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Abstract. The approximate analytical solution by Morita of the standard Debye diffusion
equation is extended for the purpose of comparison with the rise transients produced by 3D,
asymmetric top, computer simulation. The analysis and computation produce a similar
qualitative dependence of rise-transient characteristic time on electric field strength. but
quantitative differences call for a more realistic analytical theory of the molecular dynamics.

The liquid phase of matter is usually isotropic at equilibrium. This ceases to be the case
when the sample is treated with a more or less intense field of force applied in an axis of
the laboratory frame of reference. It is well known that birefringence is observable
(Bottcher and Bordewijk 1978) in a liquid treated with an intense electric field (the Kerr
effect), magnetic field (the Faraday or Cotton/Mouton effect) or laser field (the Buck-
ingham effect). The theory of molecular diffusion in anisotropic liquids is based on the
equations which govern the evolution with time of probability density functions under
the influence of an applied force or torque (Evans ef al 1982). Bénoit (1951) first based
his treatment on Debye’s theory of rotational diffusion, with the basic assumption that
in energetic terms the external perturbation is much smaller than the thermal k7. Some
authors (Morita 1978a, b, Morita and Watanabe 1979, Watanabe and Morita 1980a,
Ullman 1972) have more recently extended the theory to deal with an arbitrarily strong
applied torque. In general, the standard theoretical approach is based on a stochastic
differential equation, diffusional in nature (Morita 1978a, Sack 1956, Debye 1929):

d D o . 9 1 /0
ap(ﬂ.t)—ﬂ’p(a.t)a;m——e-a—esma[-a—e+k—7_(3§l’)}p(0, N
where D is the rotational diffusional constant, k is the Boltzmann constant, T is the
absolute temperature, and V'( 8, 1) is the perturbation potential affecting the orientation
6of the molecule. For a symmetrical body which has a permanent electric dipole p along
the axis of symmetry and which is optically polarisable both along the axis of symmetry
and the orthogonal axes with electric polarisabilities ay and a_ respectively, the potential
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energy V (6, t) is given by
V(8,1) = —uE(t) cos 8 — ¥(ay— a, )E1) cos’ 8 )

where E (¢) is an applied electric field.

Recently Evans (1982a, b, ¢, 1983a, b) initiated a project of molecular dynamics
simulation of anisotropic liquids. The assembly of dipolar molecules is simulated in the
presence of a constant homogeneous electric field Eo under the type of conditions
assumed by Morita (1978a, b) in his analytical work. In particular, the results of Evans’
numerical simulation (Evans 1982b) should be taken into account on solving equations
(1) and (2) with oy = a; (Evans 1982a). These equations can then be rewritten as follows:

8 1 o 8
a—fp( 6,7)= Sn 036 sin @ (a—e + egsin 9) p(8, 1) 3)
where ep = uEy/kT and 1= Dt. Equation (3) is studied later in some more detail by
Watanabe and Morita (1980b).

The present paper is aimed at comparing the results of Evans’ microscopic scale
numerical simulations with some predictions of Morita’s microscopic scale one-body
diffusion model. In particular we focus on the so-called rise transient rime (RTT) of the
orientational correlation functions. The analytical calculations based on equation (3)
and the simulations of Evans (1982b) are shown to differ markedly. In order to make
such a comparison as faithful as possible, Morita’s RTT approximation is worked out
thoroughly and compared with alternative characterisations. The slight improvements
to Morita’s original calculation so far obtained in this way do not explain the pronounced
discrepancy detected in this paper between theoretical modelling and ‘numerical’ experi-
ments, i.e. ‘molecular dynamics’ computer simulation.

In order to calculate the time dependence of the electric polarisation and electric
birefringence of an ensemble of molecules, we need to obtain the averages (Peterlin and
Stuart 1939)

{P(cos 6,0)) = J:T p(6,1)P;(cos 6) sin 6d 8 4

where Pi(x) are the Legendre polynomials of degree i. Let us focus our attention on
(Pi(cos 8, 1)) = (cos 6(r)). Expressing p(6, 1) in terms of the Legendre polynomials
Pi(x), Morita (1978b) obtains for the Laplace transform of (cos &(1)) the following
continued fraction:

${(cos (1))} = §epA(s, eo)/s, 5
where

Als,e0) = . ©)

1
s+ }.0 + Al
s+}'2+"'s+}.,+...

in which

Ar=(n+1)(n+2) )]

,_ n(n+1)4n+2)
" @n+3)2n+1)

e. 8
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Figure I. Ta against e, in dimensionless units Dr. Curve A: ¥ of equation (12); curve B:
#’ of equation (17); curve C: 7i’ of equation (23); ( A) simulation results from figure 3 of
Evans (1982b).

