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Estimation of the complex polarizability of the itinerant oscillator (1.O.)
mode! of polar fluids has hitherto been based on a truncation of the series
expansion of the double transcendental function describing the decay of the
dipole moment. The essence of this method is to expand the decay function as a
series of single transcendental functions. The resulting series is then Fourier
transformed term-by-term by means of the usual response theory formula. The
series is generally truncated after the first two terms so as to yield simple
analytic formulae analogous to the Rocard equation. Corcoran has developed a
numerical algorithm using Fast Fourier Transform techniques which allows the
complex polarizability to be calculated to a high degree of precision from the
decay function without recourse to any series expansion. The numerical
method shows that the analytic approximations to the polarizability which
have hitherto been used are quite accurate. Furthermore, if friction does not act
on the inner dipole (the form of the model which has hitherto been almost
exclusively used to represent spectra), it is found that the moment of inertia of
the outer cage should be less than that of the inner dipole in order to achieve a
good fit with the experimental data. This conclusion is inconsistent with the
physical concept of the 1.0, namely a dipole surrounded by a cage of neigh-
bours, and has led to much criticism of the model. On the other hand, when
friction acts on the inner dipole and is approximately the same (per unit inertia)
as that acting on the outer cage, the model can produce physically realistic
spectra for acceptable parameter values. This suggests that the two-friction
form of the model should always be used for comparison with experimental

spectra.

1. Introduction

Some years ago Calderwood and Coffey made a detailed study [1] of an itiner-
ant oscillator mode} (I.O.) for molecular motion in liquids. In particular they
obtained a simple analytical formula for the polarizability of such a model (equation
(59) of [1]). This approach was subsequently generalized to a two-friction 1O.
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model [2, 3] that yielded results that were physically more meaningful in the sense
that the observed multi-decade dielectric loss profile was more accurately repro-
duced. However, extensive comparison of the model with experiment has led to the
surprising conclusion that the effective moment of inertia of the outer cage of the
L.O. must be smaller than that of the inner molecule (dipole) in order to fit measured
experimental data. This appears to contradict the basic physical assumptions made
in the 1.O. [1]. As a consequence the model has been frequently criticized in the
literature [3-7].

Recently [8-10] we have given an analysis of a two-friction 1.O. or Bud6 model
which shows how the equations of motion of the system may be factorized into two
independent modes of motion when the two frictions per unit inertia are equal. It
has also been shown [9(a), (b)] how the mean dipole moment may be calculated
both for this particular case and the more general case of two unequal frictions and
how this may be Fourier transformed numerically to yield the full polarizability of
the system.

In the present work we compare the usual approximate analytic expressions for
the polarizability [1, 4] with the full polarizability obtained from a numerical
analysis of the system. This indicates that these analytic expressions are quite accu-
rate. We also explain the observations of earlier workers that the outer annulus is
smaller than the inner dipole [3-7]. In the light of the present paper and other
recent work [8-10] it is evident that the 1.O. model must be reconsidered as a useful
model of liquid behaviour in the microwave (MW) and far-infrared (FIR) spectral
regions.

2. - Theoretical background

The basic IO model envisages a molecule of the fluid as being surrounded by a
cage of nearest neighbours, supposed as far as the dynamics of the system are
concerned to behave as a rigid entity. In what follows, quantities subscripted by a 2
refer to the outer dipole or cage of molecules. This notation is at variance with
much of the earlier work but is consistent with [8—10]. The equations of motion of
this system when friction acts upon both the dipoles are [10]

(51 + ﬂ1(1$1 + w(?i(d): — ¢2) = g4(1), (1)
qu + B, ¢, — Q¥(Py — ¢2) = ga(t), (2)
where I,g, and I, g, are white noise torques,
2V I
2 _ " 2 _f1 5
w§ I, Q 1, 5.

