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_+“The Diffusional Dynamics of Liquid Methanol

New Cross-correlation Functions
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The application of a new rotating frame theory for asymmetric-top diffusion
to methanol has produced, pia computer simulation, a range of cross-
correlation functions with which to measure the fine details of the molecular
dynamics. Two of these cross-correlation functions have been examined in
this paper together with antocorrelation functions of accelerations such as
that of Coriolis which involve simultaneously the linear and angular motion
of the molecule. The inertia distribution in the free methanol molecule plays
a dominant role in the liquid-state molecular dynamics. For example, the
anisotropy of the inertia distribution in methanol causes one element of
one of the cross-correlation functions investigated to be a hundred times
greater in normalised magnitude than the clement corresponding to the axis
of the least moment of inertia. This type of cross-correlation function is
therefore extremely sensitive to the details of simultaneous rotational and
translational diffusion in a hydrogen-bonded liquid such as liquid methanol
at 293 K.

The rapid increase in power, speed and availability of computer systems has made
Newton’s equations available for the study of condensed-phase molecular dynamics. It
is now possible to release the constraints imposed by the historical dependence on the
theory of Brownian motion.! In no area is this clearer than in the statistical inter-relation
of molecular rotation and translation. This is fundamental physics which immediately
puts the original theory of ‘rotational’ and ‘translational’ diffusion in considerable
difficulties, both conceptual and analytical.? The reluctance of specialists to meet this
problem mathematically is understandable from the complexity of the problem once
we depart from the extreme over-simplifications of Debye. No satisfactory theoretical
treatment has emerged, and the existence of the problem is often ignored by experimen-
talists. It follows that our state of the an in this field is at a primitive level. Part of the
problem is that simple, intuitive ideas in this area lead to large, insoluble, differential
equations and no progress. It is much easier to go back to Newton via the computer.

Computer simulation is already capable of providing much greater insight than some
of the formal diffusion equations available, such as those of Condiff and Dahler,” Hwang
and Freed,* G. T. Evans® and Steiger and Fox.® The latter seem to have found inconsisten-
cies in other papers of this group. It is easy to see that molecules must both rotate and
translate, and that these motions take place simultaneously, but to progress any further
it is essential to find out which statistical cross-correlation functions may be used to
make this quantitative. The first such cross-correlation function (c.cf.) was discovered
by Ryckaert et al’ using the frame of the principal molecular moments of inertia to
correlate the centre-of-mass velocity v and the molecular angular velocity £3 through
the simple tensor product. This c.cf. was discovered by computer simulation, and was
not known previously from the theory of molecular diffusion. This fact alone shows
clearly the extent of the failure of analytical theory. Subsequently some attempts have
been made to patch up the theory® and to form a new analytical framework on which
to construct a coherent explanation of the data now available> " from the computer.
In order to do this it is necessary to re-examine the simple equations at the root of the
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maiter and then to use the computer to explore the existence or otherwise of c.c.f.
composed-of terms which a appear in these equations. This simple but revealing exercise
has been reported recently * for the C,-asymmetric top dichloromethane having C,,
symmetry; and-the symmetry characteristics of a number of c.c.f. have been tabulated.
The original simple c.c.f. discovered by Ryckaert et al’ has been supplemented by
othiers, and it has become possible to begin to explore the dynamics of interacting
molecules in terms of the symmetry group'’ and inertia distribution of the molecule
itself. These results kave also stimulated progress in other directions: analogue circuit
simulation' has been adapted”® to solve the fundamental Langevin equations of the
new theory through the use of electrical circuitry designed especially for this purpose,
and some care has been taken with the proper definition of reference frames in which
to write the equations themselves.

This paper extends the work to liquid methanol. The molecular dynamics are
simulated using a pair potential based on the ST2 of Stillinger and Rahman'® originally
developed for water. An analytical section examines the rotational and translational
Langevin equations in three different frames of reference, with a view to examining
their structure for non-vanishing c.c.f. and also for autocorrelation functions (a.c.f.) of
accelerations, such as that of Coriolis,"” which automatically involve the linear and
angular velocities simultaneously. The time dependence and relative normalised ampli-
tudes of clements'? of these new c.c.f allow us to see clearly the way in which the
rotational motion of the molecule affects the mean position of its own centre of mass,
or alternatively its velocity. This is achieved using the frame (1, 2, 3) of the principal
molecular moments of inertia. Under certain conditions the cross-correlation becomes
observable directly®'® in the laboratory frame (x, y, z), for example in the presence of
an electric field E.

