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ABSTRACT

The Sturm-Liouville equation from Budo’s Theory of diffusiom in the
presence of potential wells is solved numerically for the normalised complex
polarisability across the complete range of well depth (Vo/kT) from zero to
effectively infinite. For Vo/kT = 0 and Vo/kT = = a Debye process 1s recovered,
in excellent agreement with available analytical limits. At intermediate
Vo/kT the original Debye process for Vo/kT (free diffusion) is supplemented by
a further loss process on the high frequency side. The numerical method used
allow us to investigate the origin of this process in terms of the eigenvalues

and eigenfunctions of the original Sturm-Liouville equation.

INTRODUCTTION

Recently, the Budo theory [1,2] of interacting dipoles on a diffusing
molecule has been considered again by W.T. Coffey and co-workers [3] in the
context of the theory of the itinerant oscillator [4,5]. This analysis leads

to an interesting numerical problem [6] involving the Sturm-Liouville

equation:
Z," (L + e (0) - q>2(e))zA =0 (1)
v!
(8 = — ; V= ~Hyu, cos )
2kT
= - Vo cos 8

Equation (1) is insoluble analytically, except in well-defined limits and the

purpose of this paper is to provide the numerical solution for the complete
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range of potential energy Vo, the well-depth parameter. In eqn (1), ZX are
eigenfunctions and A eigenvalues of the Sturm-Liouville equation. The
differentiation in eqn. (1) is with respect to the variable 6. My and M,
are the two interacting dipole moments. Results are given in terms of the
complex polarisability in the range Vo = O (free diffusionj to Vo > «, where

the dipole-dipole interaction is so strong that the two diffusing dipoles are

locked.

COMPUTATION

The Sturm-Liouville equatioun (1) was solved with a numerical method
developed by Hargrave and Pryce [7,8] and implemented [3,6] in earlier work
on the original Budo model. The numerical algorithm provides eigenvalues and
eigenfunctions of any self-adjoint Sturm-Liouville system using a shooting
method. The numerical method is found by shooting forward from a point
x = a and backward from a point x = b to a matching point x = c¢. A relative
scaling method is used to improve the numerical behaviour. The eigenvalues are
computed with an absolute error (recorded after the symbol * in the tables of
this paper). The true uncertainty in the eigenvalues is rarely more than twice,

or less than a tenth, of this estimation.

The eigenfunction for a given eigenvalue is computed with a Prufer
transform, upon which the numerical method is based. The method is now
available as the Numerical Algorithms Group routine DOZKEF and is described
in detail in their literature [9]. This routine outputs eigenfunctions at
unequally spaced mesh points 6. Further analysis to provide normalised complex
polarisability curves involves several numerical integrations over the
eigenvalues as described in the literature [3]. For the problem posed by Budo,
this requires seven separate numerical integrations for each eigenfunction with
the specialised Numerical Algorithm Group routine DOLGAF, and therefore
careful control of uncertainty. The end result of these integrations are the
weighting factors recorded in the tables below. Where the weighting factors
become very small, the mesh Z(8) is no longer fine enough for satisfactory
error control of the numerical integrations, and this is marked with an

asterisk in the tables.
BOUNDARY VALUES

It is essential to define the boundary values correctly for a physically
meaningful outcome of our Sturm-Liouville problem. It is not always obvious

what these boundary values are, and the following method has been adopted for
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thelr definition.

1) It has been assumed that the eigenfunction Z(8) vanishes

points e=el and 6=82.

ii) These boundary points have been chosen in such a way that when the

at the boundary

potential term in the Sturm-Liouville equation vanishes, i.e. when the

equation reduces to:

qu + AZA =0 (2)

the eigenvalues A are integers. The integral eigenvalues of eqn. (2) follow

the series 1,4,9,16,..... as shown in the tables. In order to satisfy this

condition, the boundary conditions for the Budo problem (eqn. (1)) must be:

2, (=n/2) =2, (n/2) =0 (3)
By carefully controlling the absolute error in the eigenvalues and relative
error in the various numerical integrations of the eigenfunctions, it is
possible to produce a solution in terms of complex polarisability accurate

to £ 0.1% or better. Therefore, the solution of any Fokker—-Planck [4,5] or
Chandrasekhar [6] diffusion equation reduces to a Sturm~Liouville equation

and therefore to an eigenvalue problem.

