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Diffusion of an Asymmetric-top Molecule in Three Dimensions
v Langevin Equations and New, One-particle Cross-correlation Functions

‘ Myroa Wyn Evans
Department of Physics, University College of Swansea, Singleton Park, Swansea SA 2 8 PP

Langevin equations are developed for an asymmetric-top molecule rotating
and translating as a Brownian particic in three dimensions. The transiational
Langevin equation is written in a rotating frame of reference (1, 2, 3)’ whose
origin remains fixed at the origin of the laboratory frame (x, y, z). On the
other hand, the rotational Langevin equation is written, as usual, in a moving
frame (1, 2, 3), that of the molecular principal moments of inertia. There
appears in both equations a common deterministic variable, e, the molecular
angular velocity, together with terms such as the molecular Coriolis and
centripetal accelerations, which are shown to exist in the laboratory frame
of reference (x, y, z). The structurc of the two equations suggests the
_existence of pumerous, hitherto unknown, si cross-coqrelation
functions, both in frame (x, y, z)-and frame (1,2, 3). This is confirmed in
this paper by computer simulation of two new types of cross-correlation
function involving e, the centre-of-mass linear velocity of the molecule (ie.
a Brownian particle) and its own angular velocity, &. By constructing vector
and tensor products, the symmetry propertics of these cross-cotrelation
functions arc computed and tabulated, both in the absence and presence of
intense external electric field of force.

The three-dimensional diffusion in condensed matter of a rigid asymmetric top molecule
requires adequate consideration of the statistical correlation between its rotation and
translation. It is necessary to develop an adequate analytical theory of rotation and
translation at a single-molecule level before embarking on an N-molecule theory. The
available analytical theories'” of asymmetric-top diffusion frequently make use of
friction cross-coefficients to link the rotational and translational Langevin equations.
This is a method first used by Condiff and Dahler,’ but seems to lead to the result

(o()e7(0))(x,.) # @ (1)

in the laboratory frame of reference (x, y, z). Here o is the centre-of-mass linear velocity
of the molecule at the instant ¢ and e the angular velocity at r=0. The result, eqn (1),
conflicts with the Berne-Pecora theorem:>'®

(l’(l)ﬂT(O))(”',):‘ forall ¢. (2)

Recent computer simulations'-'> have shown that off-diagonal clements of
(o(1)e™(0)) exist only in the frame of reference (1, 2, 3) defined by the principal molecular
moments of inertia. This frame of reference both rotates and translates with the molecule,
and there is a subsequent need to develop an analytical theory for (o(1)e”(0)) in this
frame. This paper aims to develop Langevin equations'>* for this purpose and to use
computer simulation to investigate the nature of new auto- and cross-correlation func-
tions suggested by the structure of these equations. It is shown by simulation that
numerous new correlation functions indeed exist both in frames (x, y, z) and (1, 2, 3),
and these can be used to investigate much more completely the nature of three-
dimensional asymmetric-top diffusion in condensed molecular matter.
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68 Cross-correlation Functions for the Asymmetric Top

_{t is of considerable interest to examine some correlation functions of higher order.
We. choose initially some functions suggested by the important role of the Coriolis
acceleration ‘in rotational dynamics.

Amalytical Theory

Consider a frame of reference (1, 2, 3)° whose origin is the same as that of the laboratory
frame (x, y, z), but which rotates'® at an angular velocity @. This is the same as the
angular velocity of the diffusing molecule defined with respect to frame (x, y, z), so that:

[®@])(xy) = [®])0.23) = [@]a.23y- 3)

Welabel (1, 2, 3) as the ‘rotating’ frame of reference to distinguish it from frame (1, 2, 3),
the ‘moving’ frame that both rotates and translates.'’"'* Frame (1, 2, 3) is defined as
rotating with respect to (x, y, z) with the molecular angular velocity es. It follows
immediately that the reverse is true, i.e. frame (x, y, z) is rotating with respectto (1, 2, 3)’
with the same angular velocity. The only difference between the frame (1, 2, 3) is that
the origin of the latter is fixed at the centre of mass of the diffusing molecule, and this
origin therefore translates with respect to the origin of (x, y, z) or (1, 2, 3)". The angular
velocity in frame (1,2, 3) is also @.

