4. Picosecond Transients
been developed for measurements
ond or nanosecond time scale. Itis
using intense laser radiation in thi
using computer simulation (Fig. 1.4.8.2).

These, then, are four of the techniques being used on liquid CH,Cl, under
pre-agreed conditions of temperature and hydrostatic pressure. This will result
in the first coordinated effort at testing out the newly available predictions of
computer simulation of liquid CH,Cl,, discussed in the following chapter.

The idea is simply to study the effect of an
or electromagnetic mode-locked laser)

Induced by Laser Radiation. This technique has
of birefringence transients on the picosec-
similar to techniques 1 and 2. The effects of
s way have been treated by Evans (1982)

APPENDIX: THE FIRST EXPERIMENTAL DATA FROM
THE DELTA PROJECT*

In this appendix we report the refractive indices (r,) and dielectric permittiv-
ity (¢) of liquid dichloromethane. The refractive indices have been obtained
over the temperature range 283-312 K using an Abbé refractometer (Ang/
ny = 0.1%). The dielectric permittivity € has been measured at the EMLG
pilot-project state points 223 and 312 K, at 1 bar, at the two frequencies of
9.62 and 26.62 GHz, using a method similar to that described by Finsy and
van Loon [Rev. Sci Instrum. 44, 409 (1973)]. The uncertainty limits are

*Forwarded by Dr. Jozeph Makosz and Professor E. Kluk, Institute of Physics, Silesian University,
Universytecka 4, 40-007 Katowice, Poland.
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Ae’ /e’ = 2%, Ae”/¢” = 3%. The static di i
. : ‘ . tic dielectric permittivity CP -
termined from capacitance measurements at 1 kHz using bddgeymethoc‘lzas o

The Experimental Values

T (K) 312 303 293 283 273 263 253 243 233 223
nol - 1412 1418 1425 1432 1438 1445 1452 1459 1465 1472
:f( ) 225 862 9.03 945 993 1038 10.80 11.23 11.68 12.15
.20 .
E,,} (9.62 GHz) 854 898 930 970 1010 1040 1075 11.10 11.45
A 063 075 089 103 123 143 167 195 224 260
) :
C”} (26.62 GHz) 780 806 829 850 867 873 870 859 847 835
A 175 197 224 255 287 323 3.60 39 433 475
0402 0434 0462 0507 0.566 0627 0703 0.803 0.932 1.089

F -1 f p -
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molecules and then to solve numerically the equations governing their motion.
The number of molecules used in the simulation is in the region of 100 to 1000.
Thus a considerable amount of computer speed and power is needed in order
to construct the trajectory of each molecule of the sample. It is assumed that
the dynamics of an individual molecule may be adequately described by the
equations of classical mechanics, namely Hamilton’s equations (Goldstein,
1950). The Hamiltonian is constructed as the sum of the kinetic and potential
energies in the usual way. It is, however, very difficult to obtain an exact form
for the potential energy. Thus it is invariably supposed that the potential
energy in the Hamiltonian may be constructed using the assumption of
pairwise additivity. This means that the technique cannot yet cope satisfactorily
with the effects of polarizability (Evans et al., 1982). This is nor a pairwise
additive phenomenon on a molecular level. Finney (1978) and his group have
taken the first steps toward removing this constraint in their machine simula-
tions of water.

The trajectory of one particular CH,Cl, molecule is determined via the
equation of motion, by all the other molecules in the liquid sample. If our
simulation algorithm is for 108 molecules (a commonly used number), the
trajectory of one of them is ideally determined by calculating its interaction
with the other 107. The most important part of this interaction, however, is
that arising from the interaction of the molecule with its nearest-neighbor shell
(usually consisting of about eight or so others). The more distant molecules
have progressively less influence. It is therefore assumed that the long-range
part of the potential energy generated by the electron cloud of a molecule may
be set to equal zero at a certain cutoff distance R. The more dipolar a
molecule, the less satisfactory, in general, are the assumptions both of pairwise
additivity (due to polarizability affects) and of cutoff of the molecule’s
potential energy (Molecular Dynamics, Chapters 3 and 4). An intensive pro-
gramming effort is currently being directed toward developing a computer
simulation algorithm in order to try to compensate some of the newer
algorithms for these approximations. For example, those of the Science and




22 Computer Simulation of Liquid CHCl,

Engineering Research Council’s CCP5 Group use Ewald summations in order
to deal with long-range effects such as the chmge—charge interaction.

The other common approximation in the computer-simulation methpd is Fhe
use of periodic boundary conditions. These arise out of the need for mqmtamulllg
our 108 molecules within the confines in which they were held captive at the
start of the simulation. The container in which the molecules are located may
be a cube out of the sides of which the molecules would rapidly escape if
allowed to. The periodic boundary conditions are Boolean statements written
into the simulation algorithm. They ensure that, as one molecule leaves the
cube, another enters at the opposite side in order to keep the total energy
con\j\t’zncti.o not propose to go deeply into the technical details of the algorithm
TETRAH used for liquid CH,Cl, in this chapter. However, one of the most
important criteria used for assessing the e?fﬁcacy of a molecular-dynamics
algorithm is whether or not the total energy 1s cgnstant. The root-mean-square
deviation from the mean value of this quantity should be \'Nell below the
thermal energy kT at a given temperature T. The 'tempe'rature in a moleculgr—
dynamics simulation is calculated from the equipartition theorem—thgt ,1si
from the total kinetic energy arising from all sources (namely t'he rotationa
and translational motion). In order to drive TETRAH to tl}e required tempera-
ture the method of temperature scaling is used. This is equivalent to applying a
thermostat to the 108 molecules. The kinetic energy for a fixed sample volume
is adjusted until equilibrium is attained near the required tempgrature. .The
total energy and pressure [calculated from thg relevant macroscopic equations
(Cheung, (1978)] should reach equilibrium w1thqut further rescaling. Once .the
sample has attained equilibrium, we can begin the‘ process of extracting
spectral information from a given model of the'potentlal-energy profile gf the
molecule. The power of the rescaling method is sugh that every concelvgble
spectrum can be computed (from the 108 trajectories stor‘ed on tape) in a
self-consistent manner from the same intermolecular potential. Some of t.hes'e
spectra are observable experimentally, but others are not (o'r on}y very 1pd1—
rectly). Computer simulation can therefore r‘)r'ov1de us with insights 11}to
aspects of molecular dynamics (used in the traditional sense pf the term) whxgh
may hitherto have eluded both experimentalist and theoretlcla‘n. An exal}lp!e is
the behavior of translational-rotational autocorrelation functions (ac.f’s)in a
moving frame of reference. (Bellemans et al., 1982).

2.2. CORRELATION FUNCTIONS FROM TETRAH

Another advantage of the computer method is the facili?y it provides for the
calculation of correlation functions without the need for hnear-requnse theory
or the fluctuation—dissipation theorem. The analytical results gmped from
models of the liquid state can therefore be tested directly. This is important
when we come to deal with nonlinear phenomena as discussed at the end of
Chanter 1.
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For spectra of interest to us, such as those of the far infrared, the
fluctuation-dissipation theorem provides a direct link with the relevant corre-
lation function of molecular motion (Evans et al., 1982). The problems of data
interpretation can revolve around the nature of the correlation function. For
example, can the correlation function of interest be adequately approximated
by the autocorrelation function? This question cannot be answered in full, but
the computer simulation does provide well-defined auto- and cross-correlation
functions. These can be compared with both the spectral data and the available
theory.

The correlation function is calculated in a computer simulation using a
running time average (Evans et al., 1982). For a statistically stationary process,
this quantity is equal to the ensemble average. The process is illustrated in Fig.
2.2.1. The equations of motion are integrated using finite time steps in digital
computers. One picosecond in the real lifetime of a particular correlation
function is made up of hundreds of time steps. Every few time steps the
dynamical information is stored on magnetic tape for further analysis.

Here we describe the simulation of the molecular dynamics of CH,Cl, in
the liquid state using a model representation of the intermolecular potential.
This consists of a 5 X 5 atom—atom Lennard-Jones potential with or without
fractional charges at the atomic sites. Thermodynamic and spectroscopic data
indicate that this potential is most acceptable. The effect of adding charges is
significant but not pronounced. For example, the simulated far-infrared spec-
trum appears more realistic after an attempt has been made to include
charge—charge interactions. More accurate representation of the intermolecular
pair potential of CH,Cl, is needed in order to match the far-infrared results.
Improvement might be obtained by measuring the second dielectric virial
coefficient of CH,Cl, over a sufficient temperature range (Sutter, 1972).

