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The Mori continued fraction representation of the Kubo response function, truncated at first
order, generates a spectral function which is successful in describing absorptions of non-dipolar
liquids in the high microwave and far infrared regions (1-250 cm~!). There is some evidence that
the equilibrium averages [Ko(0) and K,(0)] inherent in this representation arc both intermolecular
properties, in contrast to the case of pure dipolar absorption, where Ko(0) is a single molecule
property. The correlation function of the derived spectral function is compared and contrasted with
that of the extended diffusion model of Gordon.

The experimental measurements are also compared with a gas phase model of bimolecular
collision-induced absorption, and a “* cell ”” model of the liquid state due to Litovitz and co-workers,
both of which are less satisfactory than the generalised Langevin equation.

This paper aims to explore the advantages or otherwise of using simple models
to describe the far infrared absorption bands observed !-* in non-dipolar liquids at
ambient temperature. New and more accurate data have been obtained over a
broader range of frequencies for the following liquids : benzene, cyclohexane, carbon
disulphide, carbon tetrachloride, trans-decalin and dioxan, a series chosen because
of their possible use in telecommunications technology as standard low loss dielectrics.

In addition to some frequency domain (2-250 cm—*) comparisons of observed
and model absorptions, the assessment is extended to the time domain (0-2 ps) using
the direct Fourier transform 3 of the absorption coefficient per unit path length [x(7)}.
Fourier transforms are computed, where applicable, for:

(i) experimental results; (ii) «(¢) from the gas phase model * of bimolecular
collision induced absorption in linear, spherical top, and symmetric top molecules ;* *
and (iii) «(¥) from the “ cell  model of Litovitz and co-workers.? ¢

First, the time-correlation function of these bands is approximated with the
repeated fraction representation of Mori,” and the resulting functional dependence
of « on ¥ extracted by a Fourier-Laplace transform.

MEMORY FUNCTION FORMALISM

Any absorption band in the infrared, whatever its molecular dynamical origin,
1s a probability distribution of frequencies, C(w), and is related to a correlation
function C(#) by the fundamental statistical theorem :8

C(t) = j: cos wt dC(w) )

t Present address: Edward Davies Chemical Laboratories, Aberystwyth SY 23 I1NE, Dyfed.
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which assumes that the orientational fluctuations of molecules in the liquid state are
representable as a continuous, stochastic process, stationary in time.

Non-dipolar molecules absorb in the far infrared and high microwave frequency
regions because of the latent disorder in the liquid at any given instant, i.e. the fields
of all other molecules in the system induce a small, resultant, temporary (but not
instantaneous) dipole moment on any given molecule. This can be written %' 5 as :

u(t, > S a,.R; )

i n=2
where there are i+1 molecules present, and where the effect of the fields of other
molecules is summarised in terms of tensor sums of point multipoles a;,. The
intermolecular vector is R, and the » = 1 term is absent when the molecules carry
no permanent dipoles. We can now define a correlation function :

c@®) = IZ <u0) « m(1)>

where p, is the induced dipole moment on molecule i at time t. C(¢) is an orientation/
interaction correlation function, dependent simultaneously at time # on the orientation
of a molecule and on all the others in the system.

We now make the assumption that C(¢¥) can be represented by an equation of the
form:

C@t) = —jto K(t—-1)C(r)dz 2

in the expectation that a simple, empirical functional representation of the kernel X
will result in a tractable expression for C(f), and for its Fourier transform C(w).
This type of equation appears in the general Langevin theory 8 of Kubo °® and others
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Fi1G6. 1.—(@) —— exptl.!® absorption for Nz(l) at 76.4 K; ———eqn (9) with the parameters of the

table ; (b) —— exptl.*?absorption for CO,(I) at 273 K, ~ - —eqn (9) ; (¢) —— exptl.?° absorptions for :

A, methane (rotator phase I) at 76 K, B, methane (liquid) at 98 K, - — - eqn (9) with the parameters
of the table; (d) — exptl.?! absorption for (CN)2(l) at 301 K, — - —eqn (9).
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which is used to describe statistically the rotational and translational fluctuations
of particles in condensed phases.

