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The theory of dielectric relaxation of an assembly of molecules containing
rotating polar groups, originally developed by Budd, is extended to
include inertial effects, It is shown that the inclusion of these effects gives
rise to a resonance absorption in the far infrared band of frequencies, To
obtain analytieal formulae for the polarizability and the absorption
coefficient the system is first treated in the harmonic approximation.
Nonlinear effects are then taken account of by using the averaging
method of Krylov and Bogoliubov. Inclusion of these effects indicates
that the frequency of maximum far-infrared power absorption should
decrease as the temperature increases in gqualitative agreement with
ax{;rimantal findings. Also the nonlinear effects cause the angular-
velocity correlation functions to become less oscillatory as temperature
is increased. The present treatment gives rise Lo equations that in the
harmonic approximation are formally similar to those of the itinerant
oscillator model.

1. ISTRODUCTION

Some vears ago Calderwood and one of us (Calderwood & Coffey 1977) made
caleulations on a model of the dynamical behaviour of & molecule in a fluid, which
embodies the suggestion that a typical molecule of the fluid is capable of vibration
about & temporary equilibrium position, The essence of the model (which is now
ealled the itinerant oscillator (10) model after earlier work of Hill (1963), Sears
(1965) und Wyllie (1g71)) is that a molecule may undergo rotational or translational
oscillations in a potential well caused by its nearest neighbours, while the potential
well undergoes Brownian motion, The model is also related to a treatment, given
originally by Budd (1949) for the dielectric relaxation of molecules containing
rotating polar groups. In the original treatment of Calderwood & Coffey (1977) and
in subsequent work (e.g. Coffey & Evans 1978) it was not possible to give explicit
sxpressions for the various correlation funetions of the model. These were
expressed only in terms of the roots of the characteristic equation or secular
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determinant of the system of equations describing the model. 1t is the purpose of
this paper to show how explicit expressions for all the relevant correlation
functions may be obtained in the general case where the masses or inertins of the
molecules are not equal. The corresponding results when the two molecules are
equal in all respects have already been given in closed form (Coffey 1985).

We shall frame our discussion in terms of the Budd {1949) treatment of dielectric
relaxation. (The translational case of interest in the context of thermal neutron
scattering merely requires that we replace the moments of inertin by the masses
of the molecules and the angular variables by their Cartesian equivalents.} Thus
we suppose that a typical molecule contains two dipoles, each constrained to rotate
about a central axis normal to the plane of rotation. The angle of dipole one, whivh
18 of moment of inertia /, and dipole moment g, (relative to the direction of a steady
electric field E) is ¢, and the angle of dipole two, of dipole moment g, and moment
of inertia [y, is ¢,. The potential energy of dipole interaction is V(g, —¢,). Each
of the dipoles is subject to » random torque A,(¢) and a viscous drag torque £, é,(1)
arising from the Brownian movement of the surroundings. At a time { = 0 the
steady field Eisswitched off and thus the system relaxes to a new equilibrium state
in the absence of the field. We wish to ealeulate how the mean dipole moment

M) = {{m(0) &) (mit) )},
= Clu, cos @, (0) +py 008 gy(0)) (x, 008 (1) + g c08 By (1)),
of the system varies as a function of time after the switching off of the field, The
subscript ‘0’ denotes that the ensemble average is to be evaluated in the absence
of the field E. Having calculated M{t) one may determine the complex polarizability

@(w) and thus the absorption coefficient from linear-response theory (Seaife 1971)
via the formula

alw) = o’{w)—ia"{w) = %[M(D)— - j ¥ M) et dl].
L'}

The absorption coefficient & (w) (Np em 1) is then given by
el (w) = we”(w) = wa"(w),

where efw) is the complex permittivity (e"(w) oc ”(w) because for a dilute solution
alw)+2 2= 3; ¢ is the velooity of light),

The other correlation functions that we would like to calculate besides those of
orientation are the angular-velocity auto- and cross-correlation functions, These
are of interest because (a) they may be directly constructed by using molecular
dynamies simulations and (b) they yield, albeit indirectly, the mean-square value
of the angular displacements of the dipoles and are much easier to caloulate than
the displacements themselves. For example, one may show (details in Appendix A)
that (& denotes the Laplace transform operator)

(1/8%) LU0V B 1Da} = (1/9%) L{0G0) = LLIAS) D),

Ay = [l —0)], i=1,2 )
so that the Laplace transform of the mean-square angular displacement may be
t | Np = 868580 dl} = 20 1g e.

where
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directly caleulated from the Laplace transform of the angular velocity correlation
functions. Further, if we replace the Laplace variables by iw in 2{C (1)} we obtain
the one-sided Fourier transform of € (¢) that yields the dynamic mobility. This

is of partioular interest in the application of the model to ineoherent scattering
of slow neutrons where the ¢s are replaced by their translational equivalentst.

2. EQUATIONS OF MOTION OF THE SYSTEM
The equations of motion before the field has been removed are

L +8 b+ Vi~ gl +, E sing, = A, (), (1)
1yt Lo de— V' (b — Bo) + iy B sin gy = A1), (2)

In general for dipole—dipole coupling
Vig,—dy) = — 2V, cos (¢ — o) (1)

where 4 ¥, the difference between the potential energies in the equal and opposite
directions of the moments g, , g, is & measure of the interaction between the groups.
The ease in which the potential has its minimum in the same direction as that of
the moments g, and g, is called, following Budd, the cis case while if the potential
has its minimum in the opposite direction to that of the moments it is termed the
trans case. We follow Budé by always measuring from the position in which
the potential has its minimum value. Results for the frans case may be obtained
from those of the cis case by writing g, = — g, in the cis formulae. The primes
denote differentiation of V with respect to its argument so that Vg, —¢,) =
2 V. sin (@, —¢s)-

In writing down these equations we note that the only dipole-dipole coupling
that is taken account of is that between pairs of dipoles, If this is not done we
are forced to deal with the many-body problem.

Let us now suppose that the steady field, E, is switched off at time ¢ = 0. It is
implicitly assumed that E has been applied for a long time so that equilibrium
conditions have been attained. Thus (1) and (2) become (f > 0)

L +8 b+ Vig,— dy) = A,l0), (4)

Ly 4 &adh— Vi — o) = Aslt). (®)
KEquations (4) and (5) describe a type of coupled pendulum, One would in general,
therefore, expect two normal modes of oscillation of the system. In order to find
these modes it is convenient to introduce

L+l
X L+1, '
7= {,— P (7)

X therefore yields the motion of the sum angle mode and y gives the relative
motion of the two dipoles. Adding (4) and (5) yields

(6)

L +hdy G +ady _ A+A (8)
I|+I. ‘Il+II ‘l|+1.

t The concept af vibration sbout s temporary equilibrium position (termed libration) is
mentionsd by Frenkel (1946) and Frihlich (1949).
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17 .
/6 = 1)/1,, (93
that is,
A=0/1,=4/1,, {10)

then (8) may be written

whereas by subtraction

=}~ (V(2yq) =2V, cony)

i+ i+ V(1 /1, +1/1) sin 2y = HA /1, — A 1), (12)