An observer rotating in frame (1,2, 3)’ would see only the resultant tramnslational
motion of a molecnle that is also rotating with angular velocity . The observer and
the molecule are always rotating, however, at the same rate, and the observer cannot
therefore be aware of the molecule’s resultant rotation discemible in frame (x, y, 2). To
an observer in frame (1,2,3)’ the molecule’s diffusion seems to be governed by a
translational Langevin equation. The first step in the analysis tirerefore consists of
writing this in frame (1, 2, 3)’, which is a ‘non-inertial’ frame of reference'’ with respect
to (x, , z), the static laboratory frame. From clementary dynamics'® it follows that

[o)ixpn=[o+@@xrly sy @
[8)xyn=[0+2mx v +axXr+ax(@x )]s (5)

On the right-hand side of these equations all the vectors are defined with reference to
frame (1, 2, 3)’. On the left-hand side they are defined in frame (x, y, z). In eqn (4) and
(5) r is the position vector of the molecular centre of mass. It is defined by

["](1,1.3)' = ["](1,1,3)'- (6)
The translational Langevin equation in frame (x, y, z) is well known to be
[f’ + ﬂv”](x,y,z) = [ W](x.y,x) (7)

where B, is the translational friction cocflicient, a scalar invariant to any frame transfor-
mation, and W is a Wiener process.*'*"* Therefore, from eqn (4), (5) and (7) the
translational Langevin equation in frame (1,2, 3)’ is

[6+2axrteaxr+ex(@Xr)];as+B[o+ex r](,_z,,-=[W](._2,,y. (8)

In eqn (8) [ W), 2.5y is a statistical process generated from the Wiener process [ W], ,..)
by the frame transformation (x, y, z) ~(1, 2, 3)".

Eqn (8) therefore governs the resultant translational motion of a diffusing molecule’s
centre of mass to an observer in frame (1, 2, 3)’. Note that eqn (8) involves'®"’ (i) the
angular velocity [@]23{=[®)(x,.n), (ii) the Coriolis acceleration [2e X ©],23y,
(iii) the centripetal acceleration [e X (@ X )], 21y, (iv) the ‘non-uniform’ acceleration
[ X r])(; 53y and (v) the velocity [e X ), 2 3y- The appearance of these terms is basically
the reason why there exist certain simple types of'-'*!* statistical cross-correlation
between v and e in rotating (and moving) frames, but not in frame (x, y, 2).
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- Themrotecular angutar velocity e, as noted already, is the same in frames (x, y, z),

12, 3)and(1 2,3). Weknowthatthemoleaﬂesbothmnshtmgandmunng,and

o is governed by both types of motion. A complete description of the diffusional

monon of the asymmetric-top molécule must thercfore involve eqn (8) supplemented

by another Langevin equation describing the resultant rotationa! diffusion, invisible to
an observer in frame (1, 2, 3)'.

This is well known®">** to be the Euler-Langevin equation, which is written in the
moving frame (1,2, 3), and is

L, —(L— L)aw,+ 1,8 0, =1, “’r
L, — (- L)asw, + LBw, = Izwz )
Lo ~(I, — L)oo, + LAsw, =1 W .

Everything in eqn (9) is defined in frame (1, 2, 3). 1,, I, and I; are the principal molecular
moments of inertia; ,, @, and o, are the components of [e), 13, and W,, W, and W,
are components of the rotational Wiener process. The components 8,, 8, and 8, of the
rotational friction tensor are assumed to be diagonal in the same frame (1,2, 3), as
usual. Eqn (8) and (9) constitute a complete description of the diffusion of an asymmetric
topthatlssnmultaneouslyrotaungandmslaungmthreedlmensmm They can be
generalised to involve memory functions’® in order to try to link them with the funda-
mental Liouville equation of motion. '

By using the two frames (1, 2, 3)' and (1, 2, 3) it is possible to achieve this description
withouttheuseoffncuonaoss—terms. Eqn (8) and (9) are also consistent with the
Berne-Pecora theorem,'® eqn (2), because in the laboratory frame (x, y, z) they become
statistically independent. Eqn (8) and (9) as writien, however, are not statistically
independent because of the presence in both of the deterministic variable e, which is
the same in both frames, as noted already:

[@).23) =(®)a.25y

New Correlation Fanctions for Molecular Diffusion

The structure of eqn (8) and (9) suggests the development of many new methods of
correlating statistically the net, three-dimensional, translational and rotational motions
of a diffusing asymmetric top, and therefore of achieving a much more complete
understanding of its molecular dynamics (m.d.) than hitherto. This can be illustrated
bycompmersxmulanon,"mdforthspumosewecomdumthspaperthemohonof
108 CH,Cl, molecules using a conventional m.d. algorithm. Before proceeding to this
illustration, however, nnsnntmcuvetonotcthateqn“)and(s)mfullyrevetsiblc

because of the relativity of frame transformation in clementary dynamics. This means
that