A particularly useful extension of eqn (2) has been developed by Mori,” who
regarded the set of kernels Ky(¢), ..., K,(f) as obeying the set of coupled Volterra
equations such that :

a 13
a_tKn—l(t) = —f K, (t—1K,_ (1) dt €)]
0
withn = 1,..., N. Taking Laplace transforms :
c(0) Cc(0)
C = = 4
= K® Kl @
p+K(p)

which is a continued fraction approximation to the function C(p), the Fourier-
Laplace transform of a complex spectral function C(iw).
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F16. 2.—(a) © Experimental absorption (this work) for CCls(l) at 296 K, ——~—eqn (9); () ©
absorption observed for benzene (1) at 296 K, ——~eqn (9); (¢) © absorption of CS,(1) at 296 K,

--~—¢qn (9); (d) © absorption of cyclohexane at 296 K. The high frequency proper mode is

extrapolated using a model of collision disturbed vibrators.!> This technique is also used in

(e)and (f), - ~—eqn (9); (e) © absorption of trans-decalin at 296 K, — ~ -eqn(9) ; (f) © absorption
of 1,4-dioxan at 296 K, - - —eqn (9).




4 G. ). DAVIES AND M. EVANS 1197

In this paper, we truncate the series (4) at a level which reproduces very well the
experimental far infrared data (fig. 1 and 2) of several non-dipolar liquids. This
agreement between theory and experimental observation can be taken as an g
posteriori justification for the assumptions embodied in eqn (1)-(3). We have made
no assumptions regarding the mechanism of dipolar induction on the molecular
scale, be this rotational,* 5 rototranslational *° or involving overlap ** of the van
der Waals fields of two or more neighbouring molecules. The intermolecular
equilibrium averages Ko(0), K,(0), . . . yield information only on the ensemble average
effect of the field on a given molecule due to the others in the system. This is
consistent with the fact that the far infrared bands themselves are statistical distribu-
tions of frequency, intermolecular in origin.

The truncation of the series (4) used in this paper is: *?

Ky(#) = K,(0) exp (—71) )
so that:
_K,0)
Kip) = iy (6
and
p*+ py+K,(0)
C(p) = . 7
) = P T KO+ Ko 7K 0) @
The inverse Fourier—Laplace transform of C(p) gives the real part of C(iw) as :
D Ko(0)K,(0)y
Re L] = S 0= T+ e~ Ko+ KiOTF ®
The absorption coefficient, a(w) is then given 12 as:
o(@) = B2 Re [Clia)] ©®

where (go—£,) is the dispersion of the absorption band, and n(w) the frequency
dependent refractive index of the sample (see Appendix 2).

It is not straightforward to relate K,(0) and K,(0) to simple molecular constants
such as the multipole moments of the electrostatic field and the moment of inertia ;
sum rules analogous to those of Gordon '# for the behaviour of permanent dipoles

need to be developed. However, in eqn (9), C(0) is usually normalised to unity, and
Ky(0) and K,(0) have the units of s-2, and y of s~

RELATION BETWEEN Ky(0) AND K (0)

If it is assumed that the classical C(¢) is an even function of time,? 13+ 14 50 that
its Maclaurin expansion contains no odd powers of ¢, then :

t2n
C(t) = a,
® Z ik (10)
Here, a, is usually unity by normallsatlon and successive g, are alternatively negative
and positive. From eqn (4), it follows that :
«© t2"
K, =
o) = 3 % s, (1
© t2n

Ki®) = ¥, s (12)
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given the expansion (10). Thus:

N
okzv = —a4Ny1— Z:l okN—nan 13)

SIC; that %y are known in terms of ay and their precursors. Using these relations,
then:

Ko(©0) = —ay; K,0) = ko = ay—ay/a, (14)
K;(0) = (a3 —aya3)/las(a, —a?)), etc. (15)
If the experimental integrated absorption intensity across the band is woc(v) dv, then,

. . . o
given the expansion (10), the coefficients a,, a, and a; are defined by their spectral
moments, so that :

402 I o] _ _
a, = —-(80_8@) fo oP) dv (16a)
16n2c* = _,

a, = V() dv 165

2= G | ) (16b)
64n*cs = _,

a, = — v a(¥) dv. 16

3 -2 o () (16¢)

Thus one way of estimating the relative magnitude of K,(0) and K,(0) would be using
eqn (12)-(16) with the proviso that experimental and theoretical integrated absorption
intensities be the same. Even if (¢,— &) is not known accurately (as is the case for
the liquids studied here), eqn (12)-(15) give :

2
2

a
las] > i > |ai| for positive K4(0) and K;(0), and thus :
1

K1 (0)] > |Ko(0)].