Thus we see that for these values of the friction coefficients the motion of the
system may be decomposed into the motion of a rotator in a cos 2y potential and
the motion of a free rotator of moment of inertia I, + I, and friction constant per
unit rotational mass #. This factorization makes for great simplification of
subsequent calculations beesuse y and g, unlike ¢, and ¢, are independent random
variables. It also allows the time behaviour of all the correlation functions in the
small oscillation approximation to be found in closed form, The normal modes of
the system consist of one of infinitely low frequency that is the one of the y variable,
yielding Debye-type behaviour whereas the other is that of the y variable of

frequency we = V2V 1/, +1/1,)]. (13)

satisfies

The gquantity (1//,+1/1,) is the reciprocal of the reduced moment of inertia that
plays the role of the reduced mass in the two-body problem of mechanics. It is
convenient to write (13) as

ay = V2V /), (14)

E J =1, L/, +1,). (15)

Equation (13) may be found ecither directly from the equations of motion or by
writing down the Hamiltonian for the undamped motion of the system, For
convenience and in order to avoid confusion later we deduce w, from the
Hamiltonian. We have, in terms of the original variables ¢,, ¢,.

i = Ulﬂ“'t‘tdg“' Vig,—¢s) (16)
which in terms of the new variables becomes in the small oscillation approximation
H o= 31,4 1) 2 4 20, I/, + 1) =2V, (1 — 29%). (17)

Differentiating with respect to time we then find, because y and y are uncoupled,
U +hLx=0, (18)
1+(2V,/J)g =0. (19)

so that 7 executes simple harmonic motion of angular frequency given by (13).

Finally, we note that in the original work of Calderwood & Coffey (1977). ¢, would
correspond to & and ¢, to ¢ in their calculation. Also §, = A, = 0,
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3. CALOULATION OF THE ANGULAR VELOCITY CORRELATION
FUNCTIONS
We shall first treat the angular velocity autocorrelation funetions

Cyy = {¢,(0) 4, (), (20)

Oy = {B4(0) lt)s (1)

and the angular-veloeity cross-correlation function

Oa=0,= <¢|(0, ét(‘))u (22)

s they are easier to calculate than the orientational correlation functions. Again
the "0 subscript on the averaging brackets indicates that the ensemble-average
is taken in the absence of the applied field, E. In terms of our y and y variables '},
becomes

Oy = ((X(0) +a, H0)] %) +a, §(0)]D,
= (¥(0) ¥(0) 7 +a,(0) ¥(1) 3y

2k +a, {01 9(0)4+ aF{(0) 5{1) g, (23)
ere
S SIS = SR PRDH )

Now y and 5 are independent random variables whence

ROy = CR(0)D ((t))g = O, (25)

Cyy = CHO) R(0) Dy +aa(0) 4(E) 3 (26)
and in exactly the same way

Cyz = {X0) X()) g +aFCH(0) (00, 27
e Oy = CRU0) X(0))g —ay ag{H{(0) §(£) 3. (28)

These foregoing results are perfectly general and hold no matter what the form
of the potential, V', the only restrictive condition being the one {,/1, = §,/1,. The
X correlation function may be written down immediately from the known results

for the disc model (Coffey ef al. 1984, pages 90 ef seg). The y angular-veloocity
correlation function is then (where { means |t| from now on)

CROY RU)) g = <) e ™. (29)

The average {}*), 18 found by inspection of the Hamiltonian, (17) above. We must
have (from the equipartition theorem)

B+ 1) %0 = YT (30)

CR0) RN, = 6T/ + 1)) 72, (3t)

The y correlation function on the other hand van only be found in closed form in
the small oscillation approximation. The results for this correlation function in
the small oscillation approximation may be written down immediately from the

Thus

3 Vol 402. A
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results of Calderwood et al. (1976) given in Coffey # al. (1984, page 98) in the
underdamped case. We note from this that

$HO) (1) = 7% e A% (coga, £ — B/ 2w,) sinw, 1). (32)

In order to write down the value of (3*), we refer again to (17). Because y, 5 are
independent we must have by the equipartition theorem

%['“1 It/“l +lt”(f>o = }kT (33)

('fl}u =k7'(f.+fdz’4h Iy (34)
We now substitute all these results into (26)—(28) and find that

Thus

Cll — <él‘o)¢l“)>b - !,kff, e-""'% e-“(m’“‘l“‘fz%‘l sin w, l)] (35)
Cop = (4(0) y6)30 = % e“‘+%e"“(¢mutl '2%. sinw, 4)] (36)
Cra = {0 Balt)), = _,:’TT,’ e —e‘*"(mw.t-,%, sin w, c)] @a7)

We note that ', and (', are oscillatory functions of time. The cross correlation
function may also be an oscillatory function of time, but, unlike the autocorrelation
function, will pass through a maximum before decaying to zero. The angular
frequency of oscillation, of these correlation functions is given by

w, =V (2V/d = 2[4), (38)
where J is the reduced moment of inertia
J=1, L)+ 1) (39)

In conclusion to this section we note that the reduction of the problem of the
dielectrie relaxation of two coupled dipoles to the solution of the free rotator and
the pendulum problem was first given by Schréer for the special case I, = [,
(W. Schrier personal communication 1981, see also Coffey ef al. 198256; Risken &
Vollmer 1982),

4. FOURIER TRANSFORMS OF THE VELOCITY CORRELATION
FUNCTIONS
The Fourier transforms of the Uy essentially give the frequency dependence of
the mobilities of the system. This is of particular interest in the theory of thermal
neutron scattering Sears (1965). The Fourier transform of €, is

’ F (01, (1)) = g}y () — g5, (w)

L+ L\ e 1, (w—off+a'f |
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F{(D(0) alt))) = prggle) — ipgy(w)

_ T | p—iw ], iw|lwf—w®)—iwf)
'1.+1.{ﬂ- ” } Wl

For I, (- et
F D, 0) Dyt g) = pirglw) —ipiy(w)

T ﬁ-in'_iw{lﬂt—w'i—bﬁ]] (42)
L+ L\ +e*  (wj—e®+e'f |

In the application to thermal neutron scattering it is assumed that the rotational
quantities I, and I, ¢, and ¢,, ete., are replaced by their translational equivalents,
In the itinerant oscillator model of Sears (19635), m, corresponds to the mass of the,
encaged particle whereas m, is the mass of the cage of neighbours. Before leaving
this part of the calculation we note that '), at an initial time t = 0 has the value
kT/1, whereas Cy, has the value £7'/1,. It is therefore convenient when plotting
the autocorrelation functions €, and €y, to normalize them by these initial values.
The eross-correlation function, €, on the other hand, has initial value zero as it
must have.

