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Abstract

A method is derived for the measuement of the single molecule cross-
correlation function (v()es"(0)) in the laboratory fmme of reference.
This consists of measuring the angular velocity a.cf.’s in the x and 2
directions of the laboratory frame after inducing birefringence in the
molecular liquid with an electric field E in the z axis. The cross-correlation
function is then a convolution of the two angular velocity a.cf.’s and the
Fourier transform of the c.cd. is, approximately, a ratio of the far
infra-red spectra in the x and z axes.

The time dependence of (v(t)o (0)) is analysed using computer
simulation and simplified analytical theory for different electric field
strengths E. (Here v is the molecular centre of mass linenr velocity and
o the molecular velocity).

1. Introduction

The classical theory of molecular diffusion originates with
Einstein and later with Debye, who developed a model for the
evolution of the molecular trajectory with time. Each molecular
dipole was fixed in a rigid sphere, which was assumed to rotate
in space, to be subjected to random white noise coupled about
its axis of rotation, and to the action of an electric field in an
axis of the laboratory frame. The classical theory is, therefore,
based on a Smoluchowski equation of the type {1}:
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For the purposes of this paper it is important to note the
presence of the electric field interaction term on the right
hand side of eqn. (1). In the eqn. (1) fdS2 is the number of
dipoles whose axes point into an element of solid angle d§2.
The distribution function f is, therefore, a function of time f,
and of the angle & between the dipole axis and the applied
field. The average torque on an individual dipole due to its
surroundings is (6. Eqn. (1) is also the starting point for theories
of electric field-induced birefringence, (Kerr effect) and provides
the transient orientational average

pE

sin 8 £(0, t))] )

E
HKEq .e_”-,-

{cos@(r)) = AT

@
after the electric field is switched off instantaneously at 7 = 0.
In spectroscopic measurements of molecular diffusion [2)
the sample, e.g. a molecular liquid, is perturbed with an external
field — an electromagnetic, magnetic, electric or mechanical
(shearing) field. An electric field produces a torque on each
molecule of — g x E which tilts them on average in the direction
of E in the lab. frame. This polarises the sample slightly, and this

polarisation is picked up as a change in capacitance and con-
ductance on sensitive bridges; the well-known technique of
dielectric spectroscopy. In infra-red spectroscopy the sample
absorbs electromagnetic radiation, the power absorption (a(7))
being related to the dielectric loss (¢”) through Maxwell’s
equations, viz.

a®) = [2n9€"(@)]/n(7)
n(® = [H(E'GP + €@ + @) 3)

Here n(?) is the refractive index, €'(D) the permittivity, 7 the
wavenumber (in cm™') and a(%) the infra-red power absorption
coefficient in neper cm™*.

Therefore, the spectroscopy of molecular diffusion mever
reports the molecular ensemble free of external perturbation.
(It is worth risking another truism here to point out that the
relations (3) imply the presence of an extemal field in the
sample.) Information about the isolated, unperturbed, sample
is interpolated from the fluctuation-dissipation theorem. This
theorem implies that the fall transient (eqn. (2)) and the orien-
tational auto-correlation function {(cos@(7)cos@(0))> of the
isolated sample have the same time-dependence.

Recent electric-field-effect computer simulations have
shown [3] that this is not even approximately true when the
interaction energy per molecule, u£ cos8, is of the same order
of magnitude as the thermal energy per molecule (kT). ln
general, the fluctuation-dissipation equality is only approxi-
mately true even in the linear response region of the Langevin
function: uE <€k7. What is happening in conventional spectro-
scopy is that the probe field is picking up a “signal” which is in
general much weaker than the thermal “noise”. Debye’s was
the first attempt at investigating the nature of this signal,
generated by the field perturbation term on the right hand side
of eqn. (1).

It is known now that this equation leaves out of consideration
numerous features. The inertial term is missing and there is no
attempt to represent the potential energy between the diffusing
molecule and its neighbours, and there is no specific consideration
of single molecule cross-correlations. We show in this paper that
the cross-correlation function (c.c.f.) Gy, = (W(f) @7(0)) becomes
visible in the laboratory frame whenever a molecular ensemble
is perturbed by an external force field, specifically an electric
field, so that (cos8(r)) of eqn. (2) is finite. It is precisely this
perturbation which allows us to see spectra, specifically dielectric
spectra (permittivity dispersion and loss). In molecular dynamical
terms the difference between a perturbed and isolated sample
is that in the former case C,, exisss and in the latter C,, =0
Jor all t because the parity of v is opposite to .