In this work, we regard K(0), K,(0) and y as empirical parameters, and fit eqn (9)
to the experimental data by Gauss—Newton minimisation of residuals.

EXPERIMENTAL

The absorption spectra were obtained using a Grubb-Parsons/NPL cube interferometer
adapted for phase modulation.1-3: 3 The specimen was held in a RIIC VC-01 variable
path-length cell in front of a Golay SP 16 or a Rollin He(l) cooled detector. These allowed
the range 2-250 cm~! to be examined with signal-to-noise ratios as great as 10°. The
absorption due to water vapour was reduced by evacuation to ~ 10~ Torr.

The power absorption coefficient per unit length [e(¥)] was calculated from the ratio of
the transmission of two different cell lengths. The a(V) values are significant to better than
129, and probably to +1 9, below 20 cm—1. No quantitative data exist (to our knowledge)
prior to ours in the range 2-20 cm™! for these liquids.

The liquids used were AnalaR or Spectrosol standard purified further by fractional
distillation and dried and stored over Union Carbide type 3A zeolite. Purity was checked
by g.l.c. or by comparison with the standard physical constants. Dipolar impurities,
especially water,® must be avoided since they cause significant distortion of the induced
absorption bands, which are relatively weak.

RESULTS AND DISCUSSION

The functions generated using eqn (9) are fitted directly to the frequency domain
experimental data in fig. (1) and (2). The values of K(0), K1(0) and y used are listed
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in the table, with those for liquid methane and the simple linear molecules N,, CO,
and (CN),. In units of 2k7/I; (see below) there is a tendency for Ky(0) and K;(0) to
increase as the geometrical anisotropy of each molecule. The absolute magnitude
of the absorption is given in terms of an apparent (¢o—¢,). This dispersion can be
linked to a bulk “ effective dipole moment **, or, on the other hand,!- 2 to an * effective
molecular quadrupole moment *’ or higher multipole, given some drastic assumption
about the molecular dynamical and electrostatic origin of these very broad bands.
At this stage, we prefer not to make any more assumptions other than those inherent
in eqn (1)-(3).

TABLE 1.—PARAMETERS OF EQN (10) FOR VARIOUS LIQUIDS

40
liquid temp./K l?g crI::Z yUsl2kTy} Ko(Is/2KT) K1(Ip/2KT) (s0—8)
nitrogen 76.4 12.2 10.6 59 37.8 0.005
carbon dioxide* 273 71.2 11.5 8.6 51.9 0.007
CCl, 296 484 14.2 10.9 80.6 0.015
CH,

(rotor phase I) 76 5.34 10.6 14.7 47.9 0.009
cyanogen* 301 155 10.9 14.9 66.5 0.050
methane 98 534 14.5 16.8 5.7 0.007
benzene 296 198 12.8 20.8 100.6 0.023
CS; 296 259 20.3 26.2 170.2 0.026
cyclohexane 296 178 21,1 284 194.3 0.040
trans-decalin 296 1020 22.7 70.7 335.3 0.003
1,4-dioxant 296 160 7.8 104 46.5 '0.060

* Liquids of low density under several atmospheres of the vapour; 1 anomalous behaviour.