First loop
CO)=(A©)-AQy=T1 + EE + -+ NN
Second loop — [1][2] 8]kl [I]F—v]
+ + ,
Third loop — 23] 2@ C(N-1)
+ +
Fourth loop —  [3](4] BIE]
+

+

+ +
Nt toop — (N1 [N] | [N=2) [W]

I |
cm C(2)

m

Key: EEZ,A‘”)? m =number of molecules used in the simulation

N =Number of time steps used in the simulation
ft]=10.1,...,N]

§  FIGURE 2.2.1. Construction by computer of a correlation function of the dynamical variable
L A(D).
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dee of the potential-energy surface between interacting n'{ole-
culiu;fkglzvfiezcgof CH,Cl, is poor despite extepsive research on the subject.
The difficulty of finding the shape of the snfrfacc is flue to a number of fact'ors.
The greatest task is that of relating the pair potential to r.neasurable data 1rfl a
mathematically and physically rigorous manner. Thus, in the apsence oCla
quantitative expression for the potential energy o_f two interacting CH,Cl,
molecules, computer simulation relies on scr‘mcmpullcal forms for that q}lan;
tity. A popular method is to represent the interaction between each pair o
atoms from two different molecules by a Lennard-Jor{es.potentlal. The com-
plete pair potential is a sum of atom-atom terms. This is supposed to coyeé
both the dispersive and the repulsive part o.f the potential (van der A\'/ou1
et al., 1980). The electric parts of the potentla'l are reprcsentet_i by fractlong
charges at each atomic site. This is much easier tha_n expanding the t‘tlectrlc
potential in multipole moments (Kielich, 197?), especmlly for asy_mmetnc toEs
such as CH,Cl,. The drawback associated with using chaljges springs from the
technical difficulty of dealing with long-range m}qacﬂon in a molecular-
dynamics simulation using periodic boundary conditions.

221. Detailed Description of the Algorithm

The equations of motion of 108 molecules are sq]ved using a third-{,)rdlcr
Newton expansion and a simple quadrature routine bf‘?ﬁd on the e’; ;t
algorithm. The time step is usually of the orde.r of 5 X 10 s.(0.00S pg). cf:
information on tape is then used to construct time autocorrclauor'l functlogs o

various kinds with the usual running time zivcrages. Autocorrelat'lon funcu(?nsj
which are often constructed, are those of the ceptgr-of—mass llngar v.elf)cny,
those of the unit vectors €, €z, éc along the prmc’lpal axes of inertia; a.nd
those of their derivatives &, €z, €c. These latter a.f:.f. s may Pc computed'usmg
the fact that the time rate of change of the unit vector e, p ¢ fixed in the
molecule is given by the kinematic relation

?A,B,C=5XEA,B_C (22.1.1)

Here & is the angular velocity of the molecule. The vector.a.c.f. INOE é.' L, (0))
(if a dipole lies along that vector) is related by direct fourler tranfﬁormatnon to
the far-infrared power absorption coefficient 9[(17). in nepercm - . The spec-
trum 9 (7) is an accurate test of the thco:'y of rota}wnal c_l.lﬁ"uswn in mol::cular
liquids. The autocorrelations (2,(2) - €,(0)), (€5(?) - €5(0)), and <ec'(t1) :
€.(0)) are obtained by simulation. These have areas ,, 7,, and 7; respectively.
The friction coefficients B;, B,, and B, of the theqry of.Browman motlf)n may
be estimated using the relations between relaxation times and the diffusion
coefficients (Evans et al., 1982), namely,

=D, + D
75 1=D, + D, G212)

73_1 = D1+ Dz
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where D, = kT/I.f,. Knowing B, B,, and §;, we can then aim to reproduce a
range of computer simulation curves theoretically. This is done without re-
course to a fitting procedure and with no free parameters.

The algorithm TETRAH was originally written by Singer et al. Ferrario (1981)
has modified this algorithm to include a charge—charge interaction. This alsio
includes a force cutoff criterion based on molecular center-of-mass-to-center-
of-mass cutoff. For CH,Cl, at 293 K and 1 bar, for example, this cutoff radius
is 11.28 A. The equations of motion in the modified TETRAH are solved with a
third-order predictor algorithm. This coincides with the two-step Verlet algo-
rithm as far as the translational motion of the center of mass is concerned. The
rotation is determined using as coordinates the angular momentum and the
three unit vectors along the principal axes. The Lennard-Jones parameters
(Hirschfelder, Curtiss, and Bird, 1964) are

o(H-H) = 2.75 A, o(Cl-C) = 335 A

a(C-C) = 320 A, —E(H—H) = 134K
%(CI-CI) =1750K, %(C—C) =510K

The fractional charges (when incorporated) are
+0.098le} onH, —0.109]e|] on Cl, +0.022]e} onC

e=—-16x10"1°C

le| is the absolute value of the charge on the electron.

The former values were chosen in order to optimize the thermodynamic
results from TETRAH. The latter were obtained from a simple molecular-orbital
calculation by del Re (1958). The molecules were initially set up on a
face-centered lattice. This was allowed to melt over approximately 2000 time
steps of 0.005 ps each. The main runs were carried out in sections of roughly
10 minutes CPU time on Manchester University’s (U.M.R.C.C.) CDC 7600
computer with up to 10,000 time steps.

Instantaneous values of thermodynamic quantities are recorded in TETRAH.
Average values over the complete equilibrium run are also computed. The total
pressure and specific heat at constant volume (for example) are calculated
using the expressions given by Cheung (1978). Some typical output parameters

for a programmed molar volume corresponding to 293 K and 1 bar are as
follows:

1. The averages (omitting charges) computed over 3600 time steps are the
temperature (7'), pressure (P), internal energy (U), total energy (E;), and
specific heat at constant volume (C,). We have (T) = 292.7 + 9.2 K (49.5%
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translational and 50.5% rotational); (P) = 283 + 312 bar; (U) = —23.69
kI mole~Y; (Ery = —(16.39 + 0.21) kmole™}; (C,) = 37 Jmole 'K 1.
2. Having repeated the simulation (this time including charges), we find
T) =2945 £ 11.0 K (50.2% translational, 49.8% rotational); (P) = 273 +
300 bar; (U) = —25.46 kimole™%; (E) = —(18.11 £ 0.13) kimole™%; (C,)

= 46.0 Tmole 1K1

Therefore both the total energy and the potential energy are significantly
affected by the inclusion of charges in the algorithm. So also are the atom—atom
pair distribution functions (Section 2.2.2). C, is a fluctuating quantity (i.e.
AU/AT). 1deally it needs runs of at least 20,000 time steps for a good
statistical sample of its behavior. The inclusion of charges brings the computed
values closer to that determined by experiment, namely 90 J mole KL,

2.2.2. Atom - Atom Pair Distribution Functions

These distribution functions are available, both with and without charges, from
the TETRAH algorithm. They essentially measure the probability of finding
another atom (A4) at a distance r from a given atom (B) on another molecule
at thermodynamic equilibrium. If the probability distribution function (p.d.f.)
has a two- or three-peak structure, then this implies that the liquid CH,CI, has
substantial residual (short range only) ordering compared with the crystalline
lattice; see Fig. 2.2.2.1. This result is for the p.d.f. describing H-H atom-atom
positions. It is not certain if this structure may be attributed solely to the
repulsive parts of the intermolecular potential. This is because the addition of
charges inhibits the first peak (2.8 A). At the same time it enhances the second
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Interatomic distance [Angstrom]

FIGURE 2.2.2.1. Hydrogen-to-hydrogen atom-atom pair distribution function extracted as a
. mean over the equilibrium 5 X 5 potential: no charges, 293 K, 1 bar.
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FIGURE 2.2.2.2.  Asin Fig. 2.2.2.1: hydrogen to chlorine.

peak.. Measurements (during the course of the Delta project) on isotropically
substituted CH,Cl, should provide an experimental test of the simulation
T.he'y should also improve our knowledge of the intermolecular potential itself .
Similarly Figs. 2.2.2.2 to 2.2.2.6 reflect the sensitivity of the structure of the;
p.d.f. ‘to.the electric parts of the pair potential. Thus the first peak in the H-Cl
p.d.f. is increased while that for H-C is decreased. Likewise the second peak in
Cl-Cl is sharpened and the shoulder in Cl-C is decreased. The main peak in
C-C s only slightly sharpened.
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FIGURE 22.2.3. As in Fig. 2.2.2.1: hydrogen to carbon.
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FIGURE 2.2.26. As in Fig. 2.2.2.1: carbon to carbon.