The approximations inherent in linear response theory now
become apparent. During the fall transient process (eqn. (2)) 2
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trapsition in the dynamics is taking place whereby C;, +0
(ﬁild-on)-ic,, 0 (feld-off). At field-off equilibrium, on the
other-hand, -Gyy-always vanishes, so that the time-dependence
of. Lheﬂqeﬁw{aﬂ-uamm and the field-off equilibrium

ogentational-a-c.f.-camtot -be the same. In other words, the

6e ﬁfmletuhdrfj&:mn always picks up information
on €c:f. 3such as C,,. (A-referee has made the very interesting
rergark in this context that the cross-correlation function C,,
has no meaning in tinear response theory. There is no term
corresponding 1o it in Onsager’s thermodynamics and reciprocal
relations. Therefore it follows that linear response theory, of
which the fluctuation-dissipation theorem is a part, is only an
approximation to the true situation even when the transport
properties of the system appear to be linear.)

This has been ‘“‘half-realised” in the literature, but not worked
out quantitatively. Amost exactly 50 years after Debye’s paper
Condiff and Dahler [4] proposed a theory for C,, based partly
on an extension of the Langevin equation for rototranslation.
These authors pointed out that several phenomena of fluid
dynamics are based on C,, and are known experimentally to be
stimulated by the interaction of radiation fields with molecular
multipoles. Since then the theoretical investigation of C;, with
Fokker-Planck and Langevin equations has accelerated. However,
the tremendous complexity of these theories often obscures
the results, and there is in consequence little attempt at éxper-
imental comparison. Steiger and Fox [5] recently claim 1o have
found inconsistencies in some earlier treatments in the literature.
These theories must satisfy the field-off parity theorem C;; = 0
described by Berne and Pecora [6] when dealing with the single
molecule c.c.f. It is not always clear that they do so.

The subject has received a new impetus recently through the
use of computer simulation, Ryckaert et al. [7], were the first
1o point out that the field-off c.c.f. matrix:

¢ = (V(Dw"(0))m)

exists for ¢ > 0 in a molecule fixed frame of reference, specifically
that of the principal molecular moments of inertia. Their work
for linear symmetry has been extended to Cy,, C,,, C; and
chiral symmetries by Evans and co-workers [8—15) . Aninterest-
ing spin-off from this computer simulation work is the expla-
nation [16, 17} of the physical differences between an enan-
tiomer and racemic mixture in terms of two elements of C™
which mirror each other in both cases for R and S enantiomer
but vanish for all ¢ in the racemic mixture. There are no definite
indications as yet from computer simulation that C;, exists,
even for chiral symmetry [17}, in the absence of a probe field.
For chiral symmetry (i.e. no symmetry) the complicated Langevin
and Fokker-Planck equations are useless in this context, except
as first approximations, because of the large number of phenom-
enological parameters needed.

In this paper we take a simple 3 x 3 site-site model of the
CH,C1, intermolecular pair potential and use the technique of
field-effect computer simulation to look for C;, in the molecular
liquid at 296 K. This has been found and characterised in this
work with a static electric field E in the z axis of the laboratory
frame. The dependence of C;; may be characterised for very
weak probe fields, u£ € kT by using the well-known technique
of ‘“‘non-equilibrium” molecular dynamics simulation [18]}.
The signal (C,;) may be picked up from the thermal noise by
comparing directly two runs, one with and the other without
the application of an electric field.
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2. Algorithm and Computer Simulation Method

The original listing TR12 of Singer et al. was modified by
Ferrario aad Evans [8, 9] to include pariial charge terms on
each site and was used as described elsewhere to develop the
technique of field-effect computer simulation. The effect of
an external electric field is simulated with an extra torque
term — px E in the forces loop of the algorithm, which may
then be used to look at rise transients, field-on equilibrium
correlation functions, and fall transients. The technique has
been used already [19] to verify the field-on decoupling effect
produced theoretically [20] by Grigolini and to verify the field-
dependent nature of rise-transients, predicted from eqn. (1) by
Morita [21] and Coffey et al. {22} . Perhaps the most important
discovery of this method is that of fall-transient acceleration
{23). The fall transients from a birefringent molecular liquid
fall more quickly than the equivalent equilibrium a.c.f., and are
accelerated considerably with increasing field strength E. This
is, of course, a violation of the fluctuation-dissipation theorem.
Eqn. (1) and all single “particle” linear diffusion equations of
this type do not produce fall-transient acceleration, i.e. the fall-
transient and equilibrium a.cf. are identical, even when E —> =,
Fall transient acceleration has been used by Grigolini and co-
workers [19] as evidence for the non-linear nature of the
molecular liquid state at equilibrium i.e. the details of the
intermolecular pair potential have to be known for a proper
description, both at field-off and field-on equilibrium. It .is
clear now that fall-transient acceleration is also tied up with
the process C;, (field-on) = C;, (field-off) = 0.