Note that ¢; and ¢, are the angles the dipoles make with an arbitrary unit vector e,

while 1,8,4, and I, 8, ¢, are the frictional torques. In [9(a), (b)] we have found
it convenient to introduce the parameterization scheme

. kT) . W I, B,
a= —, Y=—7, I, =, b==". 3
\/(Il I,a I B )

where it is useful to note that

4)
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Now arranging equations (1) and (2) in matrix form, as described in [1, 2, 9(b)], we
find that the characteristic equation for the system is sF(s) = O where

Fs) = {s* + Bo(1 + b)s* + [wf(1 + I7 1) + B3bls + &f Bo(l + BITY)}  (9)

and that the Laplace transform of the mean squared displacement of the inner
dipole is as follows (the zeros on the angular brackets denote that the ensemble
averages are cvaluated in the absence of a field):

2kT s(s + B;) + Q3
I, $2F(s) (6)

Ay = $,(t) — ¢,(0).

Since ¢ (1) and ¢,(0) are gaussian random variables we have [1]

{cos ¢,(0) cos ¢(t)>o = 3 exp [—4K(Ad1)" Do, (7)

and recalling the definition of complex polarizability [11]

%, (@) =1-iw jm cos ¢,(0) cos ¢4(t))o
«,,(0) 0 {cos? $1(0)>

it is clear that the task at hand is to Fourier transform equation (7). In their work
Calderwood and Coffey [1] followed the approach adopted by Sack [12] to calcu-
late the polarizability of a rigid rotator when inertial effects are included in the
analysis,

The essence of Sack’s method is to recognize that the dipole correlation function
when inertial effects are included is always a double transcendental function. Such a
function can only be Fourier transformed by expressing it as a series of single
transcendental functions and then transforming the resulting series of single tran-
scendental functions term by term. In general it is possible to express such a series in
several different ways (see equations (3.194), (3.19C) and (3.19D) of Sack [12]).
Such a series may also be expressed as a continued fraction (see equation (4.4) of
Sack [12]).

Following this method, we begin by formally inverting equation (6) and inserting
the results into equation (7) to obtain

cos ¢,(0) cos ¢,(1)>e =3 exp [—(K,; + Kyt + Kyexp (—4,1)
+ K exp (—4.8) + Ks exp (—451)]  (9)

where — A5, —A, and — 14 are the roots of the equation F(s) = 0 and K,, K,, K3,
K,, K, are the residues at the poles 0, —0, —4,, —4,, —A4s of equation (6). Sack’s
method as applied by Calderwood and Coffey [1] now requires that exp (— K, t) is
factored out of the right-hand side of equation (9) and the remaining terms expand-
ed in series, viz

{cos ¢,(0) cos ¢,(1)> = 7 exp (— K, )

L{K(Ab) >} =

exp (—iwt) dt, (8)

X {1 —~(K; + Kyexp(—A31) + Ky exp (—A4t) + K5 exp {(—4st)

I
+ 21 (Ky+ Kyexp(—43t) + Ky exp (—A41t) + K5 exp (—4s t))z...}. (10)
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Now before we proceed to the Fourier transform of equation (10) it is useful to note
the following (we will work for the moment in the s domain recalling that putting
s = iw in the resulting formulae will yield the equivalent Fourier transform or
frequency domain expressions):

Note too that

K, =lim s> 2 {3{(Ad1)*>0o}

s—0
1 kT s(s+ﬁ2)+9%,}_ kT 1
a 1, F(s) LB 1+ bITY
G
LE@S o) = b+ 2
_ 8G(s) + K; F(s)
s2F(s) ’

whence with equations (5), (11)

G(s) =

kT
I, B + bl

x [—s? — sBy(1 + b) — (w5 + QF + B3 b)]

kT
+‘E(S+B2)

kT 1
B, (L4 bITY
x {—5? + [I, Bo(1 + bI7Y) — By(1 + b)]s
+[1, 8501 + bl“) — (0§ +QF + B3]}

kT —I7 NSNS C A
,82(1+b1 T " 14 bl

I7 Y w} + QF + B3 b)
i [ﬁ 2T T g+ bILY) ]}

The next step in this analysis is to note that

LK, + K; exp (—231) + K, exp (—A4(t) + K exp (—451)}

Noting that #{K,t} = K

LUK, + Ky exp{—23t) + Ky exp (—A,t) + K5 exp (—As )} =

= L{HAb)*Do —

,/s*, and making use of equation (12), we see that

(15

(12)

(13)

(14)

(15)

It is also necessary in what follows to make use of the shifting theorem of the
Laplace transform, namely (h is an arbitrary function of t)

Llexp (—ah(t)} = H(s + a), H(s) = Z{h(1)}.