Methanol is a particularly favourable asymmetric top with which to study these
dynamics, because one principal moment of inertia of the molecule is very much smaller'”
than the other two, making it possible to pick out the different kinds of motions by
inspection of dlagonal or off-diagonal elements'**® of non-vamshmg c.cf. tensors in
frame (1, 2, 3). It is anticipated that these dynamical mosaics will provide in future a
recognisable picture of phase transitions and related phenomena which cannot be
described with the contemporary theory of molecular diffusion. An example of these
is the simple liquid-to-crystal phase change, where the molecular dynamics become
highly coherent over a very small interval of temperature. It is expected that c.cf.
amplitudes will vary dramatically near the normal melting point. In this paper evidence
is presented for a variation of two orders of magnitude or more between different
diagonal elements of the same c.c.f. in liqguid methanol at 300 K. The c.cf. are therefore
extremely sensitive to the fine details of molecular dynamics, much more so, in this
context, than simple a.c.f. such as those of the resultant angular or linear velocity in
the laboratory frame itself.

The Langevin Equations in Different Reference Frames

Whatever the frame of reference, there should be a link between the translational
Langevin equation and the rotational counter-part when written for the same dxﬁusmg
asymmetric top. This link has been forged rather artificially in the literature’® using
the concept of cross-coefficients of friction and cross-diffusion coefficients. However, it
is not necessary to use this idea in any frame. For example, in the laboratory frame the
rotational Langevin equation is

J(D)+Pgr - IJ(1)=T(1) 1

where
J=3 msx(Dxr) (2)
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is the molecular angular momentum in the laboratory frame. Here m, is the mass of
atom of the molecule and r; is the position of each atom in this frame, relative to
e molecule’s centre of mass. The time derivative J is

. o d
J=§ myr; x;;((lxr,-)
=ZMXii (3)
=Z_ [mi'ix(ﬂxri)+mirix(axii)]
with
Oxi=0x(Dxr).

The term £2 X #; can be regarded as an intramolecular Coriolis term equal to the centripetal
term 0 x (2 x ;) by the kinematic equation

f;=ﬂx r. (4)

The matrix in eqn (1) is a friction matrix assumed to be definable in such a way that it
contains only diagonal components. T'(r) is a random term which is statistically station-
ary and Gaussian in the simple Langevin equation.' It is a Wiener process with an
infinitely short correlation time:

(T()T7(0))=2D,8(1) ‘ (5

where D, is a 3x3 diagonal matrix termed the diffusional matrix and 5(r) is the delta
function.

If the molecule is simultaneously translating then eqn (1) must be supplemented by
a translational equivalent, usually written in terms of the centre of mass velocity o as

mo(1)+ mB,o(2) = W(1) (6)

where m is the mass of the molecule and B, is the translational friction coefficient {a
scalar in frame (x, y, z)] and W is a Wicner process describing the stochastic force in
the laboratory frame. Eqn (6) can be written as

L mR(0)+B, T mR(1)= W(1) ™
where the sum extends over all the atoms in the molecule. This comes from the basic
dynamical principle that the momentum of a moving object can always be represented

by that of the centre of mass. Comparing eqn (1) and (7) it is clear that time derivatives
of atomic coordinates appear in both, and that the equations are not independent.

Rotating Frame of Referesce

This concept has already been introduced and described elsewhere. The rotating frame
(1, 2, 3) rotates at the on'Fin of frame (x, y, z) with the molecular angular velocity €}.
The elementary dynamics®' of frame transformation then imply the equivalence relations
between vectors defined in frame (x, , z) and (1, 2, 3)":

[0)xy, n=[0+BXR]q 5 3 (8)
[6](::,;, ,,3[6+20x °+ﬂXR+QX(nx R)](l'z_gy‘
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The laboratory frame is rotating with respect to frame (1,2, 3)’ with the same angular
velocity, apd-this implies that the equivalence is fully reversible:

[0]a.23y=[0+BxR],, (10)
[8)0.2.3r=[0-20x0- QA XR+ X (DX R)],, . (11)
For the angular momentum the equivalent transformations are:
[y n=[d]a.2.5r (12)
[j](x,y.z)=[j+nx"](l.z.3)' (13)
so that the Langevin eqn (1) in the rotating frame is
[J+QxT+Br-Ia,23r =[T(D]a.25r (14)

and the translational Langevin eqn (6) is
[64+2Q%x0+ A XR+AX (DX R)+L,(0+ X R) 23y =[W())23 (15)

Eqn (14) and (15) are clearly interdependent through the angular velocity @2, which is
the same in the laboratory and rotating frames of reference.