2.2.3. Dynamical Results

A discriminating test for computer simulation is provided by comparing the
simulated far-infrared power absorption coefficient with observations of that
quantity. Figure 2.2.3.1 shows such a comparison. The simulated spectrum is

somewhat affected by artifacts introduced as a result of the numerical Fourier
transformation of (&,() - €,(0)). It is clear that the 5 X 5 algorithm is a more
realistic representation of the observed data than the Debye theory of rota- -
tional diffusion (Molecular Dynamics, Chapter 2). This theory was not de- 5
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FIGURE 22.3.1. Comparison of molecular-dynamics simulation and far-infrared spectra of

EF-I;C]L pure and ir} solution in CCl a- O and +: measured data (interferometers and klystrons);
t.. o;nputcr 31mul.at10n, 5 X 5 potential, no charges; solid + long-dashed curve: computer simula:
ion, 3 X 3 potential, no charges; short-dashed curve: exptl. data, 10% solution in CCl,.
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FIGURE 2.2.25. As in Fig. 2.2.2.1: chlorine to carbon.
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signed to cope with such high-frequency regions.‘The sim}llated czzlv.e‘ (0)t }11n
Fig. 2.2.3.1 has been derived from an autocoqelahon fgnctlon. Ina 13011t tiz
intensity of the simulated spectrum was estimated using the c;bserl\;e sta -
dielectric permittivity for pure CH,CI,, e = 9.02 (Molecu z‘z‘r 19);qam<; é
Chapter 4), with Scaife’s internal-field correction (Sc'alfe, 1964, ‘ )t We
obtain the spectrum from the cross-correlatlop functhn by FOurlerh ra >
formation of (&,(0) - £7_,&, (¢)). On computation of this within a sphere

i

-A radius, the spectrum changes slightly in position. SN
’ AIr:agllg 2.2.3.2pwe have plotted the numerical Fourier transform of (€, (?)

¢ 5 X 5 algorithm without charge interactions directly onto the
:Sc(z(c)gugloomf tllz)e% CH2C1§ in dilute decalin ta.ken by Reid and Eva}ns (1t951310i)s.
The two curves have been normalized for glanty. It appears that t}:jls ma tc s
excellent except in the high-frequency wing. ’["here,_ the 51mu!ate specf r:lhe
decays more slowly. The microwave correlatl‘on time (the .mvizgzz c;) e
dielectric-loss peak frequency) measured by Relfl for CH,Cl, in f ection
solution is 1.2 + 0.3 ps. The area under the simulated correlat;oa un‘c

(€,(1) - €,(0)) is also 1.2 ps. From these results we may reason as follows:

1. The hydrogen atoms appear to govern the dynamics. of CH,Cl,.
Figure 2.2.3.2 is a comparison of a computer .simu]at%on of‘ neat CH 2C].2
liquid omitting the electric (charge—char‘ge) ‘mteractlog with an exEIen-
mentally observed spectrum of CH,Cl, in dilute decalin solution. : erle
the electrical interactions appear, therefore, to havc; been effectively
isolated from the kinematics. In other words in a dilute CH,Cl,-de-

150

< 100
g
b
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cm

— FIGURE 2.2.3.2. Comparison of simulation (®) and scaled-up spectrum (solid curve) of CH,Cl,
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calin solution, we may suppose that we are observing the autocorrelation
Junction of CH,Cl, with negligible multipole-multipole interaction or
cross correlation between CH,Cl, molecules.

3. The similarity of the bandshapes in Fig. 2.2.3.2 suggests that induced-
absorption effects play a minimal part in the behavior of the spectrum
of CH,Cl, in dilute decalin solution. In order to corroborate these

results we need more accurate experimental spectra than those obtained
by Reid and Evans (1980).

The orientational autocorrelation functions P, and P, (Legendre polynomi-
als) are illustrated in Fig, 2.2.3.3(a) and (b). These are for the vectors & 4> €5
and €. fixed in the principal moment-of-inertia frame of the CH »Cl, molecule.
The decay with time of the a.c.f.’s of €, and é,. is similar. That of €y is much
slower. The areas under the curves in Fig. 2.2.3.3(b) may be related in a
straightforward manner to NMR correlation times in CH ,Cl, (Brier and Perry,
1977). This may be done using the nuclear magnetic resonances of C, Cl, H,
and D. However, we have mentioned in Chapter 1 that the available experi-
mental data are not in accord from one group to another. Ideally, then, the
correlation times for all the available isotopes should be remeasured over a
wide range of temperatures and hydrostatic pressures.

In Fig. 2.2.3.4(a) we plot the first four autocorrelation functions of orienta-
tion from two representations of the CH,Cl, potential energy. These are the
5 X 5 atom-atom potential described already, and also a 3 X 3 atom-atom
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FIGURE 2.2.33. (a) 5 X 5 potential, no charges. Orientational a.c.f. P, of: the dipole unit vector

€4 (curve a) the orthogonal vector €y (curve b); the mutually orthogonal vector ec (curve ¢). (b)
NMR a.cf’s Py; curve labels as in (a).
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FIGURE 2.234. (a) Curves 1 to 4: acf’s P, to Py of €4, 3 X 3 potential, no charges. For
comparison, curve 1a is the P, a.c.f. of ¢, from the 5 X S potential, no charges. (b) 3 X 3 potential,
no charges, at 5 kbar, 323 K. Curves 1 to 4: a.c.f.’s P, to P, of eg. Curves 5 to 7: a.c.f.’s Py to P; of
€4 (solid curves) and of e (O).

potential where CH, is regarded as a single entity. It is evident that the 3 X 3
algorithm produces nonexponential a.c.f.’s which decay too rapidly even when
compared with the experimental data on CH,Cl, in dilute decalin solution. It
is interesting despite this discrepancy to inguire into the difference between
Fig. 2.2.3.4(a) and (b). In the latter we show the results of simulating P, to P,
for €,, €5, and €, from the 3 X 3 algorithm at 5000 bar and 323 K, relative to
those in Figure (a). The a.c.f’s in (b) decay more slowly. The anisotropy
between e, and €, or €. has increased. This indicates what should be
experimentally observable when techniques become available for the measure-
ment of P, to P, under hydrostatic pressure.

Figure 2.2.3.5 illustrates the a.c.f. (€,(¢)-¢€ A(O)) calculated from both the
3 X 3 and 5 X 5 algorithms. In this figure these a.c.f.’s are compared with the
Fourier transform of the far-infrared power absorption coefficient for a 10%
v/v solution of CH,Cl, in decalin. The experimental curve is deeper and
slightly more oscillatory than the simulated ones. In Fig. 2.2.3.6 we illustrate
the angular-momentum autocorrelation function ( J(O) J(t)) /{J*(0)) from
the 3 X 3 algorithm compared with (& (¢) - €,(0)) computed under the same
conditions (293 K, 1 bar). These are also compared with the inverse Fourier
transform of the far infrared absorption coefficient % (7) in neat and dilute
solution. The angular-momentum a.c.f. has a weak but long positive tail. The
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FIGURE 2.2.3.5. Rotational velocity a.c.f’s of ?A(t). Solid curve: 3 X 3 potential, no charges;
dashed curve: 5 X 5 potential, no charges; dotted curve: 10% v/v CH,Cl, in CCl,.

rotational-velocity a.c.f. has a corresponding long negative tail. Long tails make
it difficult to calculate inverse Fourier transforms numerically without intro-
ducing artifacts. There is a difference between the decay times of each
function. This difference has decreased (Fig. 2.2.3.7) at 5000 bar, 323 K. In
Fig. 2.2.3.7, the functions show a more pronounced oscillation. Further, the
simulated far-infrared spectrum shifts to a higher frequency.

It is interesting from a theoretical point of view to use the 5 X 5 algorithm
to extract, at 293 K and 1 bar, angular-velocity and angular-momentum a.c.f.’s
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FIGURE 2.2.3.6. Comparison of angular-momentum a.c.f. (curve 1) with the a.c.f. of ;A(t) (curve
2) and with the rotational-velocity a.c.f.’s from CH,Cl, data in solution and in pure liquid state

(curves 3 and 4 respectively). Normalized as usual to 1 at t = 0. 3 X 3 potential, no charges.
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FIGURE 2.2.3.7. Angular-momentum and ¢ (1) a.c.E’s respectively at 1 bar 293 K (curves 1 and
2); at 5 kbar, 323 K (curves 3 and 4). 3 X 3 potential, no charges.

in both the laboratory and molecular frames. These are fixed by the moment-
of-inertia principal axes, labeled 1, 2, and 3 for €, €y, and € respectively. The
angular momentum a.c.f.’s in this molecule-fixed frame are illustrated in Figs.
2.2.3.8-2.2.3.10. The a.c.f’s of the mean squared values are also illustrated.
The correlation times about the second principal axis are the shortest. This
corresponds to the smallest principal moment of inertia. We note that when
t — oo the limit of the mean values of the a.c.f’s, when squared, is about 1.
This corresponds (Berne and Harp, 1970) to equilibrium statistics, which are
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FIGURE 2.2.3.8. 5 X 5 algorithm, no charges. Angular-momentum a.c.f. in the molecule frame.
Lower curve: component in the axis direction of e, i.e. (J;(1)J,(0)), normalized at 1 = 0293K,1
bar. Upper curve: (TR IO /I,
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FIGURE 2.2.39. Asin Fig. 2.2.3.8, but a.c.f. component along the e axis. Note the faster decay.