The intermolecular pair potential used in this paperisa 3 x 3
site-site model with Lennard-Jones atom-atom potential terms
and partial charges to represent the electrostatic interaction:
€/k(C1-C) = 173.5K; €/k(CH,—CH;) = 70.5K; o(CH,—CH;)
=396 A: o(C1-C1) = 3.35 A; g¢c1 = — 0.151e}; gcn, = 0.301el.
The cross-correlation functions are evaluated with running time
averaging and are normalised, as for example:

= (p (D w (0 (I Hw2)'?)

The noise level in the simulation is estimated as the difference
between two successive runs. By symmetry, C,, vanishes at
t = 0, providing another estimate of the noise level. Approxi-
mately 1000 records (3000 time steps each of 5 x 107 '%s)
were used in constructing C,, elements. The statistics of the
simulation could be improved considerably by longer runs, or
by implementing ‘‘non-equilibrium” computer simulation
methods.

3. Results and Discussion

The application of an electric field produces orientational
rise transients. The )/e level of each transient is a rise transient-
time (RTT). These are field-strength dependent [3]). The ¢ o
level of each transient falls on a first-order Langevin function
of uE/kT. This is a check on the validity of the technique at
field-on equilibrium.

The prime result of this paper is illustrated in Figs. (1) as a
function of field strength. These figures illustrate the appearance
of C,, in the laboratory frame in terms of the dominant elements
C& and C}r. By “dominant elements” we mean that their
normalised amplitudes, (the maximum of the first peak), are
much bigger than the equivalent amplitudes of the other off-
diagonal c.c.f:s of C,,. We have looked for these elements but
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Fig. 1. Development of 1) G and 2) CX* with interaction energy
uElkT. At uE/kT = 0.0 the noise level is indicated by the shading. In
a noise free simulation this ought to be zero. (a) uE/kT = 0.0 (noise
tevel); (b) 0.28 (curve 1) only; (c) 1.4;(d) 2.8; (e) 28.0. In this figure the

have not been able to isolate them satisfactorily from the noise
with our simple running-time averaging. A more powerful
method for this purpose is “non-equilibrium” or “difference
method” computer simulation {18}, where the noise is removed
precisely, leaving the “‘signal”, i.e. C,.. By analogy, this is aiso
what happens in a dynamic Kerr effect experiment: birefringence
is picked up accurately from “well below the thermal noise”
(i.e. uE <€kT) as the rotation of a polarised probe laser [24].
The technique of induced-birefringence is therefore picking up
Cy in the laboratory frame as a contributory factor in the
orientational dynamics. C,, is therefore directly observable in
the laboratory frame with existing techniques. This is discussed
theoretically later in this paper.

The dominance of Ci7¥ and CJ* can be understood simply
in terms of the torque — p x E when E is in the z axis. In vector
terms this is:

(iﬂy - jl'lx )Ex

where i and j are unit vectors in the x and y axes and g, and g,
components of the dipole moment u. The torque is the same in
overall structure when polarisability effects are introduced,® so
that little new physical insight is gained in this particular
context. ‘

The (x, y) and (p,x) cross-correlation functions are mirror
images, and are oscillatory. They attain a maximum normalised
amplitude (measured through that of the first peak) for inter-
mediate field strengths. The other elements of C,, lie below the
noise of the current simulation runs. As the field strength is
increased the Grigolini decoupling effect is observed in €5 and
C3F. This means that the strong field competes with the thermal
forces in the molecular ensemble, whose influence on the
correlation function decreases as the field strength increases.
In consequence, the c.c.f. becomes longer lived, as measured
through the envelope of its oscillations.