The spectra of the various mobilities are of interest in that they consist in each
case of a pure Lorentzian superimposed on which is a high-frequency resonance
absorption. In each case this resonance absorption will pass through a maximum
that depends on w, and #. The sharpness of this high-frequency maximum depends
on the value of the @-factor of system. Because the y part of the response is that
of a harmonic oscillator one may immediately write down the @-factor. It is simply

o=%= V@V /IR, (48)

Thus the sharpness of the high-frequency absorption depends on the potential
strength, the friction coefficient and the reduced moment of inertia. This simple
expression for the factors on which the sharpness of the resonance depends is &
direct consequence of the factorization of the system in y and y variables,

5 ORIENTATIONAL CORRELATION FUNCTIONS

To caleulate these we make use of a theorem concerning characteristic functions
of Gaussian random variables (Cramér 1970)

(expiX) = exp [i{ XD — (X)) (44)

Because the noise torques A, and A, acting on the system have Gaussian
distributions and because the equations of motion of g in the harmonic approxi-
mation are linear, then 3 will be a Gaussian random variable (linear trans-
formations of Gaussian random variables are themselves Gaussian) and y is
automatically a Gaussian random variable because the equation of motion of
contains no external torques apart from those due to Brownian movement.,
Returning now to our original variables ¢, and ¢,, we wish to caloulate the mean

14
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dipole moment M{t) fullowing the removal of the external field at ¢ = 0. We have,
by definition

Mit) = {(m(0)-e) (mit) )},
= ([, cos @, (0)+ p, cos d,(0)] (%, cos @, (t)+ u, cosdy(1)],
= ui{cos $,(0) cos §, (1)} + 2p, gy (o8 ,(0) cos gy (t)),
+ 3 (008 $,(0) cos gy(£)),. (45)
We now write (45) in terms of the independent random variables y and #.
M(t) = eos y(0) cos ¥(1)}, (uil{cos a, (0} vcosa, y(1)},
+ (sina, p(0) sina, y(1)},]
+ 24, iy [(ovsa, 7(0) cosa, yit)),
— {sina, y(0) sin a, y(f),]
+ p3{vos ay 7(0) cosa, 9(f)), + (sina, 7(0) sin ay pl0)),]}- (46)

In writing (46) we have made use of the fact that y and % are independent random
variebles thus averages like

{cos x(0) cos y(f) cosa, y(0) cosa, y(t)), (47)
may be written
(o8 x(0) cos y(t)), (cosa, p(0) cosa, 7(t)), (48)
while averages like
(cos y(0) sin x(¢) cosa, g{0) sina, (f)), (49)

all vanish. We have also used the fact that for the freely rotating dise
Ceos x(0) cos x(t)), = {sin x(0) sin x(¢)),.

In (46) the terms prefixed by uf and a2 are the autocorrelation functions whereas
the term 2y, x, is the cross-correlation function. We have written the formula for
the cis case. Those of the trans case are found by writing g, = —pu,, thus the effect
of going from cis to trans is simply to change the sign of the crosscorrelation
function of the dipoles.

We now write (46) in a form where the Gaussian theorem given nbove may be
used. We first define

and write

Ay = y(t) —5(0) (50)

ru(t) = {cosa, g(0) cosa, y(t)),+ (sina, y(0) sina, (),
= {cosa, y(0) cos [a, 7(0) +a, Ay]),
+{sina, 7(0) sin [a, 5(0) +a, Ay]},, (51)
which on use of the addition formula,
cos [4{a +#)] cos [Hla—f)] = Hcona + cos 4], (52)
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o ralt) = {cona, Ap), (53)
= Re([<expia, Ay),). (54)

y(t) and (0) are Gaussian random variables, therefore Ay is a Gaussian random
variable. We may now make use of (44) to write

ulf) = Relexp [ia, (Ag), — §ai{(An)* )]l . (55)
According to Coffey ef al. (1984, page 98)
{n(0) ) = {nl0) )
Thus Ay is a centred random variable whenee
My = exp[ —§ai{(An)*),]. (56)

Thus we can write r,, by knowing {(A9)*}, only. To use the results of Coffey ef al.
{1984) it is convenient to substitute for ((An)*), so that (56) becomes

exp{— jail Cy*(0) + *(1) — 2y (0) 5(0)3, ]}
= exp| —af{y*(0)),] exp[al{n(Dylf)}s] (57)

because {y*0)}, = {p*(t)», by stationarity. Before explivitly writing down
{n(0) n(t) ), it will be convenient to evaluate the remainder of {(m(0)-e) (m(l)-€)),.
The term in that expression prefixed by uf is

(eosa, p{0) cos a, 9(l)> + {sina, 5(0) sina, 5{l) ), (58)

Equation (58) is evidently similar to (57). The only difference is that a, must now
be replaced by a,. This completes our discussion of the autocorrelation part of the
mean dipole moment. The crosscorrelation function is the part prefixed by g, u,.

Thisis () = Ccona, 7(0) cona, 7(t)),— (sin a, y(0) sin ay 9(6)),. (59)

As before, we introduce the variable Ay and use the addition formulae. This leads,
in exactly the same way as before, to

ryall) = Ceos [a, p(0) +ay 9(0) 3 = exp{ —i{[a, 9(0) +ay n(()] 3, (80)
On expanding the argument of the exponential we find that
719lt) = exp| —$a} +af) {p™0)),] exp [ —a, ay (pl0)pt)d ). (61)
We may now write down the complete expression for the mean dipole moment as
C(m(0)-€) (m(t)-€)), = O, (t) (] exp (—af{n")q) exp (@]{n(0) 9(0)},)
+ 2, py exp [ —Hai+a3) (5", exp (—a, ay (p(0) 9(t)),)
+u§ exp (—ai(n"),) exp (af{n(0) 7{t)}q)}- 162)

€. (t) is the autocorrelation function (cos x(0) cos y{t)), of the disc model. From
Caoffey et al. {1984, page 80 ef seq.) the value of this is

kT ,
B — - =
*“"P[ hrlpp P -ite ’]’ -
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It is interesting to mention the particular case where the two dipoles are equal in
all respects. One then finds that

{(m(0) e) (mit) &), = 4#'0,(” exp [ — (7)) vosh {5(0) 7(1)},- (64)
This is the result for the ciz case g, = u, = u. The result for the trans case where
L S L

{(m(0)-e€) (m(t) &), = 4p*C, (1) exp [ — {77 4] sinh {3(0) p(t) 5. (65)

We now return to the evaluation of ({0} y(¢)),. We use the results of Coffey ! al.
(1984, page 98) in the underdamped case. Thus

CpO) mit)3q = ¥, =), (68)

where
] z(t) = exp (— M) (cosw, 1+ (}3/w,) sinw, 1) (67)

anc
=B [(Gthyer]

n="a [(41, 1) a7 (68)

Thus
v, = kT/8V,. (69)

We may now write the complete expression for the mean dipole moment in closed
form; that is,

((m(0) -€) (mt) €)), = C,(0) [p] exp[—a] y,(1 —2)] + 4§ exp|—afy, (1 )]

+2p, py exp| —{(af +af) v,] exp[—a,a, 7, z]}. (70)
It is helpful to write down the mean square displacements of cage and particle in
the translational problem. We essentially have to write ((Ay,)*) instead of
((Ag,)*),. Also for translational motion

{(AyD> = <In () —n(0)]%. (T
We agein introduce y and %, where y is defined as before with rotational quantities
being replaced by the corresponding translational ones. y in this case gives the
motion of the centre of mass of the system whereas » gives the motion relative
to the centre of mass. The fact that y and § are independent random variables gives

C(Ay,)% = ((Ax)")o +ai{(Ag)™),. (72)
In exactly the same way we find that _
([M;") = ((AX)'>|+G=<(A?")Q~ (73)

In the translational application {(Ay,)®} is the mean square displacement of the
particle whereas {(Ay,)?> is the mean square displacement of the cage. Substi-
tuting for all the relevant gquantities gives