(16)
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Thus, ignoring all but the first two terms in the series expansion on the right-
hand side of equation (10), and using equations (15) and (16), we find that

o [ 1 Gls+Ky)
0 SL+K2 (s+K2>F(s+K2)]’ a9

where K,, G and F are defined by equations {(11), (13) and (5) respectively. This is
the analogous result for the two-friction model to equation (54) of Calderwood and
Coffey ['1] for the one-friction model.

It is theoretically possible to calculate the next term of this series for the polari-
zability, but in practice it becomes extremely hard because of the difficulty of
expressing the residues as a function of the roots and in turn in terms of the
coefficients of the equation for F(s). In order to find a tractable expression for the
polarizability Calderwood and Coffey [1] then simply assumed that equation (17)
adequately approximated the exact polarizability. Moreover they assumed that
equation {17) could be further approximated by

1 G(s)
]. - Sl:S + K2 - (S + Kz)F(S):|, (18)
so that
2,8 1 [K5F(s) + sGis)] w5
a;lx(o) s + K2 F{S) [
kT 1
K2 N ;E m};_i’ (20)
or
[E s(s + Ba2) + 2 wg]
iy 4 I 1)
a;u(O) E _-_1—
[S i I, 1+ bl 1J{33 + B,(1 + b)s*

+ [wi(1 + I7Y) + B bls + wd B5(1 + bI7 1)}

If 5 =0, ie. stochastic torques on the dipole are ignored, which is the original
version of the model as described by Calderwood and Coffey [1] we find that
equation (21) reduces to equation (59) of their paper, i.e.

t(s) _ T 02)
() kT -
) ( ! Tﬁ)w + 85"+ 0Bl + 17 + 03 f]
2

This is the formula that was used extensively by Reid [5, 6] to compare
experimentally-observed spectra with the calculated ones. Equation (21) on the
other hand has been used by M. W. Evans et al. [4, p. 506]. It should be noted that
I, and I, are interchanged in this calculation in order to concur with the notation
of Coffey, Corcoran and Evans [10], and Ceffey, Corcoran and Vij [9(a), (b)]. As we
mentioned, these simple formulae were suggested by Sack’s method of deriving the
Rocard equation (12). If Sack’s equation (3.9 D) is truncated at the second term of
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the series or if his continued fraction (his equation (4.4)) is truncated at the second
convergent, then one always finds that the complex polarizability in the freely-
rotating disk model is well described by the (Rocard) equation

cxm(s) _ 1 _Iﬁ

= , Ty =——.
%, (0) 1+ stq + 57 ‘o kT
B

In the present work it is shown that equation (21) closely approximates the
polarizability of the 1.O. so providing a simple analytic formula analogous to the
Rocard equation (23).

Before proceeding we note that if b = 1 equation (22) becomes

(23)

0, (8) _ I, 12 (23a)
o, (0) - kT 1 2 2 -1 ’
(s o p T )E B s + 0l + 1]

so that the natural frequency of oscillation €y is given by (Qg = FIR peak
frequency)

Q% = of(1 + I;7) ~ Q.
The @ factor is

V@1 + 178
The Debye time is

1
zo=ﬁ§u+4:ﬁ

Note that the non-resonant part of (23 a) has the form of the Rocard equation.

3. Parametric form of the polarizability

For a comparison of the model with experimental data we are most interested in
evaluating «;, (w) which is proportional to the dielectric loss £”(w) and the power
absorption coefficient A(w). To this end equatton (19) must be rearranged by writing
s = iw and separating it into real and imaginary parts. The end result of this
algebraic manipulation has been given on page 506 of [4]. In terms of the parameter
scheme defined by equation (3) of the present work this should be rewritten as

&2t
S NS S
Xy = Bz(l + b),
x5 = 289(1 + I7Y) + B2b, (24)

x4 = 28,851 + b1 ),
which define

X = wz(wz — X3} + Xy (x4 — X5 wz)’
2 2 (25)
y = ofxs + x,(x; — 0%) — x, ©*].
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This allows the imaginary part of the polarizability to be simply written as