Therefore in both frames the rotational and translational Langevin equations for a
diffusing asymmetric top are interdependent through the simultaneous presence in both
equations of a deterministic dynamical variable or variables. It is not necessary, there-
fore, to link the equations with friction cross-terms. By inspecting the various terms in
eqn (14) and (15) and by using the technique of computer simulation to compute c.c.f.
tensors among these terms selectivity rules and amplitude and time dependence can be
determined*? for any molecular symmetry. This has the advantages described in the
introduction, and also introduces into the analysis fundamental new accelerations such
as the Coriolis and centripetal accelerations which do not seem to have been investigated
by analytical or experimental means in this context.

The Moviag Frame (1, 2, 3)

Finally, in this analytical section we define the use of the moving frame (1, 2, 3) of the
principal molecular moments of inertia in our analysis. The Euler equations of elemen-
tary dynamics are defined in this frame, because the moment-of-inertia tensor is diagonal.
The origin of the moving frame is the molecular centre of mass, where the axes of the
three principal moments of inertia intersect. Thercfore the moving frame rotates and
translates with the molecule, whereas the rotating frame does not translate, its origin
being fixed at that of the laboratory frame. The moving frame is therefore generated
from the rotating frame by a translation of the molecular centre of mass, and the two
frames do not rotate relative to cach other. The advantage of using the moving frame
has been demonstrated by Ryckaert ef al,” and it is possible to define any vector A4 in
the moving frame, including the position vector of the molecular centre of mass, by the
set of equations:

A= Axelx+Ayely+Azelr
A2=Aerx+AyeZy+Are21 (16)
As=A,e;, +Apey, + A,

Here e,, e, and e; are unit vectors in the axes 1, 2 and 3 and the subscripts x, y and z
denote components in the laboratory frame. The c.cf. illustrated for liquid methanol
in this paper have been computed in frame (1, 2, 3). In this frame the definition employed
for the position of the molecular centre of mass is egn (16). Note that the translational
Langevin equation in frame (1,2,3) is

[6+mxv+’v'v=W(t)](l,2'3) (17) \
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where-B;;-the-friction coefficient, is now a tensor: ie. there is no direct reference to the
position vector, in contrast to eqn (15) of the rotating frame (1,2, 3)’. Similarly there
is po direct reference to the position vector in the laboratory frame translational Langevin
¢gn (6). In both these cases the position vector appears only indirectly through the
velocity » and acceleration v, as in Newton’s equation.

Compater Simulation Methods

It is worth providing a fairly detailed description of the computer simulation algorithm,
called Tetra, which was used to integrate the classical equations of motion for 108
methanol molecules with a pairwise additive pair potential based on the ST2. This is
necessary to avoid confusion with the quaternion algorithm also called Tetra; the latter
was recently the subject of a communication® to the CCP5 Newsletter to the effect that
it was valid only for spherical tops. The algorithm used in this work is rigoronslg
applicable to asymmetric tops, and a listing is available on request. it has been checked
against a third, independent algorithm by Ferrario and Thompson (ca. 1981). Our
algorithm Tetra does not use guaternions but operates in Cartesian coordinates. It is
not a predictor corrector.

Rotational Motion

With reference to the rotational motion of the rigid asymmetric top the first step is the
calculation of the torque T,(¢) from the forces on each atom. The torque is evaluated
at four points in time, and denoted symbolically in the algorithm as follows

TXI=T,(1); TXO=T,(t-2h)
TX=T,(t—h); TXA=T,(1-3h).
The net molecular angular momentum is then calculated from the numerical integration
of

J(1)=j' T(7) dr+J(to). (18)

The numerical integration proceeds in four stages as follows. With two points, an
estimate of the torque derivative is possible with