In passing we note that the same expansion can be recovered by adopting the Mori
expansion (Grosso and Pastori-Parravicini 1985). From equation (5) it follows that
lim (cos 7)) = lin}) §eoA(s, e0) = L(eq) %
% $—
where L (eg) is the Langevin function defined by L (z) = coth(z) — 1/z. The saturation

values of ( P{cos 8, t)) are correctly reproduced by simulation (Evans 1982b).
From now on let us consider the observable

A1) =1 - (cos 6(7))/(cos 8(=)) (10)
whose Laplace transform A, (s) reads (see equations (5) and (9))
Ai(s) = [A(0, &0) — A(s, eq))/sA(0, eo). (11)

Morita (1978b) introduces a characteristic RTT g by fitting A;(7) with an exponential
function, exp(—7/7r). Such an exponential fit is obtained by putting s = 0 in all the
fractions of equation (6) except the first one, so that

™ = A0, o) = 3L (eo)/ep. (12)

This is a rough estimate of 7z, and a good agreement with the ‘numerical’ experiment of
Evans (1982b) is not expected (Morita and Watanabe 1979) (see figure 1). In the
following we retain Morita’s definition of the RTT, using an exponential fit, but we work
out two different characterisations of g which are likely to be more appropriate for
small and large fields, respectively.

(@) Small e,-RTT, T#’. A widely accepted definition of relaxation time (see e.g.
Marchesoni and Grigolini, 1983) takes this as the area below the appropriate normalised
autocorrelation function. This can be calculated by taking the s = 0 value of the corre-
sponding Laplace transform. Qur first alternative characterisation of {cos 8(r)) RTT.
T4, therefore reads
A0, &)

2t Eii_.né,ql(s) = - A, 2) (13)
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wtlxere A'(0, ) is the derivative of A(s, e;) with respect to s at s = 0. We can compute
' by means of a suitable expansion for A’'(0, &y). By writing the continued fraction (6)

as
LY

An L] =
e = T T A

neN (14)
where

Aols, €0) = A(s, eo)
we can easily recast A’'(0, e,) as follows:

, - 1 _ A _ Al
A0 e0) (AD+A§)2[1 (}.,+A2)2"'(1 m)] (13)

Furthermore, from equation (14), we have the recursive relation

Al '
A0, ) = ————u -4,
( 0) An— 1(07 eD) ' (16)
Equations (15) and (16) allow us to give t§’ a more convenient form for computer
calculation
_ AX(0, &) AX0, ey)
rﬁ)_t%[l+—r.'.(I—JAT,,——'“)“.] (17)

where 1} is defined in equation (12). The convergence of such an expansion is siow for
large values of e, while for small ¢y, t{{’can be readily approximated with

A} 1 Al Al
P = (1 - A_,;) = i (1 - 1_01{—1 - 71:;) + O(ed). (18)

By using equations (7) and (8), equation (18) is shown to imply only a slight negative
correction to Morita’s estimate (figure 1). In particular, the overshoot of the curve i
against e at small eo (Morita and Watanabe 1979) can be explained in terms of the actual
shape of A ,(1). Indeed in view of a theorem concerning Laplace transformation we have

lim s?A(s) - sA(0) =A}(0) = —1. (19)

This means that A.(7) cuts the 1 = 0 axis with a negative slope smaller than (r} ) ' and
the exponential fit, exp(—1/1tr ), reproduces it more and more badly as e, tends to zero.

(b) Large ey-RTT, 4. An alternative characterisation of the RTT can be given as
follows. The Laplace transform of the time derivative of {cos 8(1)) can be expressed as

£ {Ed'r““ "(’”} = s£{(cos (7))} — (cos 8(0)) = TeoA(s, eo)

where equation (15) and the usual initial conditions (cos 8(0)) = 0 have been taken into
account. For that reason (cos 8(1)) is obtained explicitly by integrating the inverse
Laplace transform of the continued fraction A(s, &), equation (6), with respect to time.
Such an inversion can be carried out by having recourse to a diagonalisation procedure
(Marchesoni and Grigolini 1983) which yields
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LHAGs, e}t = 2 ciexp(—¥ia). | 20

On integrating equation (20) with respect to t and employing the definition (10), we
thus determine

Ay = Z Zemp(-nr) [ K. )

In the present case ¢; € R and y, € R, for any i € N (Grosso and Pastori-Parravicini
1984). In the presence of diffusional behaviour such as that exhibited by the model under
study, the relaxational time {’ is commonly identified with the inverse of the smallest
eigenvalue {y,}ien , i.€. ’

o = (minir1) . 22)

Avoiding complex numerical procedures of continued fraction diagonalisation
(Grosso and Pastori-Parravicini 1984), we can recover the smallest (positive) eigenvalue
in equation (20) by applying an equivalent recurrence relation proved by Guardia et al
(1984) and Risken (1984). For brevity we just report the corresponding explicit expres-
sion for 7if:

3 1
2} = 7 Vimy — 2
t& Zeo;l—l:-; Z; ( 3)
where
z: =—3—/A(z €s) 249)
i~1 280 : i» €0

and z, = 0 (Guardia er al 1984). This second definition of the RTT is better founded from
amathematical point of view than those introduced above. A fast numerical convergence
of the recurrence relation (24) can be achieved atlarge e; (figure 1). In passing we remark
that Morita’s estimate, equation (12), coincides with z7 ! of equation (24).