(@) _ a2 wf,x — Y&, — w?) 26)
o, (0) x? 4+ y? ’
while the real part is given by
oy (@) 5 x(26517 — coz) + wﬁly o
o, (0) x* + y*

Power absorption spectra may also be calculated from equations (26) and (27). We
first make the assumption that

all(w)
«(0)
Now, while this approximation is not always valid, it is adequate for the qualitative

discussion which we shall give in the next section. The power absorption A(w) is
defined as

&"(w) = (&, — &) (28)

we”(w)
n(w)c

where n{w) is the real part of the refractive index of the dielectric material and ¢ is
the velocity of light. The n(w) function is related to &w) by [15]

N Y -

and &'(w) is given by [16]

Alw) = Npem™? (29)

glw) =g, — ole; — &4,) .{w@os ¢,(0) cos ¢,(t)), sin wt dt (31)
0
So from equation (8) we see that
R O (2

Note that these results are obtained by writing the exp (—iwt) function in equation
(8) as

exp (—iwt) = cos wt — i sin wt

and then equating the real and imaginary parts of equation (8). Thus we
may calculate both &"(w) and &{(w) from our approximate formula and evaluate
n(w). The power absorption spectrum may then be obtained from equation (29).
Finally we should mention that our numerical method involves approximating
the integral of equation (8) using the Fast Fourier Transform algorithm. The
{cos ¢,(0) cos ¢,(t)>, function may also be calculated numerically for the general
two-friction case, i, # f,. These methods have been detailed elsewhere {9 (a), (b)].

4. Results and discussion

The results of our analysis are illustrated in figures 1 to 5. The numerical
methods used to calculate the polarizability spectrum of the 1.O. have been
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Figure 1. (i) Normalized polarizability spectra, o (w)/a;, (0) for 8 =5, 8=12,b=1,1,=8
and (a) § = 8, (b) $ = 15, (c) § = 25. The dashed lines show spectra obtained from the
formulae described in §3, while the solid lines are the results of our numerical calcu-
lations. This is the equal-frictions form of the 1.O. (ii) Power absorption spectra for the
same parameter values as curves (a), (b) and (c) of (i). We have taken g, =2 and

£, — &, = 8, for all the calculations of power absorption spectra in this paper.

described in detail elsewhere [9(b)]. The first set of spectra we illustrate are for the
B, = B,, 1.O. model and are given in figure 1 (i) (polarizability spectrum) and 1 (ii)
(absorption spectrum). The dashed lines are the spectra obtained from the formulae
of §3 while the solid lines show the numerical results. In figure 2(i}, (ii), spectra are
given for two intermediate values of the friction ratio b, i.e. b = 0-25 and b = 0-75.
From these diagrams it is evident that both methods of calculating spectra for the
I.O. model are in close agreement.
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Figure 1. (i) Normalized polatizability spectra, o] (@)/a}, (0) for & =5, f =12, b= 1,1, =8
and {a) § = &, (b) § = 15, (¢} § = 25. The dashed lines show spectra obtained from the
formulae described in § 3, while the solid lines are the results of our numerical calcu-
lations. This is the equal-frictions form of the L.O. (i) Power absorption spectra for the
same parameter values as curves (a), (b) and (c) of (i). We have taken £, =2 and

&, — £, = 8, for all the calculations of power absorption spectra in this paper.
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described in detail clsewhere [9(b)]. The first set of spectra we {llustrate are for the
B = B1, LO. model and are given in figure 1(i) (polarizability spectrum) and 1(ii)
(absorption spectrum). The dashed lines are the spectra obtained from the formulac
of §3 while the solid lines show the numerical results. In figure 2(i), (if), spectra are
given for two intermediate values of the friction ratio b, ie. b = 0-25 and b = 0-75.
From these diagrams it is evident that both methods of calculating spectra for the
1.0. model are in close agreement.
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Figure 2. (i) Normalized polarizability spectra, 4.(&))/4:"‘(0), for@a=5p8=123=151 =8
and (a) b = 075, (b) b = 0-25. Again, the dashed lines are calculated from the formulae
of §3, while the solid lines arc our numerical results. Note the appearance of 2 second
harmonic structure in this spectrum for b = 0-25. Also note the sharpening of the FIR
resonance peak as the friction ratio, b, is reduced. (i) Power absorption spectra of
curves (a) 2nd {b) of {i). Notc how the shoulder-like structure of {g) has developed into
g distinct maximum. This feature is not reproduced in the spectrum calculated from
the analytical formula of §3 because the polarizability series is truncated afer the first
two terros.
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It is interesting to remark on the occurrence of a secondary peak or shoulder
which for b = 025 is in evidence in the polarizability spectrum. The shoulder is
marked by an arrow in figure 2(i), (ii). In the absorption spectrum this feature
becomes more pronounced, and indeed as the friction on the inner dipole tends to
zero (b — 0), a multi-peaked harmonic structure may be observed [13]. This spectral
feature of the 1.O. cannot be reproduced by the analytical formula given in this
paper because the method by which it is derived takes only the first two terms in the
relevant series expansion into account (cf. equation (10)).

