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The dynamics of interacting molecules involve the translation and simultaneous rotation of
each molecule in the ensemble. This means that the frame of reference defined by the principal
molecular moments of inertia, frame (1,2,3), is a noninertial frame with respect to the
laboratory frame (x, y,z). Furthermore, a rotating frame of reference (1,2,3)' can be generated
from (1,2,3) a by translation for each molecule from the center of mass of the origin of

(x, y,2). The equations relating velocities, accelerations, and their derivatives in one of these
frames to those of another are described and then used to calculate the cross correlation

functions.

I. INTRODUCTION

One of the fundamental problems in molecular dynam-
ics is to find ways of correlating statistically the interaction
between rotational and translational motion. This is a prob-
lem which has thus far not been solved entirely by the analy-
tical methods available.'™® This is because the theories de-
pend fundamentally on approximations which leave out of
consideration all single molecule cross correlations such as
(v()wT(0)). This correlates the molecular center of mass
velocity v and the same molecule’s angular approximations
results in over parametrization and confusion about frames
of reference.

The state of uncertainty was finally resolved in 1981 by
Ryckaert et al.® using computer simulation. This proved that
the cross correlation {v(¢)®7(0)) vanishes in frame (x, y,z)
for all ¢ in an isotropic sample, but exists for t > O in the frame
(1,2,3) of the principal molecular moments of inertia. Sub-
sequently, the time dependence of cross correlation func-
tions (ccfs) of this type was confirmed by Evans et al.'>%*
for different molecular symmetries ranging from low sym-
metry chiral molecules to spherical tops of 7; symmetry.”?

In 1985 the discovery of elements of (v(#)@7(0)) direct
in the laboratory frame was reported by Evans'” in a molecu-
lar liquid made anisotropic with a strong, uniaxial electric
field. When applied in the z axis of the laboratory frame this
promotes the existence® of the (x, y) and ( y,x) elements of
the ccf tensor direct in frame (x, y,z). Note that the off diag-
onal elements in frame (1,2,3) exist both in the presence and
absence of the field depending on the molecular symmetry.
Again the contemporary analytical theories had not predict-
ed the outcome of these computer simulations because of the
difficulties of over parametrization in essentially empirical
description of molecular diffusion.

Papers in 1985 and 1986 reported the emergence of
higher order cross correlation functions due to the realiza-
tion that in the noninertial frame (1,2,3) the equations of
motion contain additional terms which rarely if ever appear
explicitly and clearly in the empirical theory of molecular
diffusion. Examples of these are the Coriolis, centripetal,
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and nonuniform molecular accelerations, which exist in
both frames of reference. These were cross correlated in a
series of recent papers with velocities and several higher or-
der one particle cross correlation functions discovered in the
moving frame (1,2,3). These are fundamental in nature and,
therefore, applicable in the statistical description of con-
densed phases of molecular matter.

The following sections attempt to provide a fairly rigor-
ous and complete classification of the various new terms
both in frames ( 1,2,3) and (x, y,2); and also provide a means
of classifying and identifying the nonvanishing ccfs in both
frames of reference.

Il. DEFINITION OF FRAMES OF REFERENCE

The laboratory frame (x, y,z) is that of the static observ-
er. An object that translates in this frame but does not rotate
is said to be in an inertial frame of reference and obeys New-
ton’s equations in classical nonrelativistic physics. In such a
frame of reference the motion of a rigid body, e.g., a rod, is
determined by the momentum of the center of mass of the
rigid body and the angular momentum of that body about its
center of mass. The combined motions complicate the trajec-
tory of some point off the center of mass of the rod. In a
molecule the trajectory of an atom in frame (x, y,z) is part of
a rigid body whose center of mass motion is governed by
Newton’s equations. However, an object such as a rod or
rigid molecule that both rotates and translates in frame
(x, y,z) generates velocities and accelerations which are not
present in the Newton equations.

The nature of these extra terms is revealed clearly by
using as a vehicle of argument a frame of reference (1,2,3)’
(Fig. 1) whose origin is fixed at the origin of (x, y,z) but
which rotates with respect to (x, y,z) with an angular veloc-
ity o. For each molecule in the ensemble the frame (1,2,3) of
the principal molecular moments of inertia is generated from
frame (1,2,3)’ by a translation of the origin of the latter to
the molecular center of mass. For each molecule in the en-
semble, therefore, the angular velocity o of frame (1,2,3)’
with respect to (x, y,z) is the molecular angular velocity it-
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FIG. 1. Schematic of frames of reference. (x,y,z): laboratory frame.
(1,2,3): moving frame. (1,2,3)": rotating frame.

self. Therefore, o is a constant of frame transformation from
(x, y,z) to (1,2,3)’ or vice versa.