At uE/kT = 0.28 the dominant elements of the c.c.f. C,, are
still just visible above the noise of the simulation (fig. (1)), and
it is clear that the computer simulation technique could be used
to pick it up for pE/KT = 0.02 (the condition under which
induced birefringence experiments are carried out), given the
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shaded regions indicate the estimated noise level in the computer simu-
lations.

Ordinate: Normalised c.c.f.

Abscissa: time/ps.

“difference technique”, and long enough runs, to remove the
noise. The “difference technique” works, broadly speaking, by
picking up the signal from the noise by comparing two simulation
runs — one unperturbed and the other slightly perturbed. It
illustrates perfectly the fact that C,, can be picked up directly
in the same way by electric-field induced birefringence. The
following section deals with the theoretical interpretation of
such spectra.

3.1. Simple Theory of Rototranslation and Birefringence
Grigolini and co-workers have recently developed [25] arigorous
and general method of solving the Liouville equation of motion
for a number of interacting molecules. The basic Liouville
equation may be written as:
d

3 Al = LoA(D) €y

t
where A is a dynamical stochastic variable, in general a column

vector. If we wish to deal with the dynamics of rotation and
translation we have:

v(t) ]

5
© () ()

A = [

where v is the centre of mass linear velocity and @ is the angular
velocity of a molecule of the ensemble. Using the methods of
modern projection algebra developed by Grigolini et al., eqn. (4)
may be rewritten in a form which is closely analogous with the
Langevin equation:

d t

- €O =a (e~ jo et —71C(r)dr (6)
This is a fundamental equation of motion, rigorous and not
phenomenological, for the correlation matrix C(¢) in terms of
the matrices A (f) and @(¢ — 1), usually known as the “resonance”
and “‘memory” matrices. These may be defined rigorously in
terms of equilibrium average involving the dynamical variable A.

For the particular case in which we are interested, it is
convenient to define:
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V0 (e (t) @ (0)

so that -the e]ements of C(#) are themselves matrices, whose
elements in. turn are -time correlation functions. The evolution
of thecomp!etc supermatrix C(7) obeys eqn. (6), the Liouville
eq_ustlonef +motion.

In order to reduce the problem at hand to its simplest form,
and in order 1o avoid ‘snnecessary complexity with subsequent
loss of clarity, we make the following assumptions.

1) The three molecular momenis-of inertia are put equal, so
that the dynamics of the molecule are those of a “spherical top™
with moment of inertia /.

2) It is assumed that the molecule carries a net dipole moment
u, which interacts with an extemal electric field E. With these
assumptions we can define the elements of C(¢) as:

Cpp = (V(O)VT(O)
v D0 O , 0
= {0 (1, (Do, (0)) O
] 0 (o(r)v(0))
Cow = (w(D) o (0)
{w(DwL0)) O 0
=10 (wy(t)wy(0)) O
0 0 {wDwA0)
Coww = V(D' (0)), (E+0)
a (v (Dwy(0)) (o (H)w(0)
= | (o (1) (0) O (v () w(0))
(D) w,(0)) (D, (0 O
and similarly for C_,,

The sample of molecules is statistically stationary, so that:
C(A)‘D = CIKJ

Similarly, the matrix of memory functions ¢(¢) is a supermatrix
of the form:

o) = [vw(t) vw(t)]
’uv(t) 'wu(t)

For a field E applied in the z axis of the laboratory frame of
reference the computer results have shown that the matrices
Coui(t) or C () may be approximated as

6 -1 0
Gu(D) = Cunlt) = GG 6 0 Q)
0 00

because the dominant elements are the (x, y)and (y,x) elements,
which are mirror images. In eqn. (7) CG2(r) is the scalar c.c.f.
element obtained by computer simulation.

It-is important to note that the electric field has the dual
role of promoting the existence of C, (1) = Cx(7) in the
laboratory frame and of making the sample amisotropic. This
means that:
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(w?) =

(22) #+ () @)
(W) # (wd) 9)

The interaction between u and E appears in egn. (6) through
the matrix A (#). We assume that this matrix can be written in
the form:

[ ]
A iw,
0 l

where 0 is the null matrix and 1 the unit matrix, and the scalar
frequency

o = Eé,illz
! 7

Eqn. (10) comes from the fact that the only direct influence
of E on the molecular motion is the creation of the forque =
p x E. There is no direct influence on the linear centre of mass
velocity (v), so that terms in A involving v vanish.