Gaussian. The transient behavior of this a.c.f. is not Gaussian, however. The
a.c.f. of the angular momentum in the laboratory frame is illustrated in Fig.
2.2.3.11. The angular-velocity a.c.f’s are illustrated, for comparison, in Fig.
2.2.3.12. The torque and its squared-value a.c.f’s show more pronounced
oscillations than the others (Fig. 2.2.3.13).

The orientational autocorrelation functions obtained from the 5 X 5 molec-
ular-dynamics simulation TETRAH are described by Figs. 2.2.3.14-2.2.3.16.
Figures 2.2.3.14 and 2.2.3.16 illustrate P; and P, for the dipole vector and the
vector for the axis which has the greatest principal moment of inertia. The
correlation time of the latter a.c.f. (Fig. 2.2.3.15) is much the longer, just as in
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FIGURE 2.2.3.10. Asin fig. 2.2.3.8, but along €.
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FIGURE 2.23.11. Lower curve: total-angular-momentum a.c.f. [of J()], laboratory frame, 5 X §
potential, no charges, 293 K, 1 bar. Upper curve: a.c.f. {(J2(¢)J2(0)) /¢J*©0)), 5 X 5 potential, no
charges.

the 3 X 3 case. The theoretical model reproduces the simulation data very
closely. Figure 2.2.3.17 illustrates the rotational-velocity a.c.f. for the vector €,

{<éA(I) : éA(O)>/<éA(O) : éA(O)>},

parallel to the dipole vector. This is oscillatory with a long negative tail.
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FIGURE 22.3.12, Lower curve: Angular-velocity a.c.f. [of «(¢)], laboratory frame, Slightly
different than that of J(¢). 5 X S potential, no charges. 293 K, 1 bar. Upper curve: a.c.f. of
{@X(1)w(0)) /{w*(0)), 5§ X 5, no charges.
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FIGURE 2.2.3.13. Lower curve: a.c.f. of molecular torque (7). 5 X 5 potential, no charges. 293
K, 1 bar. Upper curve: a.c.f. of (Tf(t)Tf(O))/(T;(O)), same conditions. This curve goes to about
03 ast— .

We have concentrated on reorientational, angular-momentum, and torque
a.c.f’s. A complete description of liquid-phase dynamics involves in addition
some consideration of center-of-mass translation. The most straightforward
a.c.f. is that of the center-of-mass velocity and kinetic energy (Fig. 2.2.3.18).
For their theoretical description these a.c.f.’s require the use of a theory based
on the translational friction coefficient. This coefficient may be estimated from
the area under the velocity a.c.f. of Fig. 2.2.3.18. Subsequently the phenomeno-
logical theory should produce the curves of Figs. 2.2.3.18 and 2.2.3.19. These
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FIGURE 2.2.3.14. Upper curve: P, a.c.f. of ¢,(¢), 5 X 5, no charges, 293 K, 1 bar. Lower curve:
P acf
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FIGURE 2.2.315. As in Fig. 2.2.3.14, but for e(t), the dipole unit vector.

are the velocity a.c.f, energy a.c.f., force a.c.f. (f(t) . f(O))/
(F%(0)), and force-squared a.c.f. (F2(¢)F*(0))/(F*(0)). The last goes to a
constant limit, determined by equilibrium statistics.

Having considered both the rotational and translational aspects of the 5 X 5
simulation results, we turn finally to a calculation of mixed autocorrelation
functions. There is no clear-cut experimental method yet developed for in-
vestigating these functions directly. However, they may be simulated with little
difficulty. In the laboratory (fixed) frame of reference, the mixed a.c.f. (¢(0) -
f(t)) vanishes for all ¢ because the parity of ¢ is different from that
of J. Accordingly, any attempt at simulating this function produces back-

1.20 1
Moo
\\.\.
AN
0801 \
\ ~.
. ~.
\ ~
AN ~.
\\ \_\‘
~ e~
~ -
0.40 S ——
4 I TN
0.00 0.32 0.64 0.96 1.28 1.60 1.92
Time [ps]

FIGURE 2.2.3.16. As in Fig. 2.2.3.14, but for e(1).
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FIGURE 2.2.3.17. Rotational-velocity a.c.f. [of é.'A(t)]. 5 X 5 potential, no charges, 293 K, 1 bar.

ground noise as shown in Fig. 22.3.20. The “mixed-energy” a.c.f.
(v2(0)J2(2)) /((v*(0)){J*(0))) exists; see Fig. 2.2.3.21, the 3 X 3 and 5 X 5
results in this case being fairly similar (Fig. 2.2.3.22). Like results are displayed
for the mixed force-torque a.c.f.’s in Figs. 2.2.3.23-2.2.3.24. These a.c.f’s do
not vanish at r = 0.

The effects of incorporating charges at atomic sites is large enough to be of
some significance. Thus an analysis based only on the Lennard-Jones potential
is not sufficient. Electrical interactions must be included in order to make a
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FIGURE 2.2.3.18. Lower curve: velocity a.c.f. Upper curve: kinetic-energy a.c.f. (v%(1)v*(0))/
(v*(0)), where U is the center-of-mass velocity. The horizontal line is the Gaussian limit of 3 as
t = o0. 5 X 5 potential, no charges, 293 K, 1 bar.
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FIGURE 2.2.3.19. Lower curve: Force a.c.f. [of I-:(t)]. 5 X 5 potential, no charges, 293 K, 1 bar.
Upper curve: acf. of (F*(1)F 2(0))/{ F*(0)). Conditions as above. Note similarity to Fig.
2.2.3.13 upper curve).

complete analysis. The inclusion of charge—charge interaction shifts the peak
of the far-infrared absorption to higher frequencies. There is a corresponding
increase in the P, to P, correlation times. Hence the microwave and NMR
relaxation times are increased by long-range terms of the charge-charge type
etc., sometimes to a significant degree. Figures 2.2.3.25 to 2.2.3.27 are a
measure of the effect of these interactions on some autocorrelation functions of
CH,Cl, simulated by the 3 X 3 algorithm. It is interesting to note in Fig.
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FIGURE 2.2.3.20.* Simulation of (¢(7) -.)T(O)). statistical noise. 5 X 5 potential, no charges, 293
K, 1 bar.

*Note abscissa is multiplied by the factor 107",
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FIGURE 22.3.21. Mixed acf. (* () J?(1))/{v*(0)J>(0)). Genuine (except for noise in the
tail), including the small deviation from unit at 7 = 0. 5 X S potential, no charges, 293 K, 1 bar

2.2.3.28 that the multiparticle microscopic correlation

<é'Ai(O) > éAj(t)>

Y(t) B <éAi(O) ’ ZéAJ(O»

i#]

108

1.06

104

1.02

1.00 . ]
0 06 12 ps

Fl?cllJRE 2.23.22. Asin Fig. 2.2.3.21. @: 5 X 5 algorithm, no charges, 2.5-ps running time span;
solid curve: 3 X 3, no charges, 12.5-ps span; dashed curve: 3 X 3, no charges, 9-ps span. Illustrates
the small 7 = 0 deviation and stable first peak.
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FIGURE 22.3.23. Mixed act. (T,(0)- F(1)). Statistical noise. 5 X 5, + charges, 293 K, 1 bar.

decays in a similar manner to the single-particle equivalent at 293 K. The
lation functions do not differ signifi-

autocorrelation and “microscopic” corre
cantly in structure even in the presence of electrical interactions. This provides
some indication that single-particle theories of the liquid state can be used
(Molecular Dynamics, Chapters 1-3) to provide a reasonable description of
multiparticle spectra such as those in the far infrared.