2kT
M e e
Ay )2 (m, +m,) §*

kT 2m, \*
— -t U | . .
(At—1+e )+2(HV (m,+

x [l —exp(—%‘)(emu] l+£lainw, ¢)] , (T4)

1 Note how the form of the g vorrelation funotion is very strangly affected by the configuration
of the dipoles in the molecule,
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o 2kT L Lo (_"E'_n)(__ﬂ'_ﬂ.n_'
{(Ayg)*) lm,+m.lﬂ‘m‘ 14e™+2 A | e

x[l—nxp(i—gﬂt)(msmlubifzainw,l)]. (75)
wy = v/ (21 /M), {76)
M =m my/(m, +m,). |
The intermediate scattering function is essentially {Croxton 1974)

Fiix, 1) = exp[ -'53-. ((Ay, l’)]. (78)

where x is the scattering vector of the neutrons. The van Hove function may be
immediately caleulated from this result. It is worth noting that the Laplace
transforms of these mean square displacements may be directly caleulated from
the Laplace transforms of the velocity correlation functions {p(0)¥(f)>, and
CH(0)4j{t) ). This is a direct consequence of the theorem

LA ot = j—.e«ﬂm LIOPN (79)

with a similar expression for #{}{(Ax)®),). This completes our study of the
response of the model in the time domain.

. FREQUENOY RESPONSE OF THE MODREL

To compare the model with experimentally observed spectra it is useful to have
formulae for the complex polarizability and by extension the absorption coefficient.
The complex polarizability a(w) = a'(w)—ia"(w) is caleulated by using the linear
response theory formula

1 (“dM _.,

alw) = 5 . i dt, (80)

which we shall use in the alternative form
= L( 10 —3 —lakt s
alw) = w-a {0) = jew I' Mie dt] (81)

or if & denotes the complex frequency

a(8) = k—l-T a'{(l)-—afw M) e~ dt]. (B2)
L (]

Some difficulty is posed in evaluating (82) for the model because of the double
transcendental nature of M(1) as is evident on inspection of {70). A complete
expression for a(w) may be obtained by expanding M(f) in single transcendental
functions as for the torsional oscillator model. Calderwood & al. (1976); Coffey
ef ‘ol. (1984, see page 100). The complete expression for a(w) is, however, very
cumbersome (see Appendix B) and thus does not yield much insight into the
behaviour of the model. In order to obtain exact results it is better to resort to
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numerical evaluation of (82). It should be noted that the y part of the correlation
functions does not give rise to this difficulty since the Laplace transform of c,

may be expressed to any desired degme of ageurncy by a continued fraction
(Scaife 1971). With

2kT

r Ady orm By | (83)
I, +1
C,(t) is of the form h+H &
p s . - (-
exp(—hwin] =explly) X - =rl-tr+p Al (84)
p=e P
Now this function is closely approximated by (Coffey 198s)
" (1—§»)"" [exp (—fypt) — {y exp (- A0)) (85)
o ¥ <005
In what follows we shall assume that
Cylt) = {1 =577 [exp (—fpft) —fy exp (~ f0)] = hl1). (88)

The polarizability arising from the y portion of the response function alone when
calculated from this formula is given by

afs) 74. e 87)
20 A S+ B P

This equation is similar in form to that obtained by Rocard in his 1933 discussion
of inertial effects in the Debye theory of dielectric relaxation (Rocard 1933:
MeConnell 1980).

The » portion of the response is now treated by expanding the y part of (70)
in powers of ¥, and . We then assume that 3], 2* and higher powers of these
guantitics may be neglected. Thus we have

M) = hit) {ufl1 —aty, (1 —z)+ jalyi(l —2)%)
+p3(1 —ady, (1 = 2} +jad vi(1 —2)%]
+ 2u, pof 1 —fy (0] + g+ 2a, 4, 7)
+irilal +ai+2a, a, 2)7)). ~(88)

An analytical expression for the complex polarizability is now obtained by
substituting this approximate expression into (82). We shall now show how the
vomputation of 2(w) reduces to evaluating the integrals

Afs) = n—arho-- dt, (89)
a
B(n)-r(l—x‘)i e di, (80)
0
Cls) = 1-arhe--‘ ar, o1
0
‘
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These integrals may be readily evaluated from the results for b = A(0) = | by using
the shifting theorem of the Laplace transformation, namely

Ple ft)) = Fla+a),

where

LU0} = Fts). (92)

We now show how a(s) may be arranged in terms of these integrals. We consider
the components of 2 due to auto- and eross-correlation functions separately. As
before, the results for the polarizability due to g, can be found from those for g,
by simple interchange of subseripts, Considering the uf term in (88) we arrange
it to read as v =4

A (e [(1 =4, + A8 + (4, — AN 2 — 431 —2Y)]), {03)
where for notational convenience we have written

aiy, = 4,. (94)

Thus

o, (s8) = %{[l —s{l+4, +J})£ﬂ he ™ dl]
+8%:J.aﬁ|l—t'l oW dt+ald,—d,‘)J.mb.ta"‘ dl}. (95)
] L]

We now subtract 4, — 42 from the leading term of this equation and add (4, - 4%)
to the last term. It becomes

,._; o
a.m(.uj-ﬁ{{l—d,-kdf][l—t.[lhe di]

+'%er1 e m+u,—dn[1—arur" dx]}. (96)
or ! '
&, (0) = F((1= 4,4 A1) A(6) + 441 sBlo) + (4, — 43 o). (o)
In the same way
%, 5) = (UA/RT) [(1 — dy+ 43) Al)+ 43 5B(3) 4 (4, - 4D Cls)).  .(98)

This completes our analysis of the autocorrelation function contributions.
Returning to (88), picking off the g, u, term and substituting that into the
complex polarizability formula gives

) = 2301 {11~ ol af 20, 0y, + -+ o8-+ 2, 00

~ [ 1=t + 20,007, il ol 20, ety R e ) (00)
L1}
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that is,

) = Ll (1~ al o), + od + o
—a,a,7,+}a, ayfa} + ad) ¥+ lalalyl)
—-f (1= af+ad) v, +Hal +al) vil e~ hct) dt

—o[7|—mera+ S e ytas By he e a o0

or

) = 28211t o), + 0+ 2y A0

a'(a’-i-n'}y']C(c) +i(a} a,y')[l —aI he™™ dl]}

(101)

Everything has now been expressed in terms of our standard integrals save the
last term. By addition the last term in square brackets in (101) is

[I-arhe"‘dH-cB(a)]. (102)
]

Substituting (102) into (101) and combining the terms together appropriately now
yields

Lo

) = b1~ )y, + i+t + G0t v 400

-[a]a.?..—Ef'tﬂﬂ:wt]ﬂm+b§n{?faﬂlﬂ]- (103)

The complete expression for the complex polarizability is then
als) =a, () +a, () +a, ,[(3) [104)

We note the particularly simple case where the two dipoles are equal in every
respect, Here g, = a, so that 4, = 4,

a,(#) = 20p"/ET) [2(1 =7, +¥]) Ale) + ¥} 5 B(s)]. (105)

This is the result for equal dipoles for the ois case. For the trans case on the other
hand the sign of the cross-correlation function is changed and the complex
polarizability is simply

&(8) = 4(* kT (y, —¥]) Cls).