T,(1—h)= T, (1)~ hT'(1)+ O(h?) ' (19)
&d? T (1) =—T~ﬂﬂ:{1(-‘—“ﬂ+ O(h). (20)
With three points:
T(1~2h) =T (1) -2hT;(l)+2h21‘;(r)-l—/ o(h®) (21)
T (t—h)= 1".,(:)—-}|T:,(r)+£2f T;(x)+é(h’) (22)

d_Tl‘.',~3T.,(t)—-41:,(r—h)+ To(t—~2h)
dr 2h

+O(h%). (23)

With four points:
T(t—3h)= T(1) - 3hTy(1)+3 B* T ()—F B> T (1) + O(h*) (24)
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T t~2h)= T, ()~ 2hT'(1)+ ZR T -3 T2 (0)+ O(A*) (25)
T,(t- )= Ty (0 - AT+ 2 T30 -2 T30+ 008, (26)

Solving for the torque derivative gives |
| f; T,,=6ih[u T (1)~ 18T, (- h)+9T(t~2h) 2T (t~3R)J+ O(K))  (27)

with similar expressions for T5(t) and T3(r). Eqn (1) is then integrated with the
numerical series approximation '

4 T () =a+bt+c+dr+0(1*) (28)
which implies
cat L o |
J(t)—-at+—2—+ 3 + n +0(r%) (29)

o
J()—-J(t—h) =I atbrter’+dr’dr
Y

=% (9T () +19T(1—h)- 5T (t—2h)
+ T (1—3h))+ O(h*). (30)

The transiational equations of motion in Tetra are integrated with the standard Verlet
algorithm. The zlgorithm was originally developed in the late seventies by the Royal
Holloway College group, led by Prof. K. Singer.”* This algorithm has been the basis
for most of our simulation work in the five years or so and additional technical
description is available in the literature. > it can also be used for the enantiomers
and racemic mixtures of chiral asymmetric tops.>**

The pair potential for methanol was mimicked with atom-atom Lennard-Jones terms,
situated on the methyl group (treated as a moiety) the oxygen atom and the hydrogen
atom. Additionally, point charges, located as in fig. 1. (the principal moment of inertia
frame definition), take into account the hydrogen bonding. The disposition and ma§nj-
tude of the point charges was such as to reproduce the methanol dipole moment.'>¢
As in ST2 some allowance was made for the fact that there is also a finite quadrupole
moment in methanol, although no attempt was made to reproduce this in magnitude,
because it does not seem to be known experimentally. (The original ST2 concept, by
Stillinger and Ben Naim,”” was designed to use point charges to account for the fact
that water has a quadrupole moment.) The approximation of regarding the methyl
group as a moiety of mass 15 has the eflect of producing the following principal Cartesian
coordinates (in A):

atom x(e;) ¥y(e) z(e;)
H -0974 1.20 0.16
0 ~0.021 0.927 0.0179
Me 0.060 —0.570 -0.0175
q 0.251 1.097 0.380
q Q.141 1110 —-0.401

The two charges marked g above are each of ~0.123]e] disposed tetrahedrally with
respect to the hydrogen and methyl proups around the oxvgen atom. which carries no
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Fig. 1. Ilustration, to scale of the principal molecular moment of inertia axes 1, 2 and 3 relative
to the principal Cartesian coordinates. Axes 1, 2 and 3 intersect at the centre of mass.

charge, as in ST2 for water.'® The charge on the methyl group is 0.104}e] and that on
the hydrogen atom is 0.143|e[. The O—Me bond length used was 1.5 A
bond length 1.0 A. The charges g are located 0.5 A from the oxygen atom. The
disposition of charges was calculated on the basis of ST2 and the relative magnitudes

estimated on information available from an ab initio self-consistent field computation
used elsewhere.”

and the O—H
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The-atom-atom- Lennard-Jones parameters were as follows:
L o(H-H)=24A; &/k(H-H)=211K;
o(0-0)=28A;  &/k(0-0)=584K;

a(Me-Me)=36A;  ¢/k(Me-Me)=1586K

These were taken direct from independent literature estimates®® for hydrogen and oxygen,
and those for the methyl group were initially based on carefully refined values used by
Lassier and Brot™ for t-butyl chloride. Adjustment was needed in the o parameter of
the methyl group from an initial value of 4.0 A to a value of 3.6 A in order to bring the
pressure down to 1 bar for an input molar volume of 40.49 cm® mol™"' at 293 K, the
literature density. ~

With reference to fig. 1 it is clear that the moment of inertia distribution in this
particular, simplified, mode! of methanol is very anisotropic. The three moments of
inertia from our principal Cartesian coordinates are

L=175%x10"* g cm®
I,=353x10"“gcm’
I,=33.6%x10"* g cm®.

