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OLD THEORY? NEW PHENOMENON?
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The Kramers equation governing the fluctuations with time (z) of the phase difference 0 (k) across the hysteretic
Josephson junction is solved in the limit G — 0, where G is the dissipation coefficient. The results are expressed, for
clarity, in term of the power spectrum corresponding to the autocorrelation function ([d cos 8(2)/dt] [d cos 8(t)/dt] o
computed at thermodynamic equilibrium. In the limit G — 0 the spectrum is structured with resonance peaks which may
indicate the presence of several new characteristic frequencies of the hysteretic Josephson effect in the limit G — 0.

Introduction. The Kramers equation [1] is now
known to govern several different rate processes of
importance in physics and other disciplines where ac-
count is taken of the interaction between non-linear
and random processes. An example is molecular mo-
tion in the liquid state, which may be described [2]
in terms of the theory of brownian motion in poten-
tial wells. The RSY model [3] of the hysteretic
Josephson junction envisages a rate process in terms
of the fluctuations of the phase difference, 8, across
the junction. These fluctuations are governed by the
Kramers equation in the space of 8 and 6. It is the
purpose of this letter to use the theoretical methods
developed in the discipline of molecular dynamics
[4] to solve this Kramers equation in the limit G~ 0,
where G is the dissipation coefficient, given by

G =1/wjRC, @)

where wj is the Josephson plasma frequency, R the
resistance, and C the capacitance of the junction.

Theory. The Kramers equation for the condition-
al probability density function p(6 (¢), 6(),t16(0),
6(0), 0) is given in the RSJ model of the hysteretic
Josephson junction by

dp/at +§ap[06 + (I — sin 6)p/d6
=G(2/36)(6p + Top/d6). 7))

Here I is the externally driven current in units of the
critical current Iy. The time # is expressed in units of
wfl , the reciprocal of the Josephson plasma frequen-
cy and the temperature 7 in units of Ziwy /ky.

It is the purpose of this letter to provide a solution
for eq. (2) in the limit G - 0, where it is known from
recent work in liquid state molecular dynamics that
the equilibriuin power spectrum from an equation
closely analogous to eq. (2) becomes highly structured
with non-harmonic resonance peaks. Before describing
the solution of eq. (2) it is useful to note that it cor-
responds to the Langevin equation

6() + GO(t) — Iy — sin B(2)] = W(r), (3)

where W(¢)is a Wiener process, representing the influ-
ence of random noise. In the absence of noise (W(t) =
0 for all ¢), eq. (3) reduces to -

6+Gh+sino=1. @)
The general solution of eq. (2) is
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p(8, 8, )= exp(—62/4T) Z_% D,(61TV?)¢,(, 1),
" (5)

where D, are the Hermite polynomials. The ¢,, func-
tions are periodic and can be expanded in terms of a
Fourier series:

0n@, 0= 25 A exp(ipd). ©

Standard differential —difference algebra leads to the
linear recurrence relation:

AT () + (@(rTYZ — 1)1 ()

+rTW2(m + 1) A1)~ 1[A™ 7 (6) — 477 ()]

r+t
+mA"(H)=0. ™

Laplace transformation of eq. (7) leads to the simple
matrix equation

MA(s) = A(0) ®

for the coefficients A" (s), The complex matrix M is
a gparse, banded, tridiagonal, which is truncated at a
given r and m for convergence..

It is convenient to express the behaviour of the
phase angle 8 from eq. (2) in terms of its self-correla-
tion function {cos 8 (¢) cos 8 (0)). This is not the usual
course taken by the theory of the hysteretic Josephson
effect, but is standard in the theory of molecular dy-
namics [5] because the Fourier transform of the ori-
entational self-correlation function is related to the
fequency dependent dielectric loss. In the present
context (cos 8 (f) cos 8 (0)) measures the self-correla-
tion of the cosine of the phase-difference from the
Kramers equation (2). The orientational s.c.f.

{cos 8(t) cos 8(0)) is related to the coefficients A(l)(t)
and A~ (#) by:

{cos 8(t) cos 8(0)) = 5 (2w)3/2T1/2
X [{cos 8(0)A%()) +<cos H(@)A° ()] )

and is obtained from eq. (8) subject to thermal equilib-

rium conditions:
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{cos 0(0)/13(0)) = 2i1r f cos 8(0) e~ (®

-

X exp[/,6(0) +.cos 6(0)1d6(0). (10)

The size of the matrix M used in this letter is 100 by
100. Eq. (8) is solved for the power spectrum a.(cw)
corresponding not to {cos 6(t) cos 6(0)) itself but to
its second derivative:

a(w) = w2f(s) +iwf(0), @an
f@)=314%+4°%, ], (12)

which is much more sensitive to the resonance peaks
which appear from eq. (2) as G = 0,

Results and discussion. In the special case Iy =0
the power spectrum a(w) is structured as illustrated
in fig. 1. The peaks become more prominent and
more widely spaced as the temperature parameter T is
increased, with the other parameters kept constant.
In the limit G - O therefore the Josephson junction
hysteresis process starts to show characteristic frequen-
cies in addition to the plasma frequencies wjy. These
are characterised by the Fourier transform of the self-
correlation function of cos 6 (), where 8(¢) is the
time-dependent phase-angle across the junction. These
peaks appear when the dissipation coefficient G be-
comes very small, or when the Josephson plasma fre-
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Fig. 1. Appearance of peaks in the power spectrum a(w) with
parameters: G = 0.1; 7= 1 and /g = 0. Inset: T'= 4. Freqguen-
cy: reduced units. Note that for RC = 1 the Josephson plasma
frequency occurs at wj = 10.0 for G = 1.0 in reduced units,

-~ This is marked on the diagrams.
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~:2ncy becomes very high, or when the resistance or
~z2acitance of the junction becomes high. This self-
.rrelation pattern will, in turn, affect the hysteresis
szoperties of the Josephson junction itself, and might
¢ useful in the design of circuitry based on the
>sephson effect. It may be useful to regard the ap-
-zarance of these peaks as the development of struc-
zure in the Josephson plasma frequency wj, normaily
z delta function.
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