A seemingly strange consequence of this is that the polarizability for the frans case
appears to possess no purely diffusional component. This is because we have-
ignored the effect of the finite height of the potential barrier, If this is taken
account of there would be Debye relaxation due to crossings of the dipoles over
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potential hills. For further progress we require explicit expressions for the integrals
Als), B(s), C(s). First we note that the complete expression for a(s) in terms of these
integrals is given (after considerable algebra) by

ald) = (1/RT){ () +po)* = 7y [0y gy + 8y pig)* + 2, pyfa, —ay)*]
+71 (0] g +agpg)* + (0] —a3) ) Als)
+ A/ 20T (u, @ + g ad)* sBls)
+L/ET) [y, (@ iy —ay )" — Vil (0 py — a3 114)" — 0, @y i, g0, — 2)*]) C(s).

(106)
7. EVALUATION OF THE INTEGRALS
The value of A(s) is -
__F (107)

(s+{yP) (s+ )

Because A{f) 18 a linear combination of exponentials the value of the parts B(s) and
C'(a) involving x(f), namely

=
f x*h e dt (108)
0

r xh e ™ di, {109)
[}
are best found by evaluating the integrals

rx' e dr
L}

J.mx o~ % dr.

L

and

and

The shifting theorem is then used to work out the effect of multiplying them by
hit). After lengthy algebra we find that

. 2wifs + 412+ iy
Bre) = 1-im {|s+§yﬁ) o Ay + )] (s + byA)* + 380+ + )

Y 2wj(s + 34)
2 (‘+ﬂ)ln+2mun+m!+sp{,+m+~a} (110)

and
| [+ b+ 3B + ) 4 )+ [vful— by A
(s) -3 +yAU i)+l (2004w b (11D)
[(a+ by + Bla+{yf) + o) s+ ) + Bla+ ) + wi)

It is also of interest to consider the values of these integrals when yf goes to zero
(i.e. the Debye time becomes very great). One finds that

L uer2p
B = G A v 2pa vt (s
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and
N -
O = T psvab) S

The high-frequency parts of the poll.riuhilitiea corresponding to cis and (rans
cases, respectively, are (with g, = u,)

w 2wpls + 2

kT (54 ) (8 + 2fs + 4a) 1114)
‘"I
KT &3 fle v o’ (115

When the dipoles are equal in all respects a striking fact is that the resonant
frequency of (114) is of the order 2w, whereas the resonant frequency of (115) is
of order w,, Thus, as one would expect from physical reasoning, the far-infrared
absorption is strongly sffected by the configuration of the dipoles in the molecule.
In order to proceed to the caleulation of the absorption coefficient it is necessary
to write the foregoing equations in the frequency domain with 8 = iw and then
calculate the imaginary parts of the equations because the absorption coefficient,
& (w) is proportional to wa"(w). We first write down the real and imaginary parts
of the integrals A(s), sB(s), C'(s), which separately constitute the polarizability.

The function A(w) is .
Ay = BE =0 = 0B+ oy

2 116
T ) [+ u) P
The imaginary part of this when we define a(w) by a'(w)—ix"(w) so that A(w) =
Allw)—iA"(w) is
& A) = B ) b .
WA +u') (P o+

We next consider iw8(w). The real and the imaginary parts of this function are
(after considerable algebra, iwB(w) = iwl (w) + wB"(w)),

wB"(w) =

y (BRI 1+ - 204 — 1)+ 2B+ y+ ) + o)
_°'"_m ( [$wf —w'+ Gy + )]}
(122 + w®) (B0 4+ )" + ] (o] — w4 FEp (14 {y )T+ w21+ 2y)Y)

ity [24/ + (T4 + w®) (dw — 0* + 3% ) (H1s)
(AT + w®) (47 + w?) [(dof — w® + 3 4 167
wh'{w) =

[y (2 + by + 2N — 81 = Ly) | [4wf —w® + (1 + 1))

—26B(1 + 1) [2%1 + ¥+ 1) + o)
= FF T F0+ b7+ o (A —w+ o1+ )T+ 4wt )

-l [64°(4awf — w* + 357) — 4" A TH* + )] ) (119)
(0" + ) (4% + o) [ (4] — w® + BF%)* + 16as"7]
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In the same way the real and imaginary parts of the function C(w) are given by
(A1 + ) + ) (268° + ) —w™(of + by )
) =ie( 124"+ wi— o) [JyB(1 +{y) + 0 — 0] — 3’1 + 7))
YA+ )+ wi— T+ A1+ LA + wf ~ o) + Bl
LU PP+ ) + w3 vm(4+wtw,—~':+zﬂ'u+;7+|y-n).
A1+ D)+ o= T + B+ 2 + ) — o)+ Bl
({lh'ﬂ'(l +1y) + 3] (2% + ) — wt(u + Jy 7))

[(4+7) (wi—w®) + 251 + Ty + b))
{0+ )+ o =o' T + 0 1+ 2+ ) — ) + 00?f7)

A B+ i)+ g3 - YIHEA +wf— o) (A1 +iy) + o) — "] - SutfR(1L +7l}):
A1 + i)+ o — ' T+ 1+ Y PH 2P + o) — 0°)' + 80?57

respectively. Whence with (108)- (120)

C"{w]—-eﬁ

a'(w) = {1/ RT (g +pg)® — v, [0y gy + 2y 1) + 20, pyla, — ay)* 1+ vil (6] o, +ad gy )°
+iaf—ad)® , py]) A'(w) + (v} /26T (g, 0F + iy af) 'w B (w)
+(LIET) (g py — g prg)* = ¥l (0F jty, — af pig ) — 10, 3y oy g, —0,)¥]) €7 (),

a”(w) = (1/ET) [y + pg) — 7, [lay g a0, + 20, pola, —ay)* |+ 1 e g, +ad py)?
+{ (o3 —af)p, g} A" (w) = (¥}/2kT) (m, o} + py03)* wB'(w)
HILED) (g — g ) =y [ (0] 0, — af py)* — 0y @y i, pgla, —a,)*]) € ().

(121
We then find that the complete expression for the absorption coefficient

¢ \of(w) = wa"(w)
is (multiplied by ¢ for convenience of notation)
el (w) = (1/KT) {{y + pg)* = ¥; [@, o, +agjuy)*+ 20, }‘l(a'l —ay)* ]+ 7 'G“‘l +ai )

UL+ )t e
o) B+ ) ~ g el -5

([h#‘(3+b'+h"?-ﬂ'ﬂ[l P[4} — " + (1 + 571

+H“f‘“§)"ﬁ:l‘:]}(

— 20801 +1y) (201 + ¥ + ") + 0*]
(3R +w?) [A(1 + ) + 0] ([4o —w® + Fy(1 + 1) P+ 402031 + y)¥)

Ot 4 )~ ST 4 ) )
(A +w*) (48 + 0°) [ (4] — w® + 3F5)F + 160°°)

+ Ty (@ oy —agpg)* = yF [(0F gy —af g ) — 0y agfa, —ay ) py gl
i([hﬂ'lﬂ"'iﬂ*‘”ﬂa‘ﬂ]{(w+Wo-ﬁ")