The effect on the orientational a.c.f.’s of adding charges is illustrated in Figs.
2.2.3.29-2.2.3.31. The power absorption coefficient % (#) is shifted to higher

frequencies. This is shown in Fig. 2.2.3.32. Nevertheless % is still below the

observed peak at 80 cm ™.
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" FIGURE 22.3.24. Mixed ack. (Tq2(0)F2(1)>/(Tq2(0)F2(0)>. 5 % 5, no charges, 293 K, 1 bar.
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FIGURE 2.23.25. (a) P, and P sof ¢ i

. » ac.f’s of e,, 3 X 3 potential. Curves 1 and 2: + ch:

gbsc1ssa). Curves 3 and 4: no charges (lower abscissa). Both at 293 K, 1 bar. (b) Curve:ulgt:;lfiugp s
in (a). Curves 3 and 4: + charges, potential at 177 K, 1 bar. o
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ll;lgl.:iRE 2.2.3.26. Rotational velocity a.c.f.’s of ¢ 4(¢). Solid curve: 3 X 3, + charges at 293 K, 1
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FIGURE 22.3.27. Comparison of angular-momentum a.c.f.’s. Curve 1: 3 X 3, no charges, 293 K.
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FIGURE 2.2.3.28. Solid curve: acf. of e;"A(t), 3 x 3, + charges, 293 K, l.bar. ®: (€,,(0)-
Zjé'Aj(t))/(EA,-(O)-E,-EAI-(O)) computed for a spherical subsample containing two or three
molecules.
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FIGURE 2.2.3.29. Solid curve: P, acf. of €4, 5 X 5,
. no charges, 293 K, 1 bar (upper abscissa). Dashed
04# S~ curves: P; and P, a.c.f’s of €4, 5 X 5, + charges, 293

' K, 1 bar (lower abscissa). Dotted curves: Py and P,
acf’s of EA, 3 x 3, + charges, 293 K, 1 bar (lower
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FIGURE 2.23.30. (a) Anisotropy of rotational diffusion: 5 X 5 potential, + charges, 293 K, 1

bar. Curve 1: P, a.cf. of &p; curve 2: Py ac.f. of &, curve 3: Py ac.f. of ep curve 4: P, acf. of ep
(solid curve) and of 3C (dotted curve). (b) As in (a), but no charges. P, and P, of e are not shown,
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FIGURE 2.2.3.31. Rotational-velocity a.c.f.’s [of ?A(t)]. Dashed curve: 5 X 5, no charges, 293 K,
1 bar. Solid curve: 5 X 5, with charges, 293 K, 1 bar. Dotted curve: computed from far-infrared
data on pure liquid CH,Cl,.

2.24. Summary of the CH,Cl, Computer Simulation

We have just described how molecular-dynamics simulation is used to trans-
form intermolecular-potential parameters such as ¢ and ¢/k directly into
theoretical correlation functions. Further these may be converted via Fourier
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oo d . o
\n N . °
g $ . %
J00F
5 °
a .
@ ,0 . °
=z 3 o.
§ °
o L
oLl L L ) L
0 50 100 1 150 200
n

FIGURE 2.23.32. As in Fig. 2.2.3.1 except that ® denote values obtained by Fourier transforma-
tion of the rotational-velocity a.c.f. [of €4(¢)] for the 5 X 5 +charges potential. The Fourier
transform is noisy due to artifacts introduced by the long tail of the a.c.f.
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transformation into theoretical spectra of the 1iq1.1id state. Ashcomputte; E?v:}?;
and accessibility increase, this will become routine dgrmg t e grow h of e
Delta Project. It is therefore apparent that a multltechmglllle }?pprtholicit
liquid-state Spectroscopy must also become routine to deal Lmu t gdc:hould bz
of the new hypotheses embodied in computer sunulauon_. The liqui L shouid e
investigated at a given state point from as many dlﬁ“erer}t wetrip s a0
possible. These state points should cover the complete range rodm 1 (;:)0 Sitp o
to critical point, using pressure as well as temperature and Vvis y
Var’?l?;i;hole range of real and simulated spectra should be psed h\;/l}tlh onlzcalirlr;;
namely the improvement of our understandlpg .of. the way 1n whic m;)ure e
interact in the liquid state of matter. Thus it is important Fo. r_cstrulc o
molecular dynamics algorithm so that t'he results of ab zrfu;zlo Cé_iﬂcilr; '
(van der Avoird et al., 1980) can be used in tt.1e force loops of algori e
as TETRAH. The model potentials should be t1.1ed _0}1t on usef}ll thermo (){ntah' ¢
data such as those on the second dielectric virial (.:ocﬂime'nt B, an 1rk
pressure virial coefficient C,. Frequently mpdel potentials, which seem to wor
well in some areas, produce the wrong Sign for B( I'n contrast, atorIrflh;atom
plus-charge models appear to works(l)))etter than ab initio calculations. This was
van der Avoird et al. (1980). . '
not'ler(l1 1S)thii)rlll 2.2.3, we made a limited study of the dynarmc propertle? (;i
liquid CH,Cl, with two different atom-atom potent1a1§. ’Il‘hese poten wllz(li °
could be improved if the necessary B, data were ava'ﬂat? e 1over a ide
temperature range. The zero-to-terahertz range of frequencies 1s a Sﬁ a senstl e
test of the way molecules interact. It is known, for example, th?t t el: spec r:n—
of CH,Cl, changes dramatically in dilute, supercooled decah(rll sodutlor;ll,lis -
compassing an enormous range of frequency—in fact, a dozen decades.
ioned in Chapter 1.
me’rfl‘;l: effect of aI:iding charges to the core 5 X 5 (and 3 X 3) atom—_atom
potentials is significant. Using center-to-mass-t(.)-center.-of-mass cutoff, it ap-
pears that the long range of the charge—charge interaction does nlot plosetﬁng
difficulty, even for as few as 108 molecules. We require more m(; ecu esb 2(11
108 and longer simulation runs for a more accgrate calcu.latxo.n of many- ot.y
correlation functions (used in the interpretation o.f Brillouin and a}cou; t1c
spectra). The calculation of cross ocorrelations in Sectlf)n 2.2.3 was restnclte twg
a microscopic sphere of about 8-A radius. This contains, on average, (;ln y :
or three molecules. In order to improve th_ese _cglcu}atlons, we op'f:b 0
incorporate, during Delta, the effects of polarizability, intramolecular vibra-

tion, and reaction fields.
2.3. THE INTERACTION OF ROTATION AND TRANSLATION IN
CH,Cl, AND CH.CN

One of the most interesting problems of the liquid state of matter is that of
understanding the mutual effects of rotation and translation. It is known that
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rotational motion is affected by translational motion. However, the problem of
unraveling the relevant autocorrelation functions has only recently been ap-
proached correctly. We study the rotational-translational autocorrelation
functions of interest in a moving frame of reference, fixed in the molecule.

If, as an example, we take the molecular center-of-mass linear velocity ' and
the angular velocity & (or angular momentum J'), there are symmetry theorems
(Evans et al., 1982) which do not allow (2(0) - J(¢)) to exist in the laboratory
frame. However, in a moving frame of reference, these a.c.f.’s exist. The
various components of the matrix (v(0)J7(z)) may be used to build up a
picture of the rotation—translation interaction. Up to nine elements of this
a.c.f., depending on the molecular symmetry, may be simulated on a computer
using the technique of molecular dynamics (described in Section 2.1). If the
molecule under consideration is optically active, all nine elements are different
and provide us with a complete description of the molecular behavior during
the first picoseconds of rotational-translational motion.

In the moving frame of reference, the three components of (f(t) . f(O)) [or
alternatively {(#(¢) - ¥(0)}] no longer possess identical time dependences. One
finds that the components of the velocity a.c.f. are initially anisotropic, but at
long times are isotropic in a moving frame of reference fixed in the molecule’s
principal moment-of-inertia system. This means that the classical approach to
molecular diffusion, based on considerations in the laboratory frame, should be
revised to operate in the moving frame. In this frame, molecular-symmetry
effects come into play. Later on, as an example, we shall rewrite the ap-
propriate Langevin equation in the moving frame of reference. Molecular
properties such as the dipole moment and polarizability can be expressed in a
moving frame using spherical tensors. The coordinates of the spherical tensor
of rank / are the spherical harmonics Y/ () (m = —/,...,/). The spherical
angles © = (0, ¢) depend on the tensorial property of the molecule in which

we are interested. Under rotation the spherical tensors transform according to
the irreducible representations of the rotational group O; . Transformation
from moving to laboratory frame would result in rotation—translation coupling
being expressed in terms of the spherical harmonics, Y/[Q(z)]. This is true
even for the center-of-mass velocity (z), due to the effect of rotation upon

translation. In what follows, we describe the results of machine experiments on
CH,Cl, and CH,CN.