[”](1_1'3)'= [ﬂ""ﬂx ’](:"’_z) ( (10)
[8)a2:y=[6+2exstexrtex(eXxr)),,.) (11)

Eqn(lO)and(ll)nmplytheenstcneemthclaboratoryfnmenselfofnewtypesof
accelerations which are encountered in the available theory of molecular diffusion.
These accelerations only appear when the inter-relations between 7, v and @ are
considered and include, forexample,ancwtypeofmoiecuhrConohsaccelmtlon
(20x0)(.,.) (ThnsshonldbedlsnngmshedmreﬁlllyfmmtheveryweﬂknownConohs
acceleration generated in the quantum theory of vibrma:-rotauon,apurely
intramolecular phenomenon.)
Theamocondmfnncnonsofanthehbmatory-ﬁametermsofeqn(w)md(ll)
andofaﬂthemtaﬁngﬁametermsofeqn“)and(S)emt,mdwehaveconﬁmedthls
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hy computer simulation.”® Furthermore, any vector A that is defined in frame (x, y, z)
also enm e (1, 2, 3), the moving frame of the molecular principal moments of
inertia. This can be shown using the general relations'®
T A=A+ e,A, 16 A,
A: = e,_,.A, + CQ’A"i" eer, (12)
Ay=e A, e A e A,
Here ¢,, e, and e, are unit vectors in axes 1, 2 and 3 of the principal moments of inertia

of the asymmetric top. The relations (12) enable us to use computer simulation to
calculate any auto- or cross-correlation in frames (X, y, z) and (1, 2, 3).

Vector Cross-correlation functions

Cross-correlation functions (c.c.f.) can be calculated among the various terms of eqn (8),
in frame (1,2, 3)’, and also in frames (x, y, z) and (1, 2,3). The latter two frames are
pmenable to our method of computer simulation and are used for convenience in this
section. Of the very many possible new vector c.c.f. suggested™*" by the structures of
eqn (8) and (9) we can choose for illustration the following two:

(ea(1) x o(1) - &2(0))

GO = R OO (13)
(ol xwli) - 0(0))
GO ="y 0) - (19)

These are the vector cross-correlation functions between the molecular Coriolis acceler-
ation and, respectively, the same molecule’s angular velocity and linear velocity. These
two c.c.f. do not appear on the analytical theory of molecular diffusion, but it is shown
later in this paper that C,(¢) exists in frame (1, 2, 3) and vanishes in frame (x, y, z). In
contrast C,(¢) vanishes in both frames. Further results of this nature are obtained in
the presence of an externally applied z axis electric field E

Tensor Cross-correlation functions''>"*

A great amount of extra information can be obtained by computing temsor c.cf.,
exemplified by

C;(1)={[w(1) x v(1)}es7(0)) 15)
C.(1) = o(1) x a(1)]o"(0)). (16)
Each element of the c.cf. matrix C;(¢) or C,(?) is normalised. In the laboratory frame
(x, y, z) there are nine ‘clemental’ c.cf.:
(%) (xy) (x2)
»r»x) Ony) On2)
(zx) (zy) (32)

and in the moving frame (1, 2, 3) nine more:
(1,1) (1,2) (1,3)

@n 2,2 23
3D (3.2) (3,3)
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In tﬁinotauon the (x, y) elemental c.c.f. of the matrix C,(1) would be, for example:

{(ea(1) x v(t))e9,(0))
(@3(0)X oL (0)'/?

and-so-on. Similarly convenient normalisations can be adopted in the moving frame
$, 2,3).
“‘ The tensors C;(t) and C,(?) can be investigated in this way by computer simulation
both in the absence and presence of an external, symmetry breaking, electric field, using
methods discussed in the following section.

The trace of each tensor c.c.f. is the equivalent vector c.c.f. mentioned in the preceding
section. This result has been used in this paper as a check for the self-consistency of
the various computations.