These compare with the experimental'® values of, respectively, 6.5762x10™* g cm?,
353159 % 107 g cm® and 34.0710x107*° g cm? so that the effect of replacing the three
hydrogen atoms of the methyl group by a moiety of mass 15 is obvious. In this paper
we aim to take advantage of this anisotropy in the course of computing various c.c.f.
clements.

The time step employed was 5.0x10™** s and correlation functions were computed
at equilibrium using a running time average over segments of ca. 1000 time steps each.
The computer system used was the UM.R.C.C. CDC 7600.

Some New Auto- and Cross-correlation Fanctions

We have computed the autocorrelation functions of the Coriolis acceleration, 23 X o,
the centripetal acceleration €3 X ({3 x R), and the non-uniform acceleration 3 X R both
in the moving frame (1, 2, 3) and the laboratory frame (x, y, z). The existence of these
a.cf. for methanol immediately prove that translational and rotational motion are
inextricably interrelated and also prove the reciprocity relations (8)-(11). Most contem-
porary papers on the molecular diffusion of methanol might attempt to use the Debye
theory, based on a greatly simplified version of eqn (14), and would not recognise the
need to use both the translational and rotational Langevin equations simultaneously.
The result (cxemplified in fig- 2) also implies that all experimental sources of information
on liquid methanol are affected by the inevitable presence of simultaneous translation
and rotation. Very rarely does a scientific paper in this field try to deal with this
quantitatively for the reason that the necessary theory is obscure or missing altogether.
Computer simulation provides a clear answer to this problem, in that it can be used to
build up a particular experimental source of information, such as a spectrum, and then
used self-consistently to look in great detail at the molecular dynamics. It must always
be borne in mind that computer simulation is not in itself an experimental technique,
but an interpretative method based on well defined numerical approximations. These
become useful when analysis becomes difficult or so complex as to be obscure to
experimentalists and non-specialists. The rest of the results in this paper are presented
in this spint.
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Fig. 2. Illustration of the autocorrelation functions of the Coriolis acceleration, 263 x », (a) and
the non-uniform acceleration, £3 % R, (b) in moving the frame of reference defined in fig 1 (——).
In (a) (---) denotes a.c.f. of 2€} X v in the laboratory frame.

The eqn (14) and (15) both contain the angular velocity {} as a variable, dependent
on time, but there is no contemporary analytical technique capable of solving them for
auto- and cross-correlation functions such as the ones described in detail in this paper.
It is possible of course to solve them separately, but that is not the point. The difficulty
analytically is caused by the presence of vector products that make the stochastic
differential equations non-lincar. Add to this the well known limitations,' vis a vis
molecular dynamics, of the class of Langevin equations in general, then the analytical
approach becomes intractable very quickly. This seems to be a fundamental failure of
the theory of diffusion in general, on a basic level, ie. it cannot describe what it sets
out to describe. In the face of this a method has been adopted and described clsewhere'?
of simply inspecting the terms in eqn (14) and (15) and of constructing by computer
simulation c.cf. of many different types between these terms. Of these possibilities,
only a few exist for 1> 0, and the symmetry pattern governing this has been reported.™
The generally valid symmetry rules’ governing the existence in the moving frame and
laboratory frame of the various c.c.f. could not be relied upon to recognize this pattern,
in that some c.c.f. clements that are allowed by symmetry do not in fact exist above the
noise of the simulation, and others do. Therefore it is necessary to compute each c.c.f.
separately for the emergence of a recognisable symmetry pattern. This is a major.
computational task: for CH,Cl,, for example, over 400 varieties were investigated. For
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Fig. 3. Curves 1, 2 and 3 illustrate the diagonal elements of the cross correlation function C, (see
text) in the frame (1, 2, 3).

methanol we restrict ourselves to looking in detail at just two different c.cf. in frame
(1, 2, 3). These are as follows:

_|(R(1)x ﬂ(t)RT(O))]
C“"‘[ REOXDON” L2
(£3(2) x [2(1) x R(1)][£2(0) x R(O)]')]

(@ (OXO*(0)) /X R*(0))/ 1.2.3)
These two c.c.f. are essentially the same type, ie