Laplace transformation of eqn. (6) gives:

[p1+ 9(p) — s 1]C(p) = C(O). (12)
The supermatrices in eqn. (12) are defined by:
C0) ©

Y Cwu(o)]

(10)

(11)

c(0) = [ (13)

where:

o
o

(o
and similarly for C,,(0).

C(p) Gu(p)
Cp) = )
Cokp) Cuu(P)
[(p—iwy)l +e(p)]
_ [(p— i)+ 9p(P)  #oulp)
tukp) (P—iw)l +euu(p)

The elements of these matrices are themselves matrices defined
by:

(14)

(15)

0 -1 0
P = Puw = #udP) |} 0 0
0 0 0 ‘
= 0 0
e ={0 X O and so on.
0o o il

For an electric field E in the z axis:
w(P) = ¢ (p) * dulP)

(16
05u(P) = d5u(P) # ¢5L(0P)




a3

. Measurement of Single Molecule Cross-Correlation Functions Using Electric Field Induced Birefringence

and-similorly-for-Coolp)-and-Cyskp) aad the linear and-angular
vel@nty autocorrelation matrices.

Companng scalar elements in eqn. (12) provides the following
set-of scalarequations=— -

Co¥p) =82} + 5P + ¢ (P)) an
= Cx(p) = [v}) + 9ZAPYCIHPI/(p + 43(P)) a18)
CH() = Dip + 65lp)) (19)

Coukp) = Kwd) + 632(p)CUP)Y (P —iwy + ¢5.(p)) (20)

= CHAP) = [wid+82P)CEP)] /(P —iw) +90u(P))
(21)
Coulp) = W(p —iw: +95.(P)) (22)

The following physical effecfs of electric field induced r/r
coupling may be deduced from these six equations.

1) For a field E in the z direction both the linear and angular
velocity a.c.f.’s become anisotropic in the laboratory frame.

2) For a coupling matrix given by eqn. (7) there is no effect
(with this simply theory) of 7/t coupling on Ci5(p) (or Co5(1))
and C5.(p).

3) The ratios of eqn. (17) to (19) and eqn. (20) to (22)
provide the approximate but important result:

5P)Coi(P) = =)
2 CSeAP)
* (W) Ca o)

If in the Markov approximation, we regard the memory function
as a constant i.e.

— (%)

—(w?)

(23)

$2eAP) = b0
then we obtain the following physical result:
Xy, = (i’_;_z C:(p) _@
va(P) . xy C:: 0’) ¢xy
(w2 CEi(p) (wd)
e —2L ZWWTS I 24
AN e
Theorem

Eqn. (24) shows that it is possible to observe the cross-correlation
function between linear and angular velocity by applying an
electric field to a molecular liquid in the laboratory frame.

In the time domain the cross-comrelation function is a con-
volution of the angular (or linear) autocorrelation function
observed in the z direction with the angular or linear auto-
correlation function observed in the x or y directions of the
laboratory frame (x, y, z), with the electric field applied in the
z direction of this frame of reference.

Note that in deriving eqn. (24) we have made the assumptions:

O (p) = 95 = ¥
wekP) = V5w = ow 23

If the system (molecular liquid), is quasi-Markovian, and if
the birefringence is not very large, eqn. (25) is a2 good approxi-
mation; leading to the physical results summarised in eqn. (24).

4) There are many similar cross-correlations generated by
the parity breaking electric field, for which eqn. (24) is a general
law  i.e. all these new cross-correlation functions are, in principle,
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observable with the sensitive apparatus used in birefringence
experiments (capable of 1:10° accuracy or better).

S) A result specific to our assumption of “spherical top”
dynamics can be obtained by eliminating C32°(p) between eqns.
(17) to (22) and the further four relations:

GXp)(p + €5(p)) + $52(P)Colp) = (26)
CoXpX(p + 42(p)) + $5(P)CTLAP) = Q27
Go(P)(p —iw, + ¢5.,(P)) + ¢5(P)Cx(P) = O (28)
Go(P)(p — iw) + ¢3.AP)) + #$2(P)CTLAP) = O 29

Eliminating C3¥(p) between eqns. (17) and (28) and C55(p)
between equs. (20) and (26) provides the resuits:

() = (W
(2d) = ()

(30)
(02) #* (W) ‘

This is not generally true for “asymmetric top” dynamics,
where the Euler terms make the analysis exceedingly complicated
without much further physical insight.