* wt

A (1 +y) + wi—w']— Ba* {1 + ).
AU+l + o — o F + W+ T (2 wi— o) + 0]

AvA( + ) + wi] (287 + wl) — w(wg + v
) (122)

[(4+¥) (0l — ) + 281 + ]y + }r®)]
A+ )+ o= T+ AT+ 77} P + wh— w4 D]
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It is instructive to find the frequencies at which the various functions making up
the absorption coefficient resonate. In order to reduce the amount of algebra we
will simply consider in detail the function s8(5). The behaviour of C(s) may be
inferred in the same manner. The function A(s) is most significant in the microwave
region and cannot resonate as it describes pure frictional relaxation. If we take

4 _ wief [ e+ 40"+ wf)
Eﬂlmlwﬂtwll T Aot (40l —w) + 40

then this function should provide quite & close approximation to the high-fre-
quency part of iwB(w) because the terms in y should all be small, The absorption
coefficient corresponding to this is then proportional to

W't w'+4(F"+wj)
[+ ot | (40 — w?)t + 4ot

For frequencies w > # which condition is satisfied in the rin region, o®(f* + w*)~!
is almost constant. Thus ,
2
. o + 45 + wi)
Flw) = u"p[lw“,—w']%m'ﬁ' - (125)
To find the frequency of maximum power absorption w,,, one must differentiate
the denominator of (125) and then set the resulting expression equal to zero. One

then finds that
@y = 20 v/ (1 =7/ 205), (126)
which by the binomial theorem is approximately
ey | — P /4w]).

This shows how the frequency of maximum power absorption is affected by the
friction. The general conclusion is that the resonant frequency of the Blw) part
of the response is of order 2w, The analysis for the C(w) integral follows exactly
as in the preceding case, One finds that the frequency of maximum power
absorption is approximately that of the w, mode of the system so that

Wy = V(0 —1%) = wy{1 =/ d40]) = w,. (127)

We note that numerical Fourier transformation of M(l) with the fast Fourier
transform algorithm also shows the presence of these maxima at the high frequency
end of the spectrum. The numerical transformation also indicates that the
maximum at the fundamental frequency w, is far more pronounced than that at
2t, and that there are subsidiary maxima at the higher harmonie frequencies but
these are almost imperceptible for typical values of the molecular parameters /,,
I,, f. ete. These harmonics are a direct consequence of the double transcendental
nature of M(l) (see B 4).

These analytical formulae for the spectrum have been obtained on the assump-
tion that the correlation funections making up M(t) in (62) may be expanded in
powers of ¥, and that only terms in ¥, and ¥{ are retained in the expansion. The -
reason for doing this is to avoid the difficulties associated with integrating the
double transcendental functions in (62). IT the damping in the system were zero

{123)

= Flw). (124)
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it would be possible to express the double transcendental functions in (62) as a
Fourier series, the coefficients of which are the Bessel functions of imaginary
argument. The series could then be integrated term by term to yield a complete
expression for the polarizability. Unfortunately, it is not apparent how this may
be done when damping is present. (It is, however, always possible to express a(w)
as a triple sum, see Appendix B.) In view of these difficulties, it is best to resort
to & numerical method such as the fast Fourier transform (applied to (62) and (80))
to find an expression for the polarizability in the general case when y, is not
necessarily small. This is the most practical way of proceeding when comparing
the model spectra with experimental ones,

We further remark that our analysis so far has taken no account of the
non-harmonic nature of the equations of motion of the dipoles. The effects of|
anharmonicity should be noticeable in the ¥IR region of the spectrum. A complete
analysis would require the solution of the Kramers equation for the problem using
the method of Brinkman (cf. Evans ef al, 1982). It is however possible to study
the effects of anharmonicity on the correlation functions when such effects are
small by using the method of the equivalent linear system due to Krylov &

Bogoliubov (McLachlan 1956; Caughey 1963). This is detailed in the following
section,

B. APPLICATION OF THE METHOD 0F KRy LOvV axp BocoLiveov

The analysis just completed assumes that the potential well in which the dipoles
oscillate is infinitely deep. (This prevents 'flips’ in the orientation of the dipoles
or 'escape’ from one well into a neighbouring one. It also does not take account
of the large oscillation effects that may oceur in nonlinear vibrating systems), We
shall now try to assess the principle effects of nonlinearity : that is how changing
the shape of the potential from that of an infinitely deep parabola to a cosine well
of finite depth will cause the spectrum to depart from that of a harmonic escillator.
We use the equivalent linear system concept, which is a development of the work
of Krylov & Bogoliubov on deterministic nonlinear systems (McLachlan 1956). It
appears to have been first applied to stochastic systems by Caughey (1963). The
suggestion that it should be applied to the present problem is due to Marchesoni
{Marchesoni et al. 198s).

We illustrate by considering (Caughey 1963):

§+ P+ wqy +bgly. 4. 1) = fit), (128)

where b is a small constant, f is a white-noise stimulus, It is supposed that # and
b are small in some sense such that the system is lightly damped and weakly
nonlinear. We rewrite (128) as

§+ Beqi oy +ely, w.t) = fit), (129)

where i, is the equivalent linear damping coefficient and w(, is the equivalent
linear stiffness coefficient (both per unit mass) and e is called the error term, If
e is zoro then (129) is linear and is readily solved. The smaller ¢ is, then the smaller
the error in neglecting it. We therefore chose wy, and £, so that ¢ is a minimom.
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Thus the motion should approximate a sinusoid with & slow random modulation
of amplitude and phase, that is

i) = A(0) sin [wg, -+ B(2)]. (130)

The amplitude A(!) and phase ¢(t) are both slowly varying functions of time ; that
s, they do not change appreciably over one cyele of the motion, If one now
minimizes (129) with respect to 2., and w,,, assuming the process is stationary,
one finds that (Caughey 1963)

Beq = B +bugly. 3. /¥, (131)
whq = wi+bygly. ¥, 0/3", (132)

where the bars denote a time average. In our dielectric problem the function g is
non-hereditary ; that is, it does not depend on the past history of the motion. Thus
the time averages may be replaced by the ensemble averages

Beq = B+ 0hply)>/<o*>, (133)
why = wy+b{pgly)) /<y (134)

The g term has been omitted in g because g does not depend on g in the two-dipole
problem, as we shall see presently. If the error ely, §. f) is neglected in (128) the
response is Gaussian if f{f) s Gaussian, The underlying probability density is

Wiy, ) = o (" o) exp[ -5(&5+ )] (135)
2n 2\ T G
Thus if ¢ is neglected (133) and (134) reduce to
Bea = 8. (136)
whq = wl+ b))/ 8. (137)
To apply the method to our present system we write the y equation, namely
i+ Hi+ V(1 + 1 /1) sin 2y = §(A, /1, — A, /1) (138)
. 4+ o sin 2y = YA/, — A/ 1,) (139)
and compare it with (128). By subtraction (139) becomes
74 A1 + wiy + jw (sin 29— 29) = fi1). (140)
Thus
b = juj, (141)
Juy = A /1= A/ 1y), (142)
gly) = (sin 29— 2y), (143)
s0 that '

wly = mg[l +é 4 "i"é!ﬁ:;z”'}'] (144)
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The evaluation of the averages in (144) with the use of (135) always leads to a
complicated power series that does not give much insight into the physics of the
problem. An approximation that gives a simple expression for w,, is

linzq-zq-(iiyl'. {145)