The numerical scdlutions were found foxr this work using the CDC 7600
computer of U.M.R.C.C. via remote link to theBangor (U.N.C.W.) computer
laboratory. Depending on the value of parameter such as Vo/kT, a complete
polarisability curve (a sum of up to fifteen integrated eigenfunctions -
105 numerical integrations and 15 separate iterative solutions of the :

Sturm-Liouville equation) could be generated in about eleven decimal seconds ;
of 7600 CPU time. . :

t
DISCUSSTION OF TABULATED EIGENVALUES AND WEIGHTING FACTORS :

Budo Model of Interacting Dipoles in a Diffusing Molecule [1,2]

The eigenvalues ko,kl, ..... ,xn as functions of the interaction energy
Vo/kT are tabulated in table (1), together with the relaxation times T,
defined by egn. (1) for El/c = 0.5 and 2§1/kT = 10_8 sec, where &y and § are
friction coefficients [1,2] on the dipole group and whole molecule
respectively, In the limit Vo/kT = O the eigenvalues are described by the

quadratic series (n+1)2, n= 0,1,2,.... As Vo/kT increases, the zeroth
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TABLE 1
Vo/kT

An 0 0.01 0.1 1.0 5.0 10.0

n=0 1.000 0.990 _ 0.904 _. 0.324 . 0.00L _.  0.000
+7.9x107°  +6.2x10 £6.2x10 +6,2x10 +8,5%10 *5%1072

1 4.000 4,000 _,  4.007 _,  4.662 _,  17.421 37.806
£2.5x10° % £2.5x10 +2,5x10 +2.9x10 +0.001 +0,0030

2 9.000 9.000 9.006 _, 9.611 _, = 26.832 69,788
+5.6x10~%  25.6x10°%  £5.6x10 £6,0x10 £0.0017 +0.0046

3 16.000 16.000 16.005 16.535 30.651 70.547
+0.001 +0,001 +0.001 +0.001 +0.0019 +0,0043

4 25.000 25.000 25.005 25.522 ' 37.970 71.402
+0.0016 +0.0016 +0.0016 +0.0018 +0.0024 +0.0059

5 36.000 36.000 36.005 36.514 49.409 96.204
+0,0023 +0.0023 +0.0023 +0.0023 +0.0031 *0,0077

6 49.002 49,002 49.008 49,511 62.211 110.687
+0.0031 +0.0031 +0.0031 £0.0031 +0.0039 +0.0069

7 64,003 64.000 64.0030 64,507 76.998 120.266
+0.004 +0.0040 +0.004 +0.0040 +0.0048 +0,0075

8 81.001 81.001 81.005 81.008 93.891 134.937
+0.0051 +0.0051 +0.0051 +0.0051 +0.0059 *0,0084

9 100.004 99.994 100.005 100.507 112.818 153.724
+0.0063 +0.0062 +0.0063 +0.0063 +0.0098 +0.0096

10 121.003 120.999 120.999 121.509 133.762 174,107
+0.0076 +0.0076 +0.0076 +0.0076 +0.0084 +0.011

Vo/kT .