The results exhibited in figures 1 and 2 clearly indicate that our analytical
formula agrees closely with the results of our numerical method of calculating the
spectra. Now, in conjunction with other recent work [9 (a), (b)], it would seem that
the 1.O. does in fact offer a reasonable theoretical approach to modelling the behav-
iour of molecular liquids. Our findings conflict, however, with earlier work in the
literature [4, 14] where it has been often noted that for a fitting of the model to
experimental data the moment of inertia of the cage tends to be somewhat less than
that of the inner dipole, contrary to what one would expect. We shall now attempt
to rationalize the findings of earlier authors.
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2200 N A\ B
q. \
< —a Q
z — L . pm # A\
S 150 + ™ i
E A
\
:
7 100 §~‘ _
3 =0
50 E
0 1 | 1 L 1 1 [ N 1 A | S il
0 20 40 60 80 100 120 140 160 180 200 220 240 260
WAVENUMBER /cm™

Figure 3. Power absorption for & =5, =12, %=15,b=1 with e =2, ¢ —¢&, =8 and
for I, = (a) 0-5, (b} 1-0, (c) 2-0, (d) 4-0. This illustrates the fact that for I, <€ 1-0, much of
the broadening of the FIR absorption spectrum is due to a shifting of the MW (Debye)
peak to higher frequencies. Note the predominant left-hand peak for I, = 0-5.

To this end, power absorption spectra are shown in figure 3 for the §, = 8,
model for several values of the I, parameter. The most significant feature of this
diagram is the occurrence of two peaks in the power absorption spectrum for I, = 4.
For I, =1 (ie. the equal dipoles—equal friction case), there is still a distinct shoulder
in the MW wave. As I, is increased, this MW shoulder is strongly suppressed and,
indeed, 1s hardly noticeable for I, = 4 or larger. Now this MW shoulder is, in fact,
due to the shift of the microwave absorption to higher frequencies as the moment of
inertia ratio, I,, is reduced. This phenomenon can be readily understood by recal-
ling that the Debye time for the equal frictions case is given by [9(b)]
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(33)
21, 2

UL L 1+l

Now the microwave absorption will reach its Debye plateau value for f > f;
where

Lo
C2n 28

Jo (34)

Evidently a, will get larger as we reduce the value of I,, a fact which holds good
for I, <1 as well as I, > 1. Thus much of the broadening of the power absorption
spectrum in curves (a) and (b) of figure 3 is due to a shifting of the MW peak to higher
frequencies. It is not caused by a FIR libration mechanism. On the other hand, the
spectra described by curves (c) and (d), i.e. I, = 2 and I, = 4, respectively, exhibit a
clear-cut resonance broadening.

As we have already mentioned, carlier workers have found in their analysis of
experimental data using the I.O. that the best fits of the model to experiment have
been for I, < 1-0. In this context it is important to note that almost all the work on
the 1.0. has been based on the single-friction version of the model although the
two-friction version has been available for some time [4, p. 506]. Now the single-
friction 1.O. tends to be sharply peaked in the FIR region of the spectrum for
physically reasonable values of the parameters, in contrast to the equal frictions
(B, = B,) 1.O. [9(b)]. It is possible to reduce the sharpness of the FIR peak to some
extent by reducing the moment of inertia of the outer annulus. For reasons which
we have just given, this also tends to shift the MW peak to higher frequencies thus
enhancing the contribution of the relaxational (Debye) process to the absorption
spectrum.