(0(1) x B(1) BT(0)) 33)
(0*(0))*(B*(0))

but fig. 3 and 4 show that they are different in sign. In each case only the diagonal
elements in frame (1, 2, 3) of the tensor product survive. All elements vanish in frame

(x, ,-z) as for CH,CL,. This behaviour contrasts therefore with that of the simple tensor
product between v and £} first correlated by Ryckaert et al’ in frame (1, 2, 3), where

(31)

CA)= [ (32)
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Fig. 4. Two off-diagonal elements of the c.c.f. C,. Note that clement has an amplitude (left-hand
scale) approximately one hundred times greater than element 3 (right-hand scale).

only the off-diagonal elements may exist. Therefore in fig. 3 the curves 1, 2 and 3 denote,
respectively, the diagonal elements:

_([R{2) x £(1)); R,(0))

1)
A= oMo G
a0 IR (£) x £2(1)]1,R2(0))
. d (t) - (RZ(O)X‘)Z(O))IIZ (35)
3y \LR(2) X £2(1)]5R,(0))
G (’) - (RZ(O)(nl(o)>lIZ - (36)

These are very different in amplitude because the angular velocity component in this
frame is inversely proportional to the appropriate molecular moment of inertia. Angular
motion about the 1 axis is therefore relatively much faster than about the 2 or 3 axes.
In contrast, the position vector R is the position vector of the molecular centre of mass
in the laboratory frame projected into frame (1, 2, 3) with eqn (16) and, although the
components R,, R; and R; are not equal, their anisotropy is not as great as that in {3.
The net effect on the tensor product C, is therefore as in fig 3. The amplitude of the
maxima in each c.c.f. component is therefore understandable, approximately, in intrinsi-
cally molecular terms, but the positions of these maxima in time, and the overall shapes
of the c.cf. components, are all dependent also on intermolecular forces, Le. on the
ensemble dynamics, as for a.c.f. The overall picture that emerges from fig. 3 is that
correlation between R x €} and R about the 1 axis is strongest and shows that the motion
of the centre of mass in axis measured through the component 1 of the linear velocity
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R2£)-is-correlated to the component R,(0) and depends on the angular motion of the
‘mojecuie about axis 1 of the principal moment-of-inertia frame. The intermolecular
forces do not seem to be effective in changing the order of angular velocity magnitudes
frrframe (1, 2,3) from that expected in the freely rotating asymmetric top, i.e. the angular
.velocity about axis 1 is the greatest. As the methanol liquid freezes this situation might
be expected to change as the molecules become locked into the crystal lattice.

The amplitude of the component 3 in fig. 3 is the smallest, and ca. three times smaller
“than that of component 1. This is despite the fact that the moment of inertia about axis
1 is roughly 30 times smaller than the other two which are nearly equal. Therefore the
‘role of intermolecular forces, namely hydrogen bonding, is clearly effective in tending
to average out the angular velocity anisotropy in the condensed phase. In summary,
correlation between R x {3 and R is most effective in axis 1 and least effective in 3.

In fig. 4 this is accentuated considerably through the use of the c.cf. C, which
contains {} to the power three. In physical terms this c.cf. correlates the centripetal
acceleration in frame (1, 2, 3) to the linear velocity {2 X R in the same frame. The
centripetal acceleration around axis 1 is much greater than around the other two axes,
and fig. 4 shows that the 1 component of C, is 100 times greater in amplitude than
component 3. In this respect, therefore, the motion of methanol involving the correlation
between the vector R and the vector 1 in different ways, is highly anisotropic in the
liguid. The reason for this can be traced directly to the anisotropy in the moment-of-
inertia distribution of the free molecule. Cross-correlation functions of this type are
therefore very sensitive to the finer details of condensed-phase molecular dynamics.

Finally, it is necessary to note that there can be no objection to the introduction of
the position vector R directly in to the description of molecular dynamics in liquids,
provided that the origin of the coordinate system is well defined. In the laboratory
frame (x, y, z) the origin is defined through the equations

(R(1))=(R(0))=0
(R(1) - R(0))~>0 as t >0

ie. the mean position of the ensemble is statistically stationary and is zero, and the
autocorrelation function of R vanishes as t—»c0. In other words the molecules are
symmetrically disposed on average with respect to the origin of the coordinate system.
The components of R in the moving frame are generated by a projection on to the three
axes of the principal moments of inertia for each molecule, so that the definition of the
origin of the laboratory frame is unaffected. This forestalls the possible criticism that
the definition of the laboratory frame could be arbitrary, and therefore that the amplitudes
of the c.cf. involving R would be dependent on an arbitrary laboratory frame origin.