This corresponds to replacing the pendulum equation by the Duffing equation
(McLachlan 1gs6), Thus (144) reduces to

waq = wig[1 87" 20/ <0"2]- (146}
In the Gaussian approximation we have
= o 14
and then (146) becomes o= Ay i)
C— [ — 20" 1,
From (66) Weq wil 1 —2{5" %] {148)
P =11 = kT/BF, (149)
and so
wigq = w1 —ET/4 V] (150)

This indicates a temperature dependence of the frequency of oscillation as first
indicated by Marchesoni ef al. (1985) or equivalently a dependence of the shape
of the decay function on the thermal velocity as noted by Coffey et al. (1982a) and
Reid (1983). This is a direct consequence of the nonlinear nature of the system
and is & manifestation of the lengthening of the periodic time with increase in
smplitude that occurs in nonlinear vibrating systems,

Note that w,, will depend on all powers of 7' the linear dependence is simply
because we have replaced the sine nonlinearity with a cubic one, The energy or
temperature dependence arising from the cubic term will, however, almost always
be the dominant term of the nonlinear behaviour, This temperature dependence
of the natural frequency of oseillation sutomatically implies that the frequency
of maximum ¢ir absorption should decrease as the temperature is increased.

According to (125), then,

Wy T 2ug(1 =y — F*/40}). (1a1)

which decreases linearly with temperature in accordance with recent ex periments
on CH,CL, (Evans ef al. 1982 ; Marchesoni ef al. 1985). Note that this equation also
allows us to plot wy,, .o as & function of barrier height V. Our expression for e, o
suggests that the @-factor of the system decreases with temperature because

to first order in ¥,. This indicates that the sharpness of the resonance peak
decreases as temperature increases. It is also of interest to investigate how the
angular velocity correlation functions are affected by the nonlinear behaviour of

the system. We have
Wyoq = (”:q_*ﬁ‘)i (153)

) oq = V (] —kT/2J), (L54)

or ”
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Thus
{0V = (RT'/4J) e W [cos / (w}— KT/ 2J) 1 — (B/2w,) sin +/ (wi— ET/2J) 1],
(155)
VT = vIkT2), (156)

thus showing the connection between the oscillation and the orbital periods of the
1 variable,

This dependence of the shape of the angular velocity correlation functions on
the thermal velocity is borne out by exsct numerical solution of the pendulum
problem as carried out by Coffey ef al. (1982a) and by Reid (1983). Thus the
Krylov and Bogoliubov method is able to qualitatively reproduce many features
of the full nonlinear solution. It also has the advantage that it allows one to obtain
analytic formulae for the spectrum that is not possible from methods based on the
Brinkman equations, Finally, we remark that our analysis has effectively ignored
relaxation due to barrier crossing by the dipoles, This is taken account of exactly
by the full nonlinear solution based on the Brinkman equations. It may be
incorporated approximately into our analysis by using the method of Praestgaard
& van Kampen (1981) as adapted by Marchesoni & Vij (1985). This will again allow
us to obtain analytic formulae for the spectrum. In a future publication we shall
make comparisons between the present solution and that based on an exsct
solution of the Brinkman equations.
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APPENDIX A CALCULATION OF ORIENTATIONAL CORRELATION
FUNCTIONS FROM ANGULAR VELOCITY CORRELATION FUNUTIONS

To see how this is accomplished we first recall some elementary properties of
correlation functions, IT we define a correlation function C{f) by (A, B wre random

varishies) Ot) = {A) BI0), (A1)
then one may prove that (Evans ef al 1982)
AW BOY) = — (AL Bo)) (A2)
and
CA0) A0y = 0. (A 3)
Also, in the particular case of the autocorrelation function where 4 = B
A Ay = — (A A(0)). (A 4)

In what follows we shall make use of these relations to find & connection between
orientational and angular velocity correlation functions. We first introduce the

Laplace transforms ‘
v ! D, (s) = LU, (0] o) = LIt} (A 5)

Also
L19,(0)) = 8®,(5)— $,(0). (A 8)
Now the Laplace transform of the angular-velocity acr is

LUH0) B, (0)D,) = (,(0) LB, (01,

= {110} [s®,(2) — $,(0) ]y = 8(h,(0) @, (8)>, (A7)
by (A 3). Thus ) - )
{95.(0] ¢|“:'>| - ;(édm-?lsﬁ.(!)}).-
Now " . v
LUD 1 (01D} = {6, (0) @, (a)), = ~ L1<P, (1) $,10) 3o}
= —&{ P, (3) §,(0)34 + {S1(0)),. (A8)
but by (A7) ) )
LU 01,07, = 3, 10) P, 1)) (A9
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that is, i ) )
AL R0V, (D0} = — (P (3) (00 + (SHODo /5 (A 10)
nr "
(1/8%) L1, (0) 6, (61)4) = LLL(AG, )),). (A1
Bimilarly ) )
(1/8%) L{CPe(0) hylt1)g) = $L{(AB,)*D,). (A 12)

Thus we may compute {(Ag,)"), and {(Ag,)*), from a knowledge of the angular-
velocity aces. We now proceed to the caloulation of the orientational cross
correlation function. It is helpful to first write down

FEOCAYN, @y0) = (T + B1)/6— 20,(0) D, (5], (A 15)
because
LCHDPRER TP (A 14)
(PR0)Dg = (PR 2q- {A 15)
We also note the property of cross-correlation functions
(y(0) dylt)2 = {Byl0) b, (1)), (A 18)

Taking the Laplace transform of the left-hand side of equation (A 16) we have
L1UHA0) Bol) o} = ({0 (9P, (51— Bo(0) 1y = 5, (0) @yls)yy (A 1T)

Thus . ) )
(o (0) Pyl8) 3y = (1)8) F{< b, (0) dyll) ) (A 18)
and similarly . ) )
('iﬁ.lﬁ! GI“’))lun - l'l(‘!}y{{ﬁl{ﬂ] #‘IG})II' (A19)
Now by (A 2 .
sl b (Bal01 (1) = = (b () G401, (A 20)

Taking the Laplace trunsform of the left-hand side of (A 20) yields
L{Dgl0) gy (07) = {Pal0) LUA, () 2g = 6{(0) P, (82— ,(0) Be(0)D. (A 21)
Thus with (A 20)
— (D, (8) Pgl0))y = 8yl 0) P, (5)7,— £, (0) Bel0)), (A 22)
and with (A 19)
—;,'-.ficé.lm il = (Pol0) 8,0~ (Bel0) G (OD/0. (A 2)
Whenee
{Pyl0) By (6))g = = (1/8%) L((hyl0) b, (1)) + (1/8) (hy(0) 6, (0) 3. (A 24)
We now substitute (A 24) into (A 13) to get
LLICAY, Bydo) = S+ B/ + (2/57) L((B4(0) (1)) — 2{Py(0) ,(0) /51
Thus (A 25.
L2 B dyro) = K(Pa— ) Dale+11/8%) LGV 1 (0F), (A 26)
where the first term on the right-hand side of (A 25) 18 to be evaluated at ¢ = 0,
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Because the stationary distribution in the absence of an external field is
J= Aexp{—(1/2KT) (1, 3+ I, g3+ @V,/RT 1= }igh,— o' (A 27)
(4 is a given constant) then
I ) .[ e84, iy

by =)y = — ® [wo
I I @~ (VKT g, ~ gy dg, de,

(The velocity-dependent part of the solution simply integrates out.) Now
7 = — )