2.3.1. Symmetry Properties in Fixed and Moving Frames of Reference

When dealing with the collective motions of molecules, the interaction of
rotational and translational modes of motion makes use of symmetry proper-
ties in the laboratory frame. Ailawadi, Berne, and Foster (1971) have dealt
with these in detail. The symmetry theorems are summarized by Berne and
Pecora (1976). These theorems place severe constraints on mixed a.c.f.’s of
rotation and translation for a single molecule. In particular, the mixed a.c.f.’s
{0(¢) - J(0)) (or the elements of (v(¢)J7(0))) vanish for all z. Here ¢ is the
center-of-mass linear velocity and J the molecular angular momentum. Chiral
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molecules and molecules subjected to an uniaxial magnetic field in the labora-
tory frame may be exceptions. The direct influence of rotation on translation
or vice versa cannot be observed using these a.c.f.’s.

However, we know that in the liquid state molecular translation does affect
rotation (Evans et al., 1982). Any spectral function labeled as rotational in
origin is rotational-translational. Thus parameters such as the friction coeffi-
cient contain both rotational and translational effects. In consequence, dielec-
tric data such as those encountered in zero-to-terahertz spectroscopy cannot be
interpreted satisfactorily without first finding a theoretical means of unraveling
the information contained in the friction coefficient.

There are two well-developed methods of proceeding, using phenomenologi-
cal (i.e. Debye-type) theory and kinetic theory. Using the first approach,
Condiff and Dahler (1966) have arrived at relations similar to those of Onsager
and Casimir. However, since the whole of this calculation is carried out in the
laboratory frame, the final results conflict with the symmetry requirement that
(v(O)JT(t)> must vanish for all £. These authors also developed an approach
based on kinetic theory which is very complicated and has no clear outcome.
Condiff and Dahler’s (1966) methods might be applicable to chiral molecules.
They might also be used to study the return to equilibrium after switching off
an intense magnetic field. The sample is monitored by a weak measuring field.

Lately, several authors have treated the multiparticle problem theoretically
in the laboratory frame. A paper by G. T. Evans (1978) considers the motion
of a propeller-shaped molecule on the basis of rotational-translational
Fokker—Planck equations. Evans concludes that rotational-translational corre-
lation functions under consideration vanish for most molecular symmetries in
the laboratory frame. Deutch and Wolynes (1977) have considered the rota-
tional—translational nature of the phenomenological friction coefficient, using
hydrodynamic theory based on the Oseen tensors. They also used many-par-
ticle equations of motion. The classical theory of Debye just considers one
rotating dipole having spherical symmetry, the effect of all the interactions
being modeled as Brownian movement, (Hill et al., 1968).

One should note that although elements of (v(0)J7(¢)) vanish for all # in the
static laboratory frame, they do not in a moving frame of reference fixed in the
molecule. For convenience this frame (1,2, 3) may be taken as that coinciding
with the three principal axes of inertia. On studying the behavior of (v(¢) -
v(0)), (J(t)-J(0)), and (v(O)JT(t)> in this moving frame (1,2,3), we can
derive, by computer simulation, new information about the behavior in the
laboratory frame. We may then attempt to describe these computer-simulation
results with an analytical approach. Such a theory would essentially describe
the numerical information from the computer simulation by means of friction
coefficients (or a series of memory functions) defined with respect to the moving
frame of reference. We believe this idea to be new. The new theory must obey
the laboratory-frame constraint {(¢) - J(0)) = 0 for all ¢.

Now, the new theoretical equations for (J(r)-J(0)) (and thereby for
dielectric and far-infrared spectroscopy) involve rotational-translational fric-
tion coefficients (say, 7,,), as well as translational-rotational (v,,), franslational
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(v,) and rotational (y,) coefficients. They are defined initially for the moving
frame. They are then transferred back into the laboratory frame. We may put a
value (in terahertz units) on each element of the matrix y, provided we have
enough simulated a.c.f.’s. We then compare the theoretical and experimental
rotational-translational zero-to-terahertz spectra. Grigolini et al. (1981) have
developed a theoretical method and numerical algorithm for dealing with the
evolution of y as a series of memory functions. They use a form of the Mori
continued fraction.

We illustrate the interaction of experimental observation, computer simula-
tion, and analytical theory, We use as examples the European Molecular
Liquids Group Pilot Project molecules (Evans et al.,, 1982) dichloromethane
(CH,Cl,, a G, -symmetry asymmetric top) and acetonitrile (CH,CN, a C,,-
symmetry symmetric top).

23.2. The Frame Transformation and Moving-Frame A.C.F.

Vector quantities such as 7, J, F (force), and f(torque on a molecule) may be
defined in either the laboratory frame or the moving frame. The components of
U in the laboratory frame are v,, v,, v,; in the moving frame, v,, v,, v;. We.
define three unit vectors €}, €,, €; with respect to the frame (1,2,3). The
velocity components are then related by

vy =uve, + vy, + veq,

vy = Uy, T 0ey, + e, (2.3.2.1)

U3 = 0,83, + Uye3y + V.83,

In CH,CN ¢, = ¢,, and in CH,Cl, €, = ¢, so that v; = v, for CH,CN and
v, = v,y for CH,Cl,. In equation (2.1) e,, is the x component of &, in the
laboratory frame, and so on.

Having made the transformation [equation (2.3.2.1)] into the moving frame
(Fig. 2.3.2.1) for each vector EL J, f, and T;, we evaluate the correlation
functions (&(t) - 50)),,, (J(t) - J(0)),,, (ROTTY,, (F(t) - F(0)),,, and (T, ()
* T,(0)). Here { ),, denotes a running time average over vector compongnts
deﬁne;d with respect to the moving frame of reference (1,2, 3). An analytical
description of these functions is suggested in the next section. It is possible to
see that all the elements of (v(£)J7(0)) and (F(t)TqT (0)) vanish except the
Oﬂ'-.dlagonal elements (v,(¢)J,(0)) and {v,(¢)J;(0)). This is done by applying
parity-reversal symmetry for CH,Cl, (Berne and Pecora, 1976). Other ele-
ments will exist for CH,CN. They are very small in magnitude compared with
the two listed above. The nonvanishing elements are mirror images of each
other in CH;CN but are not symmetric in CH,Cl, (Fig. 2.3.2.2). We have
made convenient use of the definition

{0 ()7(0)),, + (v,(0) I, (1)),
2,1y, =
@b 2O T2 (0 (2.3:22)
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FIGURE 2.3.21. Description of the moving frames of reference for CH,Cl, and CH;CN.

and similarly for the other elements. For a stationary process we should have
(o (), (0)) = {v,(0)Jy(2)),,, and any residual difference in the computer
simulation is due to noise. In equation (2.3.2.2), we have simply taken the
average to improve the quality of the acf’s (2,1),, The normalization in
equation (2.3.2.2) allows us to compare directly the results from CH,Cl, and
CH,CN at the same state point (293 K, 1 bar).

The (1,2),, a.c.f. in CH,Cl, [Fig. 2.3.2.2(b)] peaks at about +0.02, and the
(2,1),, at just below + 0.02. The equivalent numbers in CH,CN [Fig. 2.3.2.2(a)]
are —0.23 and +0.23 respectively. One must remember that we are dealing
here with molecules of high symmetry (G, and C,,). In low-symmetry (e.g.
chiral) molecules, all nine elements of {v(¢)J T(0)) may exist. Liquid crystals
are often composed of chiral or low-symmetry molecules. It is probable that
their peculiar properties may be described in terms of the elements ( ),. An
analytical theory for ( ), would carry this description into the laboratory
frame and provide us with some spectra. The theory may provide us with more
than one dielectric-loss peak in the manner of the director-potential theory
now used. Figure 2.3.2.3 carries the same information in terms of normalized
elements of (F(t)TZ (0)). These do not vanish as the corresponding normalized
(v(1)J7(0)) elements do. For force (torque a.c.f’s at ¢ =0), we have for
CH,Cl, (1,2),, = —0.07, (2,1}, = +0.33. For CH,CN, (1,2), = —0.75,
(2,1, = 0.75. In CH;CN the elements are symmetrical (i.e. mirror images).