Solving simultanecusly eqns. (17), (20), (26) and (27)
provides a matrix equation with scalar coefficients:

[p +o(p) —¢RAP) ][C-?(p) - C?.:(P)]
#5::(p) P —iw + ¢S PICUP)  CSiAp)

W 0
= €1
0 (W)
In order to proceed further without undue complexity we make
the Markov approximation and remove the p dependence of

&0, ¢35 and ¢75,,, so that these become constants independent
of time. Eqn. (31) then becomes:

Cx'(p) = UoX(p + o)) /D (32)
C(p) = — (LD (33)
CEHAP) = (P —iwy + 5 )N wD]/D (34)
where:

D = (p+ 6P —in +435) + 657

The cross-correlation function CXY () may now be obtained
from the real part of the inverse Laplace transform of egn.
(33), i.e. from the real part of:

( x) 2 12
where
b= T+ S, — e 0
and

a = ¢ +o5,
Note that both the real and imaginary parts of Co(#) vanish

at ¢ =0, as they should on the grounds that p,(0) is orthogonal
10 w,(0). Similarly:
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coniains the real and imaginary parts of the linear velocity a.c.f.
and

2\?
CHD = (wi)e“‘”{cds‘[(b —z) t]

o|b-5)"
-1} 1

4
of the angular velocity a.c f.

In order to compare eqn. (35), for example, with the computer
simulation results we used the identity:

sin{@a + ib) = sina cosh b + i cosa sinh b (38)

and the N A.G. computer routines AGIAAA and AGIACA to
evaluate the real part of egn. (35). The function:

Real [CX(2)] Hew?? (39)

may then be compared directly with the normalised c.c.f.’s from
the computer simulation.

In Figs. (2a) and (2b) we have illustrated function (39) with
the test parameters ¢35 = 1.0 x 10*?s™! = ¢7%_ In these curves
we have kept the ratio w,/¢;), constant. A number of points
emerge from the illustration in Figs. (2a) and (2b).

1) The envelope of the oscillations, marked with dashed
lines in Figs. (2a) and (2b), remains constant for constant
w;/m.

2) It is possible to observe the function C; even for values
of ¢32, much smaller than ¢ or ¢37,..

3) CX(t) vanishes, as it should, at +=0 and >0 At
intermediate ¢ the normalised amplitude of the function is
similar to that from the computer. (see Appendix A).

The overall shape of Real [C;2(#)] in Figs. (2a) and (2b)
is similar to that from the computer simulation (fig. (1)) but
differs in that the initial slope at z =0 is not zero. Also, for
constant w,/¢%Y,, the amplitude of Real [CZ*(r)] /(w?) decreases
monotonically with decreasing field strength. (The computer

* simulated function goes through a maximum at intermediate

(36)

(Pow —iwn _0/2)

( b~ aZ[ 4)]/1

e g

=
> P

IS Y oad

Fig. 2. a) The function C5/(w3) test panmetexs ¢w Py = 1013871,
6= 0.9 X 1025715 1, =180 X 107571 ———— g, = 0.09 X
'owy, =1.8x107s7, The osci]lation envelope. b)

xoli
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field strengths.) These are both consequences of the Markov
approximation.

The constancy of the oscillation envelope for constant
wn/¢hY, is a useful check on the self-consistency of our calcu-
lations for two reasons.

1) The assumption that Y and ¢3), are independent
of time is equivalent to assuming that the correlation functions
in the super-matrix C(t) are Markov in nature. Therefore, for
constant /@], there should be no Grigolini decoupling
effect, which is non-Markov in nature. If there is no Grigolini
decoupling effect then the oscillation envelope cannot vary
with field strength [19].

2) By parity, ¢35, must disappear when w; = 0. Therefore,
there should be some link between @32, and w;. A more com-
plete theory would provide this link in a natural way. The use
of constant w, /¢%, in Figs. (2a) and (2b) (i.e. wy = ¢32,) pro-
duces a constant oscillation envelope for given ¢5g and g5y —
the result expected from point (1) above. The theory is there-
fore simple but self-consistent.

4. Conclusions

1) The Liouville equation (4) has been used to produce
laboratory frame cross-correlation functions between molecular
linear and angular velocity, using a Markov approximation
for the memory matrix of eqn. (6), and an applied electric field.

2) Using the indications of computer simulation, summarised
in eqn. (7)., eqn. (6) leads directly, with some reasonable
approximations to eqn. (24).