CE ()= a7

Cowmputer-simulation Methods and Algorithms

The classical equations of motion of 108 CH,Cl, molecules were solved numerically
with the standard technique of computer simulation,'” at an input molar volume of
8.0%10°m’ mol ™’ and at a temperiture of 296 K. The mtermolecular pair potential
was modelled with the simplest possible 3 x 3 site-site potential,”® consisting of atom-
atom Lennard-Jones and charge-charge terms as follows.

f(CHz—CH,) =705K

o(CH,—CH,)=3.96 A
qcn, = 0.302}e]

f(Cl-Cl) =1735K

o(Cl—C)=335A
ga=—0.151jel. -

The correlation functions were computed with running time averaging over segments
of ca. 1000 records (3000 time steps of 5x 107'* s each.) The noise level in the simulation
can be gauged by the difference between the results from two consecutive scgments.

In addition to these standard field-off simulations a static electric ficld was applied
to the liquid sample® in the z axis of the laboratory frame (x, y, z). This was strong
enough to align the 108-molecule sample so as almost to saturate the Langevin function,
producing the result {e,,)=0.90+0.05, where e, is a unit vector in the p axis of the
molecular principal moment of inertia frame. The m axis is that of the resultant molecular
dipole moment, p. This alignment is produced by the torque p x E on each molecule,
where E is the applied electric field.

After initial application of the electric field the system is allowed to equilibrate, and
subsequent segments of ca. 1000 records used to compute field-on vector and tensor
cross-correlation functions. The heating effects produced by the presence of an extra
field of force are dissipated at equilibrium using the standard methods of temperature
rewalmg,withthetemperamreallowedwﬂucumtebyzsxnthersldeofthemm
input temperature of 296 K. Tlns ensures that the only effect of the electric field is to
increase the potential encrgy,” ie. to make it less negative. The kinetic energy remains
the same®* in the ficid-off and ficld-on cases because the sample is thermostatted by the
temperature rescaling routine. The algorithm is TrI 2.
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normalised cross-correlation function

t/ps
Fig. L. (a) The vector cross-corrciation function
{a(8) x (1) - ©(0))
(v (0w (0)?
fi i 1,2;:3)and (x, y, z)-{icft-hand ordinate scale). The hatched area denotes the
zence between results from two consecutive segments of 3000 time steps each (see text). (b)
(- - -) The vector cross-correlation function
{o(1) xw(t) - ©(0))
(2" (0)Xw*(0)*
for E>0 in frames (1, 2, 3) and (x, y, z) [right-hand (dotted) ordinate scale).

Illustrative Results

The results of this computer simulation show that the vector c.cf. C,(t) vanishes for
all ¢ in both frames (x, y, z) and (1, 2, 3), both in the presence and absence of the electric
field E. The trace of the corresponding tensor c.cf. C,(¢) is thus always zcro, ie. the
three diagonal elements of this tensor c.c.f. are always zero. This has been checked by
actually computing the diagonal elements of Cy(¢) separately.

In contrast, fig. 1 shows that the vector c.c.f. C(t) exists in frame (1, 2, 3) but vanishes
in the noise of the two segments used for this computation in frame (x, y, z). This result
is true also in the presence of the electric ficld E. The ficld-on c.c.f. are also illustrated
in fig. 1. The trace of the equivalent tensor c.c.f. C (¢) is therefore finite in frame (1, 2, 3)
both in the presence and absence of an external electric field E

Tuming now to the off-diagonal c.cf. of tensors C;(¢) and C,(t) a considerabfe
amount of new statistical information becomes available about the dynamical interrela-
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Table 1. Symmetry patterns for single-molecule tensor c.c.f.

correlation matrix frame of reference

- (x7.2) (x 7, 2)+E 1,2,3) (1L2.3)+E

5 8 5 5 8 5 + 5 &
Gott) x ()]0 (0)) 5 5 & 5 5 & 5 5
5 8 & 15 5 & 5 +
+ + 5 51  [s
5 + + 5 5
+ & + 5 5

tion between the vectors v and e, in both frames of reference, both in the presence and
absence of an external electric field. This information is summarised conveniently in
table 1 in terms of eight 3 x 3 matrices, a total of 72 new cross-correlation functions. In
table 1 the symbol 5 means that that particular cross-correlation function vanishes in
the nonse for all ¢, and the symbol + means it exists above the noise for 0=<t<oo. Itis

to note the symmetry patterns of these matrices in the frames (x, y, z) and
(1,2,3).