1081n 0 0.01 0.1 1.0 5.0 10.0

n=0 0.333 0.334 0.334 0.430 0.500 0.500

1 0.167 0.167 0.166 0.150 0.051 0.025

2 0.091 0.091 0.091 0.086 0.035 0.014

3 0.056 0.056 0.056 0.054 0.031 0.014

4 0.037 0.037 0.037 0.036 0.025 0.014

5 0.026 0.026 0.026 0.026 0.019 0.010

6 0.020 0.020 0.020 0.019 0.016 0.009

7 0.015 0.015 0.015 0.015 0.013 0.008

8 0.012 0.012 0.012 0.012 0.010 0.007

9 0.010 0.010 0.010 0.010 0.009 0.006

10 0.008 0.008 0.008 0.008 0.007 0.006

y(-1/2) = y(w/2) =0

cllc = 0.5; = 10—8 sec

2g1/kT
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TABLE 2
V_O
KT
I, 0.00 0.01 0.10 1.00 5.00 10.00
A=0 2.146 2.158 2.205 2.897 3.640 3.745
+0.006 +6x107% +0.006 +0.004 +0,005 +0.004
1 6.6x107° 6.1x107 2.9%x1072 2.2x107° 4.3x1077 4.7%x1076
+2x10~4 +2x10™% +6x107 +8x1074 +0.03 +0.01
-4 -4
2 1.8x10 4.3x10 0.0059 . 0.29 1.00 0.695
+0.002 +3x1073 +9.5x%10 +0,06 +0.006 +0.007
3 0.02 0.015 0.002 3.6x107°  2.4x107%  2.4x107°
+0.07 +0.07 +0.005 +0.001 £0.01 +0.01
4 * * * 0.047 0.56 0.66
+0,010 +0.10 +0.007
5 * * * 0.0014 1.9x10° 6.3x1078
+0.01 +0.05 +0.002
6 * * * 0.002 0.16 0.238
+0,002 +0.02 +0.002
7 * * * * 2.6x1076  3.0x107®
+0.02 +0.09
8 * * * * 0.034 0.126
+0.055 +0.001
9 * * * % 7.6x107%  2.5x107°
+0.06 +0.30
10 * % * * 0.0049 0.0447
+0.03 +0.01
11 * * % * 1.0x107%  2.8x107®
+0.04 +0.04
12 * * * * 9.8x10°%  0.0151
+0.04 +0.002
13 * * * * 1.4x107%  1.4x107°
+0.03 +0.21
14 % % * * 3.1x10™°  0.0041
+0.05 +0.03

The Weighting Factors and Estimated Uncertainties (After seven numerical

integrations) Ianc Egn

My
B.C.'s

Mesh-nets not fine enough for accurate integration.

= uz = 1.0
-1/2 to /2
Note that IX = 0;

A=2n+1

IA very small
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order eigenvalue AO - 0 but all the others increase. The effect of this
behaviour on the relaxation times T is summarised in table (1). (The times
are defined by repeated numerical integration as described [3] in the
literature). The relaxation time T gradually increases as a function of '

Vo/kT but all the others (i.e. n = 1,2,...) decrease. As Vo -~ =, therefore

there remains a single, finite relaxation time T, only; i.e. the complex
polarisability curve becomes once more Debye type [3,4] because the two
dipoles are locked together and diffuse as a single entity. This is in
agreement with theoretical predictions, because the Sturm-Liouville

equation (1) reduces to an analytically soluble Hermite equation [5] 1in the

limit Vo/kT ~ o.

Table (2) records the weighting factors IX built up by seven numerical
integrations from the eigenvalues of eqn. (1). These integrals are fully
described in the literature [3,6] . 1In the limit Vo/kT * 0.0 only the first
factor, I, is significant, because the dipoles in this limit diffuse
independently according to Debye's equation [41. For all Vo/kT the odd
weighting factors (i.e. for n = 1,3,5,....) vanish and we may restrict the
problem to the case n = 0,2,4,6,.... The factor 12 rises to about 307 of