This equation is an important physical result because it
shows that the cross-correlation function CX>, (1) may be ob-
served spectroscopically using electric field-induced birefringence
and conventional apparatus. The key result is:

(W) COAP)  (wd)
tos Couw(P) O3

in the Markov approximation.

This shows that C;(7), in the time domain, is a convolution
of C5i (1) and CZ. (1), the angular velocity a.cf.’s in the x
and z direction of the laboratory frame. We may reasonably
approximate these angular velocity a.c.f.’s with the equivalent
rotational velocity a.c.f’s in certain well-known limits, discussed,
for example, by Brot {26). The Fourier transforms of these
rotational velocity a.c.f.’s are far infra-red spectra [ 12] . Therefore,

Cuip) = (29)

i
P A

—— Gip = Penw=10"75" o5, = 0.45 X 10**s7 ;0 =9.0 X 10'357Y;
------ dor, = 0.225 X 10"s7'; w, = 0.45 X 10%%5}

Ordinate: CJtwd) Abscissa: timefps
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eqn. (24) shows that (Cyf p)) may be obtained approximately
but directly from the ratio of far infra-red spectra of a birefrin-
gent liguid. _This_iS_ an example of, probably, many cross-
correlation functions thit_can be observed in a birefringent
medinm in this way.”

'3y The experiniental problem is reduced therefore to simply
comparing spectra in different axes of a birefringent liquid. This
task is at ifs most siraightfarward in an aligned dipolar nematic
liquid crystal, which becomes highly birefringent even with
weak external electric (or magnetic) fields. It is well known that
the dielectric loss, for exaniple, is very different in the x and z
axes of an aligned dipolar nematic, and it follows from eqn. (24)
that C5>, must, therefore, be of key importance in the dynamics
of a liquid crystal. Future computer simulations will be of great
interest in this respect.
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Appendix A

In this appendix we compare the analytical and simulated
Co() and CXX(1) ccf. at 2.8kT by fitting the simulated
C%.(t) function, giving ¢%%,, = 6.4THz; w, =6.0THz. For

425

025

Fig. A(1). Simulated and apalytical C)0ft) and Claf). (1) GodD),
simulated; - ----- analytical theory (R.H. scale). (2) As for (1), CoA1).
Ordinate: Normalised c.cf.; Abscissa: time/ps

10— T : T

05

s

1.2-—-1
Nl

Fig. A(2). (1) (WD wz (0N, (2) {we(t)w (0)/(w3) the simulated
angular velocity # and 1 to the electric field. ------ (3) and (4); As for
(1) and (2), respectively, analytical theory.

Abscissa: time/ps

Ordinate: Normalised c.c.f.;

0 06 T2

Fig. A(3}). As for Fig. (A2); linear, centre of mass, velocity a.c.f.’s.
simplicity, it was then assumed that ¢35, = ¢35, = ¢ = ¥y
and the other results were generated by varying 657, only. Figs.

(A1) to (A3) are for ¢3), = 9.0 THz. Both the analytical and
simulated cf’s in Figs. (A1) to (A3) are produced self.

Physica Scripta 31



%L&Mx._

comsistently—For—these—parameters the analytical c.cf.’s are
greater in normalised intensity than the simulated c.c.f.’s

(* 635¢:f~+0:09);and-less-oseilletory (because of the Markov
strpcture of ¢). The birefringence in the simulated and analyti-

cal-ppgular-veloeity—a-e-f 3-in-the-same-sense (Fig. (A2).), but
this time the analytical result is the smaller in magnitude. In Fig.

(AS)—&%M&B&B—M—MO‘HHW in the simulated

linear velocity a.c.f. which, as >0, is in the same sense but
mych smaller, this time, than the Markov analytical result.
Overall, therefore, both theory and simulation point clearly
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towards the way to measure Col(f) and C35(f). We note to
finish that: i) the analytical theory used here is the simplest
possible (with no time dependence for ¢), and can be improved
with the methods of Grigolini et al.?* ii) An entirely analogous
theory could be constructed for {v(¢)u*(0)). By computer
simulation, the dominant element is (2,(#)i2,(0)). In consequence,

the birefringence in {(i(t)-1i(0)) is opposite in sense to that in
{w(?)* o (0)) for the same z axis electric field. This could be
picked up directly and accurately using polarized probe carcino-
trons as far infra-red birefringence at different spot frequencies.