Having studied the mixed a.c.f’s, the moving-frame velocity and angular-
momentum a.c.f’s can be described. These are (0(¢) - 7(0)) and {J(t) - J(0)).
The three components of each of these a.c.f’s need no longer be isotropic in
the moving frame as opposed to the usual laboratory frame of reference. This
appears to be the first direct description of these. Diffusional anisotropy in the
“ laboratory frame has often been described before, however. In Fig 2.3.2.4 we

0.5
(a)

ps

FIGURE 23.2.2. Moving-frame mixed autocorrelation functions. (a) For CH;CN. Curve 1:

@1, = (0 (1)1 (0)),,, + (02 () /1 (1)),
203 () IE (O

curve 2:

<1’2>m - <U1(t)‘]2(0)>m + <U1(0)J2(t)>m
2(0t(0) 22 (O

(b) for CH,Cl,. Curve 1: (2,1),,; curve 2: (1,2),,.
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FIGURE 2.3.2.2. Continued

describe the (v,(¢)v,(0)) and (vy(2)v,(0)) ac.t’s for CH,Cl,, and in Fig.
2.3.2.5 the (v,(¢)v;(0)) and (vy(1)v5(0)) a.c.f’s for CH,CN. Both moving-
frame a.c.f’s behave in such a manner that at intermediate times two elements
decay at different rates. At long times the two components behave isotropi-
cally, however. The maximum difference between the two component a.c.f.’s
for each coincides with the maximum in the mixed a.c.f.’s described in Fig.
2.3.2.2. In CH,CN this is also true of the molecule-frame components of
(J(t) - J(0)) (Fig. 2.3.2.6). Translation—rotation coupling therefore appears
to be operative primarily at short times. The secondary effects are longer-
lived, however. The mixed a.c.f’s are finite for a long time after
((3(0)),; {v3(£)v5(0)),, } and (vy(1)v1(0)) /{v*(0)),, have come together in
the moving frame.

We describe finally some kinetic-energy autocorrelation functions which are
invariant from frame to frame. This happens because the correlation variates
are scalars. Therefore this type of a.c.f. exists in the laboratory frame (Quentrec
and Brot, 1975). In Fig. 2.3.2.7 we illustrate the mixed kinetic-energy a.c.f.’s
(B2 T(1)) + (vX(1)TEOY]/[2(v2@)IF@)), where i, j=1,2,3 in any
combination. The theory should reproduce their behavior. Component a.c.f.’s
such as (v2(£)03(0))/{v3(0)) and (03 (1)v3(0)) /{v3(0)) are anisotropic in the
laboratory frame.
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FIGURE 23.2.3. Force-torque a.c.f.’s in the moving frame: upper, CH,CN; lower, CH,Cl
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FIGURE 2.3.24. Curve 1: (03(0)v1(0))/{v3(0)),, for CH,Cl,. Curve 2: (02D (),/
{v3(0)),,. Dashed curve: (1,2) element of the mixed a.c.f. [Fig. 2.3.2.2(b)].

2.3.3. Theoretical Treatment of A.C.F."s

We are now concerned with rewriting the familiar equations of the phenome-
nological theory of molecular diffusion so that they can be used in a moving
frame of reference. The equations of motion of an asymmetric top, referred to
a body-fixed frame, are (Quentrec and Brot, 1975; Hwang and Freed, 1975)

Ii - I r r
w; = T o — 2 (B:(I Yo, + B t)vl) + (1)
i =1
3
o, = — Y. (B v, + B w,) + Fi(1) (2.3.3.1)
=1

The subscripts i, j, and k are taken in cyclic permutation. I;, I, and I, are the
principal moments of inertia, w; ; , and v, ; , are the angular- and linear-veloc-
ity components in the laboratory frame. 7; and F, are the corresponding
random angular- and linear-acceleration terms due to white noise. This equa-
tion has no known general solution. It may be integrated numerically, however,
using the new techniques of stochastic simulation. We now suggest how this
type of Langevin equation may be written in the moving frame (the principal
e
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FIGURE 2.3.2.5. As in Fig. 2.3.2.4: acetonitvile.
moment-of-inertia axis frame):
. I — I, >
w; = 7 Wy — 12 (Yi(lr)wl + Yi(ln)vl) + T,(¢)
=1
3
U =00, — 0y — Z (Yi(lt)vl + Yi(ln)“’l) + F;(t) (2-3~3-2)
=1

The friction coefficients are now written as y. This is in order to differentiate
carefully between them and the fixed-frame coefficients 8. Using the results of
Secugn 2.3.2 above, we know that some elements Y and y" are finite. The
solutions of equation (2.3.3.2) for (v,(0)v,(¢)),, both contain the elements
Y,y and v, yU). Finally, a frame transformation would give us
{w;(1)w;(0)) back in the laboratory frame, which also depends on the cross
terms v and y(". By using the fundamental kinematic equation i = @ X #,
we can produce the orientational a.c.f. (#(¢) - #(0)) (in the laboratory frame).
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FIGURE 23.26. As in Fig. 2.3.2.4, but showing angular-momentum components in the moving
frame (a) for CH,Cl,, (b) for CH;CN.

We can then calculate the dielectric and far-infrared spectra and also the
Raman, NMR, and Rayleigh-scattering bandshapes. These depend essentially
on a high-order correlation function of #.

There is no known analytical solution to equation (2.3.3.2). It may be solved
numerically using the stochastic-simulation method. We may attempt to match
the computer-simulation results by varying the elements. This will give us
numerical values of the y elements in terahertz units. The relative sizes of the y
elements are a quantitative indication of the influence of rotation on transla-
tion and vice versa.

Equation (2.3.3.2) should be tested in a coordinated manner against experi-
mental results from different techniques (e.g. the Delta Project for CH,Cl,).
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FIGURE 23.2.7. Some mixed energy a.c.f. components for CH;CN. Curve 1: (1,1); curve 2:
(2,2); curve 3: (3,3).

To treat the evolution of friction into memory, equation (2.3.3.2) is readily
written down when the friction coefficient is replaced by a memory function. It
is convenient to start with the original generalized Langevin equation of Mori
(1965). This is written for the center-of-mass linear velocity as

(1) = —foip(t —1)i(r) dr + f(1) (2.3.3.3)

This is a linear integrodifferential equation and is derived from the relevant
Liouville equation by using projection operators. The memory kernel ¢(¢ — 7)
may be expanded in a Mori continued fraction. Grigolini has shown, using
Dupuis’s algebraic methods, that this expansion may be taken effectively to
infinity by introducing phenomenological parameters.
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Grigolini and Marin (1981) have shown that the rotational equivalent to
equation (2.3.3.3), namely

§(1)= - [@(t = n)é(r) dr+f(1) (2.3.3.4)

may be treated in a similar manner. The continued-fraction expagsion may
again be taken to infinity. The above system of equations (2.3.3.1) is inherently
nonlinear. This is due to the kinematic equation

U=wXu

Expansion of either equation (2.3.3.3) or (2.3.3.4) in a Mori continued f.rgction
is equivalent (Grigolini and Marin, 1981) to rewriting them as multidimen-

sional linear equations of the type
A=TA+F (2.3.3.5)

The column vector A may incorporate subvectors to take account of the effects
of rotation and translation if there are no memory effects:

A= [Z] (2.3.3.6)

That is,

- (2.3.3.7)

L& ] ]
The general idea of expanding v as (g, Uy, . . -, U, ) is illustrated schematically in
Fig. 2.3.3.1. For example, if v is identified with the particle executing Browx}lap
motion, its motion is represented by the chain of variables (¥,...,u,). This is
equivalent to the scheme shown in Fig. 2.3.3.1. Only the last (virtugl) particle
of the chain undergoes a motion that is influenced in a random fashion by the
heat bath.

The chain of virtual particles having the effective velocities (oy,...,0,) and
angular velocities (&,,...,&,) may be extended to large n. This is done .by
using the algebraic methods developed by Dupuis (1967) for computing
__~continued fractions. The number # is in the range 10-100, depending on the
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FIGURE 2.3.3.1. Brownian particle in a heat bath.

problem. The numerical solution converges to the solution of the Liouville
equation for the complete system under consideration.

Our discussion pertains to the laboratory (i.e., fixed) frame of reference. In
this frame, equation (2.3.3.5) decouples into purely rotational and translational
parts in an analogous fashion to equation (2.3.3.1). In order to describe the
effects observed in Section 2.2, we must rewrite equation (2.3.3.5) and solve it
for rotation and translation in a moving frame of reference.

We can calculate an angular-velocity or linear-velocity a.c.f. in the moving
frame by solving equation (2.3.3.5) in the moving frame of reference. We define
a set of parameters ¢, {(, ¢ ¢(") These represent the interaction of the
last virtual particle n with the rest of the heat bath. A description of the
observed spectra, with full memory effects, is therefore possible by transform-
ing this autocorrelation function into the laboratory frame.