The units of 2KT/I;) are used to enable direct comparison with the Ky(0) and
K,(0) of dipolar molecules,!?> where they are more easily related to molecular
constants, and intermolecular parameters such as the mean squaretorque { N?).1* For
dipolar linear and symmetric top molecules, Gordon has shown that :

Ko(0) = 2kT/Iy = —a;.
Also, for linear molecules : &
1/kT\* <(N?
a4 =2 5 +<——'22§
NIy 2415
K,(0) = a;—a,/a,.
It seems reasonable to assume that if sum rules are developed for induced dipolar
absorption, they will involve the coefficients of #2" in units of 2kT/Iy or similar. It
is seen from the table that, in these units, both Ky(0) and, somewhat less steadily,
K ,(0) increase across the series of liquids :
N,, CO,, CCl,, CH,(rotator), (CN),, CH,(Q),
benzene, CS,, clycohexane, and trans-decalin;

so that intermolecular factors, and not merely inertial ones, seem to be involved in
the definition of both parameters. Also |K,(0)] is always greater than [Ky(0)l, so
that the above expansion of the correlation function in even powers of time is not
counter evidenced by our observations. The very satisfactory fits to experimental
data over almost three decades of frequency show that the analytical dependence of
o« upon ¥ is that of eqn (9), but the physical interpretation of Ky(0), K,(0) and y will
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have to be elucidated by further work on the actual molecular mechanisms involved
in the dipole induction (i.e., rotational, translational and overlap modes).

It is informative to note that the memory function associated with C(¢) by eqn (2)
is defined algebraically when the Mori series (4) is truncated according to eqn (5).

We have : 2 (0)
i o P +py+K, 17
C(p) = [p+K(p)] P*+ Py + p[K (0)+ K(0) ]+ 7K (0) an

so that :

_ (p+7)
K@) = K°(0)p2+p7+K1(0) '

Therefore, making the inverse Laplace transform :

K@ = Ko(O)I:e'V'/ 2 (cos at+ 21(; sin at)]

if
K,(0) > y*/4
= KO(O)[e'V'/ 2 (cosh bt+ iyf) sinh bt)] (18)
if
K,(0) <v*/4
= Ko(0)e "2 (1+y1/2)
if
K,0) =y*/4;
where

@* = —b* = K,(0)—y?/4.

Eqn (18) is useful in that memory functions can be calculated easily after K,(0),
K;(0) and y have been found by least squares minimisation. The fit of theory to the
data is usually so satisfactory (fig. 1 and 2) that these memory functions could be taken
as approximating the experimental ones very well. The same is true for the correla-
tion function C(¢f). This has important practical implications because it is usually
very difficult to calculate C(#) by direct numerical transformation of C(w) since
accurate data are needed well below 1 cm~! [we are transforming a(w)/(w?)].

It is possible to evaluate C(¢), the inverse Laplace transform of eqn (17) to give
an algebraic expression for the intermolecular correlation function. It is shown in
Appendix 1 that:

cos ft 1f/a,+Ta,\ . T
c®) = = t - — — oyt 2
®) [1+1"+,B('1+1" )smﬁ]exp(\ alt)+1+rexp( o,t) (20)
where

2a1(2ﬁ2—af)"
" @Gl —p—aj)
—ay =251+ 5, — 73
oy = s, + 52) + 93

B= ;\4—3(51—52)-

with:
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The parameters s, and s, are defined by :

B (4® B\
5o 355 ]
B (4% BX\**
w355

: 2
where A = Ky(0)+K,(0)—7y?/3; B = %(2-;— +2Ky(0)—K 1(0)).

The time expansion of C(z) begins :
2 4

t t
C(t) = 1—(,150 2—!+¢1 4T!— e +0(t5)

i.e., it is even up to the fourth power in time, and is well-behaved at ¢t = 0. Eqn (20)
can be regarded as the next step up the Mori series from the “ M-diffusion truncation ™
Ko(t) = Ko(0) exp (—7?)

which yields ! a correlation function of the form:

T T,

c@) = ; exp (—1t/t,)

L exp (—tfr,)~
1772 T~ 12
where 7, and 7, are correlation times, an equation which is even up to #2 only.