By way of illustration of this point, we show in figure 4(i) power absorption
plots derived from our analytic formula for the single friction 1.O. model. Note that
for I, =1 this spectrum has an unacceptably sharp peak. Reducing I, to 0-5 or 0-25
reduces this sharply-peaked structure. We note, however, that this reduction of 7,
produces two distinct peaks in the power absorption spectrum, a structure which
may be observed in the work of earlier authors [4, 14]. If we turn our attention to
the equivalent polarizability plots given in figure 4(ii), it becomes clear that the
low-frequency shoulder or peak of the absorption spectrum is, in fact, due to relax-
ational motion in the MW region. There is not, therefore, any broadening of the
power absorption spectrum due to FIR libration for I, < 1. This is emphasized by
curve (¢) which shows the Debye process equivalent to curve (c). The effect in the
single-friction model of reducing I, is chiefly to dampen the excessively sharp FIR
resonance which is observed in this form of the [.O. model. A reduction of I, does
not affect the MW peaks as significantly as in the equal-frictions case of the I.O.

It is quite evident from the foregoing discussion that much of the previous
criticism in the literature of the 1.O. model is unfounded. A substantial part of the
work of earlier authors is misleading because they concentrated upon the single-
friction I.O. For example, in [4] almost all the work of Chapters 4 and 7 is based on
the single-friction 1.O. model, and although the two-friction model is presented on
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Figure 4. (i) Power absorption spectra for the single-friction model, i.e. b =0, with & = 5,
B=12, $=15 and (a) I,= 10, (b) I, =05, (c) I,=025, (d) I,=01. Note how
reducing I, suppresses the very sharp FIR peak of curve (a). Curve (c) shows the Debye
process, i.e: purely relaxational behaviour, equivalent to curve {c). (i) Polarizability
spectra for the same parameters as (i). Evidently most of the power absorption spectra
in (i) are produced by MW relaxation rather than FIR libration of the inner dipole of

the L.O. See the text for a more detailed discussion.

page 506 of this reference, it was not used very extensively in comparison with
experimental data.

A further point which should be clarified is the effect of including contributions
to the polarizability due to the a.c.f. of the outer annulus and the a.c.f. between the
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Figure 5. (i) The polarizability, calculated numerically, when contributions due to the a.cf.
of the outer dipole and the c.cf. between the two dipoles are included (solid line)
compared with the polarizability, calculated numerically, when only the a.c.f. of the
inner dipole is taken into account (dashed line). Parameter values are & = 5, 8 =12,
$=1275,b=1and I, = 6. (i1) As for (i), but b = 0. Note the appearance of harmonic
peaks due to ignoring the friction on the inner dipole.
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two dipoles. We have included both these terms in our earlier work [9(a), (b), 10]
but not in figure 1 of the present work because we wished to compare equations (24)
to (26) with their exact numerical equivalent. We will now show the effect of includ-
ing these additional terms, that is we write (using the gaussian properties of ¢, and
¢,) (see [9 (b), 10] for more detail)

2
£ {<e0s §,(0) cos $4(813o + 2(cos $(0) cos (%o

+ {cos $,(0) cos ¢,(t)>o}

2

N 2;;T {exp [—3{(A¢1)*Do] + 2 exp [ —3<AJ 4,)0]
+ exp [‘%((A‘pz)z)o]}’
A = dft) = $l0)  Dyigr = D1() — $2(0), (33)

and it is this quantity which is Fourier transformed numerically to yield the polari-
zability of the system. As may be seen from figure 5, the effect of including these
terms is to reduce the relative contribution of the far-infrared peak in the polariza-
bility spectrum. This is interesting physically because it indicates that if the ‘cage’ of
surrounding molecules envisaged in the I.O. tends to break and re-form on a slightly
longer time scale than that of the far-infrared oscillations, it may well be that their
contributions to the polarizability should be ignored. This assumption would tend
to broaden the far-infrared peak even more than indicated in earlier work [9(a), (b),
10]. For a more detailed discussion, the reader is referred to [9(a), (b)].
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discussions. PC thanks TCD and the Irish Department of Education for financial
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