I, at intermediate values of Vo/kT, but thereafter In+2/In + 0 as Vo/kT —+ =,

The complex polarisability from the Budo equation [1,2] is,finally, a
sum over the even weighting factors and correlation times and the imaginary

part, a'(w), is illustrated in fig. (1) normalised by }I,-

DISCUSSION

It is clear from fig. (1) that as Vo/kT increases, a secondary loss
process appears on the high frequency side of the Vo/kT = O curve. This
: loss process (or complex polarisability, curve) is due to the fact that the
diffusion of the two dipoles Hy and Ky is no longer independent. In the
original model considered by Budo, the two dipoles My and b, are those of
two groups attached to the same diffusing molecule. (Experimentally [10],
%é the process of internal rotation (e.g. of a CH3O—group) could produce loss
?i curves such as those in fig. (1)). However, it is interesting to note that
e the potential energy Vo may originate in the interaction of two dipoles on
; independently diffusing molecules; the director potenfial of a nematogenic
gé environment [11] , from the equations governing the interaction between
f? rotation and translation [12] , and so on. The numerical methods developed
iﬁf. to solve eqn. (1) therefore have a wide range of applicability. The general

i analytical form of the overall polarisability curve is (s is the Laplace variable:
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o’ {w) /o (0)

0_00 ! 1 1 1 1 1 I
7.0 7.5 8.0 8.5 9.0 9.5 0.0 10.5  11.0

Log (w)
Fig. 1. Curves of normalised complex polarisability o' (w/a'(Q) vs. loglo(w)

from the Budo theory behind eqn. (1). Each curve is marked with Vo/kT.

< coseo cos6(t) >

2% 27 - V(8)/2kT
ZA [ J coseocose(t)W(eo)e zx(e)zk(eo)dedeo
i ) ) (&)
VAs
j Weyz 2(e)de (s + KL
o A c
Vo
where  W(8) = exp - ;E (1 - cos9)

i.e, there is a distribution of relaxation times as in fig. (1).

Analytical checks on the accuracy of the numerical results of fig. (1)
can be made as follows. The analytical difference between the relaxation

- 3 - . v o A4 . »
times in the limit v, > 0 (Tfree) and v, (Thind) is given by [5]:
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1 1 kT (5)
?_l;l

Tfee Thind

and the ratio by [5]:

free
Thind _ emax _ 2(1 + Cl/C) (6)
Tiree ™ (1 + 2zy/1)

. -8
The parameters used in fig. (1) were Hy = U, = 1.0, Cl/C = 0.5; 2cl/kT =10

and produce the analytical result:
- . = 0.176
loglO(mfree) loglo(whlnd) 0.17
from eqn. (6).
From fig. (1), however, for Vo/kT = O, 10g10(

20.0, loglo(whind

satisfactory agreement with the limiting (Vo/kT — =) analytical wvalue of

wfree) = 8.48; for Vo/kT =
) = 8.31, i.e. a difference of 0.17(0), which is already in

0.176. This is an important verification that numerical errors have been
kept well within the bounds of acceptability, bearing in mind that each loss
curve of fig. (1) Tequires up to 15 separate numerical solutions of the
Sturm-Liouville equation and therefore up to 105 numerical integrations over
unequally spaced mesh-points, with subsequent accumulation of numerical

uncertainty.

Another check is possible - on the normalised amplitude of the two loss

curves of fig. (1). The analytical results [5] provide:

[k SN ,
Thind = ['EZI (L +2 E_Jl o L
. -1
KT 1
Tfree = [EI a+ ET_) ] (8

The normalised maximum amplitude of the curve o' (w)/o’(0) of fig. (1) is

given by:
Y wt
1" A )\
afw oy /Il | (9)
a' (0) A 1+w?7? by
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TABLE 3
HE
Y TRT
A 0.01 0.10 1.00 5.00 10.00 20.00 50.000
=0 1.000 1.002 1.165 4.355 9.451 19.508  49.547
£8.1x1072 £6.3x1075 £7.5x107° #2.7x107% #7.3x10™% *0.0018 *0.0031
L 4.000 4.001 4.134 7.663 17.637 37.866  97.951
+2,5x107% £0.00026 +2.6x107% +4.8x10™% +0.0011 +0.0018 *0.0062
2 9.000 9.001 9.129 12.352 24.051 55.036  145.406
+5.6x107% +5.6x1074 17.7x107% +0.0015 +0.0048 +0.0048 *0.011
3 16.000 16.001 16.127 19.250 30.067 70,813 191.631
+0.0010 +0.001 +0.001 +0.0012 +0.0019 +0.0049 *0.0083
4 25.000 25.001  25.127 28.205 38.431 84.840  236.871
+0.0016 +0.0016 +0.0016 +0.0018 +0.0024 +0.0053 +0.017
5 36,000 36.001 36,127 39.180 49.134 96.410  280.689
+0.0023 +0.0023 +0.0023 +0.0024 +0.0031 +0.0060 *0.015
6 49.002 49.002 49.127 52.166 61.962 106.630 323.501
+0.0031 +0.0031 +0.0031 +0.0033 +0.0039 +0.0067 *0.022
7 64.003 64.004 64.126 67.158 76.853 119.426 346.686
+0,0040 +0.002 +0.004 +0.0042 +0.0048 +0.0075 *0.0l4
8 81.001 81.002 81.124 84.152 93.779 135.157 404.662
+0.0051 +0.0051 +0.0051 +0.0053 +0.0059 +0.0084 +0.0030
9 100.005 100.008 100.123 103.149 112.727 153.318 442.986
+0.0063 +0.0063 +0.0063 +0.0086 +0.0070 +0.0096 *0.024
10 121.003 121.002 121.123 124.142 133.687 173.720 479.765
+0.0076 +0.0076 +0.0076 +0.0078 +0.0084 +0.011  +0.038
11 144 .000 144,001 144.122 147.140 156.659 196.277 514.592
+0.009 +0.009 +0.009 +0.0092 +0.0098 +0.012  *0.033
12 169.000 169.001 169.133 172.139 181.637 220.934 547.380
+0.011 +0.011 +0.011 +0.011 +0.011 +0.0l4  *0.047
13 195.998 196.000 196.136 199.110 208.619 247.664 577.569
+0.012 +0.012 +0.012 +0.012 +0.013 +0.0l5  +0.036
14 225.001 225.00 225.128 228.111 237.598 276,447 604.325
+0.014 +0.014 +0.014 +0.014 +0.015 +0,017  *0.052
15 255.999 255.998 256.121 259,148 268.598 307.270 626.913
+0.016 +0.016 +0.016 +0.016 +0.017 +0,019  *+0.039
2 2 2
d’y L Y -
;;7- + A 3 + 5 cos x + 3 cos (2x) y 0

with y(0) = 0; y(m) =0
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and in the limit Vo/kT »+ 0.0, there is only one eigenvalue, equivalent to the
welghting factor Io. It is then easy to see that the maximum of
a"(w)/a'(0) is 0.5, because Wt = 1 at this frequency. The numerical result

of figure (1) for Vo/kT is 0.500.

Finally, in the "“locked-in limit" of Vo/kT + =, there is,
théoretically, an infinite number of correlation times, each with its own
weighting factor IA' (This pattern begins to emerge in table (2) for Vo/kT

= 10,0). 1In this case:

o' () ] 0.5 I0 (10)
a' (0) ) I,
max A

The intensity of the normalised complex polarisability curve therefore
decreases with respect to the intensity in the limit Vo/kT = 0. This is
again in agreement with the results from the computer (fig. (1), and tables

(1) and (2)).

Another Sturm-Liouville system of importance which occurs in itinerant

oscillator theory is [5]

2 2 2
é—% +a-X + X cosx+ I cos (2x)1y =0 QL
dx 8 2

[0}

with boundary conditions y(0) = 0; y(m) = O and the numerical methods developed
by Hargrave and Pryce [7-9] produce the eigenvalues A of table (3) for this
system, as a function of a dipole-electric field potential ( y= pE/kT).

It can be seen that small differences in the structure of the Sturm-Liocuville
equation produce quite different eigenvalue patterns (cf egqn. (1); table 1;

and eqn. (11); table (3)).
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