The University of Wales is thanked for the award of the Pilcher Senior Fellowship.

References

-
F 4

. W_Evans, G. J. Evans, W. T. Coffey and P. Grigolini, Molecwlar Dynamics and the Theory of Broad
Spectroscopy (Wiley-Interscience, New York, 1982).

1), chap. 5.

. W. Condiff and J. S. Dahler, J. Chem. Phys, 1966, 44, 3988.

. Hwang and J. H. Freed, J. Chem. Phys, 1975, 63, 118; 4017,

. Evans, Mol Phys, 1978, 36, 1199.

. Steiger and R. F. Fox, J. Math. Phys, 1982, 23, 296.

-P, Ryckaert, A. Bellemans and G. Ciccotti, Mol Phys., 1981, 44, 979.

Evans, Phys. Scr. 1985, 31, 419; Physica, 1985, 131B&C, 273.

Evans and G. J. Evans, in Dynamical Processes in Condensed Matter ed. M. W. Evaas, vol. 63
Chem. Phys., ser. ed. 1. Prigogine and S. A. Rice (Wiley-Interscience, Ncw York, 1985).
Evans, Phys. Ren Lenz, 1983, 58, 371.

|

:

org
K]

[
L4

S VRO WMhwN
XRERLC
5?.1

€



M. W. Evans 1979

13 M. W._Evans, Phys Rez., 1984, 30A, 2062.
W. Evans, ﬂ)& Lett, 1985, 88, 1551.

" Phys, ser. angogmeandS.A.Rwe(W’lcy—lmemenee,NewYork,lm)chap.lo
15 LFtom ‘personal communication.
16 F. H. Stillinger and A. Rahman, J. Chem. Phys, 1974, 68, 1545,

17 M. R Sp!egel Vectar Analysis (Schaum, New York, 1959).

18 M. W. Evans, Phys. Ren. A, 1986, 33, 1903.

19 J. K. Vij, C. J. Reid and M. W. Evans, Mol Phys, 1983, 58, 935.

20 W.T.Coficy, M. W. Evans and P. Grigolini, Molecular Diffusion, (Wiley-Interscience, New York, 1984).

21 L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1978).

22 D. J. Tildesley, Newsletter of the S.E.R.C. Collaborative Computational Group No. 5 (CCP5), ed. W.

Smith, (Daresbury Laboratory, 1984),

M. Ferrario, personal communication,

Singer, personal communication.

Evans and M. Ferrario, Chem. Phys., 1982, 72, 141; 147.

Evans and G. J. Evans, J. Chem. Soc, Faraday Trans. 2, 1983, 79, 767.

Evans, J. Chem. Soc, Chem. Commun., 1983, 139.

Evans, J. Chem Soc, Faraday Trans. 2, 1983, 79, 1811.

Evans, J. Chem Soc, Faraday Trans. 2, 1985, 81, 1463.

Evans and G. J. Evans, Phys. Rev. Letr., 1985, 55, 818; Phys. Rev. A, in press.

Evans, Phys. Scr., 1984, 38, 91.

Evans, Phyx Scr., 1984, 38, 94,

Evans, P. L. Roselli and C. J. Reid, J. Mol Lig, 1984, 29, 1.

Evans, J. Mol Liq., 1983, 26, 63.

Evans, J. Mol Liq., 1983, 27, 19.

usck and L. Sobczyk, in Dielectric and Related Molecular Processes, senior reporter M. Davies

. Soc., London, 1975), vol. 3, p. 108 fI, D. Bertolini, M. Cassetari, M. Fersario, P. Grigolini and
G. Salvetti, in ref. (14), chap. 6, p. 225 ff.

37 F. Stillinger and A_ Ben Naim, J. Chem. Phys., 1967, 47, 443.

38 E. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison, Conformational Analysis (Wiley-Interscience,
New York, 1965). )

39 B. Lassier and C. Brot, J. Chim. Phys., 1968, 68, 1723.

EaRUNCEBRIRORE

AMXXXTTIZXEZEX

3

PELEELLLLELE

|

Paper 6/061; Received 5th January, 1986