2.3.4. Nonlinear Effects

Equations 2.3.3.3 and 2.3.3.4 are linear integrodifferential equations. The
equation of motion of a molecule is in general of the form

4

o

5= —

$o + F(r) (2.3.4.1)
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V is the potential energy and { a laboratory-frame friction coefficient. This
reduces (Grigolini and Marin, 1981) to an equation having the form of
equation (2.3.3.3) at short times. At long times it takes the form

dv

= = a(?) + F(1) (2.3.4.2)

In principle it is possible to determine the form of the interaction potential.
This is done by using the results of Section 2.2. We transform equation
(2.3.4.1) into the moving frame of reference.

2.4. SUGGESTIONS FOR FURTHER WORK

The suggested analytical approach of Section 2.3 will be effective only if
sufficient information is available from computer simulation. This is needed to
evaluate accurately the phenomenological variables required to describe the
rotation observable in the moving frame of reference. For an effective simula-
tion technique we need more accurate estimates of the pair interaction poten-
tial between molecules. One can do this readily by measuring the second
dielectric virial coefficient B, over a wide range of conditions as mentioned
above (Sutter, 1972).

A theoretical analysis of the moving-frame computer results could then be
directed towards producing the phenomenological coefficients of Section 2.3.
Having defined these coefficients, the theory could then produce a wide range
of spectral results for coordinated experimental comparison. This would be
done within the Delta Project framework.

A more complete link between analytical and computer simulation tech-
niques is possible using the same form for the interaction potential ¥ in both
cases. This would maximize the coordination between the phenomenological
equation (2.3.4.1) and the “kinetic theory” embodied in computer-simulation
algorithms. We can arrive at an empirical correlation between the phenomeno-
logical coefficients, for example Y, y(”, " and y{", for each molecule and
its geometrical properties (e.g. moment-of-inertia ratio). We would like to
describe the role of rotation and translation in the spectrum of liquid crystals.
This could be done by studying the dynamics of increasingly elongated
molecules. Tables of y or { coefficients could be drawn up for different
symmetries or geometries. A spectrum such as that in the zero-to-terahertz
region (microwave and far infrared) would be described using approximately
100 memory functions. The FORTRAN algorithm necessary to do this would
have as input tabulated { parameters, the friction coefficients of, say, the 101st
memory function. The algorithm would be made iterative. Thus the spectrum
under consideration could be matched closely by iterating on, or tuning, the {
parameters. In principle, this procedure is the same as that of fitting a
dielectric-loss spectrum to a given set of parameters.

¢ i T
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APPENDIX A: TAYLOR SERIES EXPANSION OF THE MIXED A.C.F.’S

The mixed a.c.f’s { ), in the moving frame are autocorrelation functions.
Therefore, they do not change their form if we replace ¢ by —¢. This means
that the time expansion of {v;(¢)J,(0)),, Say, contains even terms only, so
that: ’

<Ul(t)‘]2(0)>mol =I[<Ul(t)‘]2(0)>'"] |'—’°

t2

2!

t—0

+

d2
F[(Ul(t)'fz(o»m]

t4
E + .- (Al)

=0

+

d*
? [(Ul(t)J2(0)>m]

We know that [(v,(¢)J,(0)),.],-.o = 0, but other coefficients are nonzero. In
the laboratory frame, the coefficients vanish. It is possible to construct sum
rules by evaluating these coefficients in the molecule frame of reference. It is
evident that the a.c.f.’s in Section 2.2 start off with zero slope near ¢t = 0. They
therefore obey the fundamental equation (A.1).

APPENDIX B: FRAME CHANGES IN ROTATION-TRANSLATION
COUPLING

If we denote the principal inertial (molecule-fixed) frame by (A4, B, C) and the
laboratory frame by (x, y, z), we have (U = linear, & = angular, velocity)

Uy =0yt UL, TV, (B.1)
vp = V.ep, + Uep, + Vep, (B.2)
Ve = Veec, + Uec, T vec, (B.3)
Wy = wey, twe,, +wey, (B4)
wp = Wep, T wey, + weg, (B.5)

e = wec, + wec, + wec, (B.6)
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Because €, €5, and €. are unit vectors:

el +ei, +el =1 (B.7)
ez, tep, +ep =1 (B.8)
el el +el =1 (B.9)

Transforming back into the laboratory frame, we get

U, = Uy, t Upep, + Ucecy (B.10)

v, = v4e4, + Ugep, T Lcec, (B.11)

v, = v4e,, + Ugey, + Ucec, (B.12)
Similarly, for the laboratory frame components of @,

W, = W€, T wpep, T Wclcx (B.13)

w, = wpe,, + wgep, + Wcec, (B.14)

W, = Wee,, T wpep, + Weec; (B.15)

These fifteen equations are general and provide us with a whole serie§ of extra
relations with which to understand the rotational dynamics of a rigid, asym-
metric rotator. If, for example, we substitute equation (B.1) into (B.10),
equation (B.2) into (B.11), and equation (B.3) into (B.12), we obtain some extra
constraints on unit vector components:

el +el +el =1 (B.16)
el, +ej tel =1 (B.17)
e2, +el +el =1 (B.18)
€x€ay T €pep, T ecsec, =0 (B.19)
eqx€4; T epi€p: + €cxfc; =0 (B.20)

€44, + €p,€p; + €cyec; =0 (B.21)
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The magnitude of the vectors " and & does not change on going from one
frame to another. Thus

vi +vp+ g =0l + 02+ 0} (B.22)
w0l + wh+ wi=w?+ w)z, + w? (B.23)

From the point of view of rotation-translation coupling we have the following
general results on the basis of symmetry arguments alone:

(v(1)&"(0)),, =0, allt (B.24)
(v(0)w™(0)),_, =0, =0 (B.25)
(V(1)"(0)) .y # O
In the specific case of CH,Cl, the C,, symmetry ensures that all the elements

of the correlation matrix, equation (B.26), vanish except the [ 4, B] and [B, A]
elements, i.e.

in general for ¢ > 0 (B.26)

(0a(1)wp(0)) # (vp(1)w,(0)) # 0 (B.27)

Using equations (B.1) and (B.5), we have
(oD ea(t) +8,(1)en, (1) +0,() ey (1)]

X [@,(0) e, (0) + ,(0)e5,(0) + w,(0)e5,(0)]) (B.28)

In general, for a low-symmetry (e.g., optically active) molecule, there are 81
autocorrelation functions such as

<Ux(t)eAx(t)wx(0)eBx(0)>

which can be used in the laboratory frame to characterize rotation—translation
coupling.

Lastly we point out that by using equations (B.1)-(B.9), for example, it is
possible to express autocorrelation functions such as (w,(¢)w (0)) in terms of
linear-velocity and angular-velocity components in the laboratory or molecule
fixed frame. This is done by eliminating the nine components of €, &, and €.
via the nine equations.

Generally, therefore, the angular-velocity a.c.f. (&(¢) - @(0)) of the asym-
metric diffuser contains elements of linear velocity in its makeup. By the
kinematic relation # = & X #, so do the rotational velocity a.c.f. ( u(t) - ft'(O))
of far-infrared spectroscopy and the orientational a.c.f. (#(¢) - #(0)) of dielec-
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tric spectroscopy, infrared spectroscopy, and so on. Therefore, purely rota-
tional theories of these spectra are greatly oversimplified.
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CHAPTER THREE

Models for the Effect of
Dipole-Dipole Coupling
on Dielectric Relaxation
at Low Frequencies

3.1. THE DEBYE THEORY

We commence this chapter by reviewing very briefly the classical theory, due to
Debye (1929), of dielectric relaxation of an assembly of dipolar molecules, the
molecules of the assembly being supposed not to interact electrically with each
other.

Debye considered a model where the dipoles are free to rotate in space.
More specifically, each dipole is supposed to be fixed in a rigid sphere which is
free to rotate in space, the sphere being subjected both to random white noise
couples about its axis of rotation, having no preferential direction, and to the
action of a time-varying field applied in a fixed direction. The distribution
function f for the problem is defined as follows: fd is the number of dipoles
whose axes point into an element of solid angle d2; thus fis a function both of
the time and the angle ¢ between the axis of a dipole and the applied field. The
average torque on an individual dipole due to its surroundings is ¢9. It is
implicitly assumed that the inertia of the dipoles may be neglected and further
that the electrical dipole-dipole coupling between them may also be ignored,
so that on the average each dipole behaves in the same way. Thus, with the aid
of the Smoluchowski equation (Evans et al., 1982), we find that f(#, 1) satisfies
the equation

af(d,¢ 1 9. kT af (9, .
f(at )=sinﬂ%[snﬂ(T%-’-”_fzsmﬂf(ﬂ’t)”

(3.1.1)

which is simply the normal Smoluchowski equation written in spherical polar
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