The predictions of the “ cell” model of Litovitz and co-workers ® and (where
applicable) of the model of multipole induced absorption in a two molecule collision®-3
are given as direct Fourier transforms * of a(¥) in fig. 3. Fourier transformation is
a convenient way of manipulating the discrete line absorptions given by the latter
model into a continuous form with time as the variable. Both models have no
empirical parameters which can be adjusted for best fit, but depend on taking a
Lennard-Jones form for the intermolecular potential. This is their only advantage
over the Mori formalism, which at present involves fitting with three phenomenological
variables. The disadvantages are that Litovitz’s model can yield little information
about the intermolecular mean square torque, which is probably the dominant factor
in determining the position and shape of the far infrared band. It is a semi-empirical
treatment in terms of calculating the molecular angular velocity from a consideration
of the deformation of molecular polarisability during a collision, and has no inter-
molecular parameters except those of the Lennard-Jones potential. The same is true
of the two-molecule (gas phase) model of multipole-induced absorption, which, from
fig. 3is inadequate in describing the more complex interactions of the condensed phase.

We thank the Director of Research at the Post Office for permission to publish
this work.

M. W. E. thanks S.R.C. for the grant of a post-doctoral fellowship, and we
acknowledge the helpful comments of one referee.

APPENDIX 1
We need the inverse Laplace transform of :
C(p) = (p*+yp+K\)/[p* + 0%+ p(Ko + K ) +7Ko]- (1.D

Heaviside’s expansion theorem states that if:
E(p) = G(p)/H(p)
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where G(p) has no singularities in |[p| < co0, and H(p) has simple zeros at p = p,,
then:
P2y

1.2

where H(p,) = 0, and H'(p,) is the derxvatwe of H{p)atp = p,. In general, the roots
of the denominator of eqn (1.1) are of the form: 17

P1= —0y; pp = —a;—if; ps = —a,+ip,
so that, using eqn (1.1) and (1.2):
C(t) = (x cos ft—zsin fr)e™ +y e,

The constants x, y and z can be found using the fact that C(¢) is even up to 7%, so
that :

xa1+z[3+oc2y =0 (1.3)
fa, Bui B\, %
3 2y =0, 1.4
( > +s )t 7 ) e =0 (14)
Also, if we normalise C(0) to unity, then :
x+y =1. (1.5)

Solving (1.3), (1.4) and (1.5), we have :

where

_ 20,0*-o)

~ (el —p )
The parameters «,, @, and f are related to X, X, and y by the standard formula for
finding the roots of a cubic given, for example, in Abramowitz and Stegun.!?

APPENDIX 2
In using the relation

w (80 800)

U0) = — @

we are assuming that the molecular ensemble obeys classical equations of motion
(#i —» 0). This is consistent with our basic assumption that Mori formalism is
applicable to the classical correlation function Z {pi(0) - py(H) >. This assumption

~Re [C(iw)]

1
rests on the broad and related generalisations vjvhich lie at the root of our present
understanding of transport properties. These are linear response theory and the
fluctuation-dissipation theorem. Classically, the latter can be derived for a canonical
ensemble using the Liouville equation :

aB _['s (028 _oH o8
dt | 5\9pi 9q; 0q; op

describing the motion of a property B which depends on time ¢ by the intermediacy
of coordinates ¢, and their conjugate momenta p;. Using quantised mechanics the
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Poisson brackets are replaced by the commutator #-![H, B}, and the relatiog
between a classical correlation function { g;(0) « u;(r) > and the quantised analogue

Cpi(©) (D) 5 is
jeiwt {u(0) » p( > do = (1 _C—ﬁm/k'l‘)jela:t O, do.

The quantum mechanical correlation function is real, and contains odd powers of ¢
in its Maclaurin expansion. The classical correlation function contains only even
powers of £, in accord with the time reversibility principle of Onsager.

Mori has shown that the equation of motion of an arbitrary dynamical variable
of an arbitrary system can be transformed rigorously to a linear generalised Langevin
form; and Kubo shows that a subsystem of an ensemble when perturbed, will relax
to thermal equilibrium via the same generalised Langevin equation. Neither the
arbitrary subsystem nor the variable need be quantised. That an ensemble of
molecules as small as nitrogen or methane can be treated with classical equations of
motion is the basis of the technique of computer molecular dynamics, including the
well known simulation of the properties of liquid water, carried out by Rahman and
Stillinger.
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