We are now in a position to compare the predictions of the diffusional models like
that of equation (1) with Evans’ (1982b) findings. Let us note that equation (1) contains
only one parameter, D, which can be obtained with the numerical results. Letus consider
the behaviour with time of the torque-off {cos &0) cos 6(¢)). From equation (1) it can
be easily proved that

%(cos €(0) cos 8(1)) = {cos 8(0)T"" cos @(1)) = —2D{cos 8(0) cos é(1)) (25)

where I** is the self-adjoint of the Fokker-Planck operator F. (2D) ! is then the (Debye)
relaxation time 7p of the autocorrelation function {cos 8(0) cos €(r)) simulated by Evans
(1982a) in his figure 3: Tp = 4.5 ps. The result of our comparison is shown in figure 1
where the RTT are all given in dimenstonless units T = Dt. Inaccuracies in the reported
simulation data (obtained via a numerical exponential fit) are mainly due to the oscilla-
tions that the curves of figure 10 by Evans (1982b) exhibit. These are artifacts of the
numerical algorithm (caused by temperature rescaling) and must be smoothed for a
theoretical analysis. '

Our conclusion is that, after extending the validity of the analytical solution of
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1) for detailed comparison with the numerical analysis of the simulation by
Evans (1982b), large discrepancies remain when we try to interpret the relaxation

-dygamics of an actual assembly of polar molecules in terms of a one-body diffusional
#model. In particular, we note that the picture of equation (1) assumes as a starting point

that the interaction between the tagged molecule and its environment can be mimicked
by means of a stochastic torque with the following properties: (i) Fluctuations are

-introduced as an equilibrium stochastic process. Moreover a time-varying électric field

E(1) is supposed not to affect the environment of the polar molecule but only the torque

- acting on the molecule itself. (ii) The rest of the sample is depicted as a Markovian heat

bath which means that no feedback reaction occurs as a consequence of the movement
of the symmetrical top even if at r = 0 it is far from its statistical equilibrium. In other
words, the stochastic torque has no memory of the molecule—environment interaction.
(iii) Such interaction is assumed to be Gaussian, which seems to suggest a linear coupling
between the tagged molecule and the nearest neighbours (Maeckawa and Wada 1980).
Now these three assumptions have been refuted by studying both equilibrium and
non-equilibrium properties of an assembly of ideal molecules (Balucani et al 1982. Evans
eral 1983a, b, Praestgaard and van Kampen 1981, van der Zwan and Hynes 1983). Our
conclusions agree with the remarks of these authors: a satisfactory explanation of the
simulation resuits would involve something more than the one-body picture of equation
(1)—even if inertial effects were implemented (Evans er al 1983a, b). Two-body non-
linear models like those of Coffey er al (1982) and of Risken and Volimer (1982) seem
at the moment to be better candidates for accounting for the non-Gaussian and non-
Markovian transient statistics of molecular dynamics in the liquid state.

Finally we mention that dielectric relaxation is necessarily a many-body probiem,
but a problem that usually is still tackled in the dielectric literature by the one-particle
diffusive theory described above—originally that of Debye. The technique of molecular
dynamics computer simulation allows an approach to the same problem that is more
sensible, in the sense that the details of the intermolecular pair potential can be modelied
approximately but more realistically. The formidable problem remains of relating the
microscopic properties, dealt with in this paper, to macroscopic observables such as the
complex permittivity. This problem involves a detailed investigation of the time depend-
ence of the internal field. However, in this paper, we have been concerned specifically
and exclusively with comparing the results of a diffusional microscopic model with a
well defined, microscopic, computer simulation.

It is not possible to relate one-body models {such as Debye’s} to the actual many-
body dynamics simply by rescaling the applied electric field, using a static (time-inde-
pendent) model for the internal field effect. Some of the most striking evidence for this
is the following.

(i) This procedure cannot explain some recent numerical and experimental results,
for instance the newly discovered fall-transient acceleration (Evans er al 1983a, b,
Marchesoni 1984).

(it) Two-body models can account for most of the known properties of many-body
systems owing to the key role played by nonlinearity. The classical papers of Zwanzig,
Mori, van Kampen and others in this area are reviewed by Evans etal (1982.ch 9, 10, 0n
reduction techniques). These provide good descriptions of the available numerical and
experimental data in many fields of condensed matter dynamics, notably molecular
dynamics in liquids. A special issue of Advances in Chemical Physics (see Grosso and
Pastori-Parravicini 1984) is devoted both to the philosophy and application of these new
techniques.
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