Themostslgmﬁmtmuksummarmdmublelseemtobethatoﬁ-dmgonal
clements of C;(¢) and C,(¢) exist in the laboratory frame, (x, y, z) in the absence of an
electric field. (Intheptuenceoftheﬁeldtwooﬁ-dlagomldemmtsseemtovamshm
the computer noise, but may exist and be very much smaller in magnitude in this case. )

This means that we immediately have a new result, to supplement the well known'®
Berne-Pecora theorem, egn (2). This theorem is simply stated as

{[e(1) X 0(1)}s"(0)) 20 for0<t<oo (18)

in the laboratory frame (x, y, z). Eqn (18) is a significant result because it is valid directly
in frame (x, y, z) and therefore is a direct measure of the statistical correlation between
v and @. There seems to be no analytical theory in the literature to match these computed
off-diagonal elements, summarised in table 1 and illustrated in fig. 2 both for E=0 and
E>0. The analytical theory of molecular diffusion underpins the interpretation® of
several types of spectra, and theorem (18) implies that these data must be reinterpreted
to account for the interdependence of v and @. Eqn (18) also invalidates Debye’s theory
of ‘rotational’ diffusion,® a historically popular approach to spectral interpretation in
the investigation of molecular diffusion. Eqn (18) shows that there is in fact no such
thing as ‘purely rotational’ or ‘purely translational’ diffusion. It shows that it is impossible
to ignore the direct, mutual influence of v and @ in frame (x, y, z) or in any frame of
reference.

The matrix pattern (table 1) for Ci(¢) changes in frame (1,2,3). For E=0 no
clements seem to exist above the noise of two segments, but for E >0 off-diagonal
clements appear in this frame. None of these results is explicable with contemporary
theories of molecular diffusion. In this context one would have to develop analytical
solutions for eqn (8) and (9), a very formidable problem'>’* bypassed in this paper
with standard computer simulation. Strictly speaking, therefore, any future interpretation
of spectral data on molecular diffusion should be made with computer simulation in
the continued absence of adequate analytical theory in this area of chemical physics.

The symmetry properties of C,(¢) are wholly different from those of Ci(?), as
summarised in table 1. For C,(r) the matrices are slightly more sparse; the most
significant feature is the existence of all three diagonal clements in frame (1, 2, 3) both
in the absence and presence of E. This is implied, of course, by fig. 1, and the normalised
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Fig. 2. (a) Ilustration of the off-diagonal elements of ([(?) % v(#)}w"(0)) in laboratory frame

(x, y,z) for E=0. (b) As for (a), moving frame (1, 2,3). (c) The diagonal elements of the
cross-correlation function ([ v(¢) X e(¢#)]»"(0)) in the moving frame (1, 2, 3) for E=0.
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Fig. 2 (cont)

magnitude of these elements is greater than those of the off-diagonal clements, (fig. 2)
of C,(t). The statistical correlation in this case scems to be ‘concentrated’, therefore,
into these diagonal clements, thus giving rise to the vector c.cf. C(1). In contrast, the
statistical correlation in C,(1) is ‘spread out’ over the off-diagonal elements of the
complete tensor, and the diagonal elements vanish. Therefore the vector product C,(¢)
also vanishes (in both frames) for E=0.-

If one finally takes into consideration all the various new terms in eqn (8), together
with the well known eqn (9), it is possible to generate many hundreds of new (ie
previously unknown), but at the same time fundamental, single-molecule, cross-correla-
tion functions of time involving the various accelerations and velocities in frames (x, y, z)
and (1,2,3). This simple exercise shows how much has been lost by the historical
reliance on the mathematical convenience of ‘rotational’ diffusion,® where v is undefined
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('Pdthereforerlsalsoundeﬁned) This is true in general for the various condensed
statesofmolmiarmattct

Parity Reversal Symmetry in Frame (x, y, 2)

In an isotropic, achiral medium the hamiltonian is invariant to parity reversal. Ryckaert
et al have shown that this implies the relation

(X(DXT(0))M = M(X(1)X"(0)) - (19)
where
X(I')y=MX().

Here X(I') is dependent on the phase space variable I'™ generated from I’ by an operation
such as parity inversion in frame (x, y, z). Eqn (19) implies that if the parity inversion
symmetry of two variables is different in the laboratory frame, then they are incorrelated
in that frame for all ¢ Thereforé the resulis of table 1 can be explained only on the
basis that the parity of o(1) X «(t) and that of «(0) obey eqn (19) for the non-vanishing
elements of the cross-correlation matrix. For E #@ eqn (19) no longer applics.

The University of Wales is thanked for a Fellowship.
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