(A 28)

then (A 28) reduces to
'[m e-‘lil’,.‘tﬂ "‘w. d#

Uy — @) = T.;L : (A 29)
oI gy

We now recall that (a is constant)

rﬂ e " dp = [r/all, (A 30)
%r e dp = -r pre ® dp = —1_,%(2)i (A 31)
30 that
[ 2o ooy 1
™ =T &jup  Ia (A58
J' e P dp "
whenee with ha
a= 4V /kT, (A 33)
1/2a = kT/8V,, (A 34)
we have ) )
LA, Podg) = KT/ 4 Vo8 +(1/8%) Z{(h(0) ,(£)))- (A 36)
We now summarize the results of this section
(oo $,(0) cos (1)), = § expl—K(AB,)*Da]. (4 36)
Ceos @,(0) cos @y(1)>y = § exp [ — I (Ags)* ], {A 37)
{eos gy(0) cos g, ()3 = | exp [ —F{(AD, @y)*2). (A 38)
FLILAS,)Dal = (1/5%) 21,101 ,(0)4), (A 39)
FLICABID ) = (1/9%) LChy(0) gyl g), (A 40)

LLUAD, Bh = ET/4V, 0+ (1/5%) Ly (0) (0], (A 41)
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The mean dipole moment is
(m(0)-e) (miZ) &)} = §{lp} exp[— (g, )]

+ pd exp [ —§{Ady ) 2ol + 20, py exp| = (A, B, 10,1,

(A 42)
A useful check on these results is to compare the value of (A 42) when | = 0 with
that obtained from (G2) at ¢ = 0.

With the aid of the initial value theorem of Laplace transformation, namely

lim fit) = lim sF(s), (A 43)

] B ow o
where F(s) = 2{f(t)} and from (A 39)—(A 41) one readily finds that (A 42) has the
initial value Kb+l B, g 0 FTIVG), (A 44)

Equation (62), on the other hand, has initial value

W+ pi+ 20, g 070 ), (A 45)

which is the same as (A 44) on recalling that
(y*), = kT/8YV,. (A 46)

ApPPENDIN B. A COMPLETE ANALYTIC FORMULA FPOR THE COMPLEX
POLARIZABILITY . THEORETIOAL EVIDENCE FOR THE EXISTENCE
OF A PEAK STRUCTURE AT HIGH FREQUENCIES

In the main body of the paper we have contented ourselves with giving the first
three terms in the series expansion of the complex polarizability. It has also been
noted that the second and third terms of the series resonate at the fundamental
and its second harmonic respectively. It is instructive to give the complete
expression for the complex polarizability in the form of a triple sum as this shows
a curious harmonic peak structure at high frequencies. This peak structure should
not, however, be readily observable in liquids as the friction coefficient f§ is
generally so large as to damp out all peaks save that at the fundamental frequency.
We may derive the triple sum for a(w) as follows. Referring to our expression for
€' we find on expanding the outer exponential that

© ) o)
6, =3 (e3) £ R exp i~y +mm (B

=
With the aid of (B 1), M(!) may now (on writing z(¢) in the form B ¢ W sin (w, (+ )
then the use of the binomial theorem combined with the series expansion of the
exponential function as described for the torsional osvillator in Coffey et al, (1984,
chapter 4) or Calderwood el al. (1976)) be expressed as the triple sum (for simplicity

= pey = )
Bl % {l—“" (iw_n._)"(q)l_:?ﬂ_"
2 m&pg p}-:ﬂ w}'-:n mi-:a q! w /) \m/ p!
({637, €51+ (ady, ¥ o8 42 e NPT —ayay3,00) (B 2)
" h—llm—tlf.e—lw o Ham —ghu, ¢ e—tbﬂmﬂ]_
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where the phase angle ¥ is given by
¥ = tan~' 2w,/8. (B3)

On substituting (B 2) into the complex polarizability formula and making use of
the shifting theorem of Fourier transformation we immediately find the complete
expmion for a(w) as

2‘:7‘ eh !§| cz-:o l!lz-l {( —ql!) (%:'-l)' (:') (:Pi'z)’ [lu{ nl %
o [“h‘l | e“"t"" +2 E—ﬂu'{upr.( -, 0, 71:,:} p M m gl
x g +y+2p) p+i(2m—g) w,] } (B 4}
Ha+y+2p)f+ilw+2m—qu,)
By inspection of this formula we find that resonant peaks will arise whenever
w = (g—2m)w,. (B5)

If the friction becomes very small it is evident that (B 4) becomes a series of delta
functions of the general form &(w+nwy), n=0,1,2 3. This follows from the
definition of d(y) as 1A

8(y) = lim - "y e (B 6)

A0

This conclusion may also be simed at directly from our closed form expression for
M) (70) by allowing £ to tend to zero in that expression and expressing the
resulting double transcendental functions, which are all of the form exp ( + cos wt),
as & Fourier series, the coefficients of which are the Bessel functions of imaginary
argument, This series is then substituted into the z(w) formula to yield the
undamped spectrum as

alw) = (u+e ] —iw by {leoInJ  (iady,) + e N T, (iady,)]

A =0

x e 1" §lw + nw,y) + 2 e HODT ] (g, a, y,) o Sjw— """o)l) . (BT

where J denotes the Bessel function of the first kind of integer order.

We must also note that our theoretical analysis of the model has been in terms
of parameters V,, [, /[, ete. For numerical analysis and for comparison with
experimental spectra, ete., we have found that it is always easier to introduce the
parameter set. (Our remarks hold equally for the nonlinear version of the model.)

("T/!)‘ y=W/hLa B 1,=1jl, (B 8)

& is the thermal energy parameter, ¥ the barrier height parameter, £ the friction
and /. the moment of inertia parameter, M({) then becomes in terms of these

M(1) = Lu® exp| —day(&®/F%) (Bt — 1+ e ™))
X {exp | —al(&/8%) (1 —z)] +exp [ —}{a] +a3) (2/8¥)]
x exp| —a, a (&x/8F)] +exp|—a(&/8%) (1 —z)]). (B9
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The motion is then completely specified by &, %, f, I,. For example, the natural
frequency of oscillation s /(4&Pa;') whereas the Debye relaxation time is
2/ [(a, &*). This parameter set also has the advantage that it arises quite naturally
when the variables are separated in the Fokker-Planck—Kramers equation under-
lying the model,

Finally we note that (B 9) is written for the case where the correlation function
of the random torques A,, A, is defined as

A A1)y = 28, KT PIS(, i,j=1,2, (B 10

4, ; being the Kronecker delta and &(t) the Dirac delta function. SBome authors

prefer to define the correlation funetion above as ’
{Ad A0y = 48,  KTRI (). (B 11)

The effect of doing this simply makes
ay@ /20 >0, 8%/
& /8y »av/4¥ (B 12)

and

n (B 8).