With these definitions, therefore, there is a basic
theorem linking the differential operator D, in the laborato-
ry frame (x, y,z) to the equivalent in frame (1,2,3)". This can
be written as

D= (D, +oX)r (D
and conversely
D,r=(D;—oX)r. (2)

InEqs. (1) and (2) ris the position vector of the molec-
ular center of mass. The operator D, implies differentiation
of r with respect to time in frame (x, y,z) and D,, the equiva-
lent in frame (1,2,3)'. Equations (1) and (2) can, therefore,
be written as

[v](x,y,z) = [v + mxr](l,2.3)" (3)
(vl = [y —@Xr] (0 .- (4)

In Eq. (3) [v],,,., is the linear center of mass velocity in
frame (x, y,z), which is equivalent in the rotating frame
(1,2,3)’ to the sum on the right-hand side of this equation.
The sum is made up of the Newtonian velocity v and the
linear velocity @ X r which is zero only when o is zero. This
shows clearly the difference between the dynamics of an
atom and a molecule, i.e., between a body which is translat-
ing but not rotating and molecular dynamics, where both
terms on the right-hand side of Eq. (3) are important.

Equation (4) reverses the process, and shows that the
center of mass linear velocity vin frame (1,2,3)’ is equivalent
to the difference on the right-hand side of Eq. (4). This equa-
tion shows, therefore, that the linear velocity exists directly
in the lab frame (x, y,z). This means that the rotational mo-
tion of a body that is also translating imparts the linear veloc-
ity @ Xr to its translational center of mass motion in the
laboratory frame (x, y,z).

The vector difference [v — @Xr], ,., also exists in
frame (1,2,3), the frame of the principal molecular moments
of inertia, through the transformation, for any vector A:

Al =Axelx +Aye]y +Azelz!
A, =A,e;, +A,e, +A4,e,, 5
Ay =4A.e5, +4,e,, + 4,6,

where the subscripts refer to the axes of the appropriate
frame and where the unit vectors e,, e,, and e, are in the
principal moment of inertia axes 1, 2, and 3. Thus, e,, isthex
component in frame (x, y,z) of e, and so on.

Using Eq. (5), therefore,

(oXr), = (0 Xr),e, + (0Xr),e,, + (0Xr), €,
(6)

and so on for the other components (@ Xr), and (@Xr),.

Equation (5), therefore, defines the existence of the lin-
ear velocity in the frame (1,2,3).

Similarly all the linear accelerations and their deriva-
tives explored in the following sections exist in all three
frames of reference.

A. The linear accelerations

These are generated by operating twice on the right-
hand sides of Egs. (1) and (2) with the appropriate differen-
tial operators, giving

D,(Dsr) = (D, + ©oX)}[D,.,r + 0Xr] @))]

and, conversely,

D, (D,r) = (D, —oX){Dr— oXr] 8)

or in terms of velocities

[Vlieyn = [V+ 20XV +oXr + OX{(0Xr) ] 23y
(9

[Vlgasy = [V —20XV—oXr+oX(eXn)], .-
(10)

All the terms on the right-hand side of Eq. (10) can be trans-
formed into the principal molecular moment of inertia frame
using Eq. (5).

Equation (9) shows the Newtonian linear acceleration v
supplemented in a simultaneously rotating and translating
body by three more linear accelerations. These are real and
exist in frame (x, y,z). Molecular dynamics requires the full
consideration of all four accelerations, both in frames
(x, y,z) and (1,2,3). They are:

(i) the Newtonian acceleration v,

(ii) the Coriolis acceleration — 2w Xv;

(iii) the centripetal acceleration & X (®Xr);

(iv) the nonuniform acceleration — o Xr.

The last two of this list require explicit use of the posi-
tion vector r and, therefore, definition of the coordinates of
the center of mass of each molecule in the sample with re-
spect to the origin of frame (x, y,z). These coordinates are
defined with*!

(1)) =0, (1)

lim (r(z)-r(0)) =0; (12)

1~ o0

in the laboratory frame (x, y,z).
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B. Derlivatives of the linear accelerations

These terms are derived by straightforward repeated ap-
plication of the appropriate differential operators, so that

(V] o py = [Dm + ©X ][V + 20XV

+ oXr+ oX(©Xr) ]2, (13)
[¥1(23 = [Dy —oX ]IV + 20XV
—OXr+ oX (X)) (14)

Therefore, there are, by Eq. (14), seven additional linear
acceleration time derivatives to the Newtonian term
[¥](x 5.y, bOth in frames (x, y,z) and by Eqg. (5) in frame
(1,2,3).

Equations (13) and (14) illustrate that the set of linear
velocities, linear accelerations, and their time derivatives to
order n contains 1,3,7,15...,(2" — 1) terms which all con-
tribute in the laboratory frame and that of the principal mo-
lecular moments of inertia. A theory such as the original
theory of rotational diffusion leaves out of consideration all
these terms by definition. With advanced computer architec-
ture, such as the Kingston ICAP1, there is no further need to
approximate in this way. All the terms can be made available
to monitor the dynamics of interacting molecules. One of the
ways of implementing the extra information, and of control-
ling it systematically, is the construction and identification
of nonvanishing time cross correlation functions that exist
among the various linear velocities, accelerations, and high-
er time derivatives. These ccfs would then be available to
monitor the dynamical behavior of any molecular ensemble
in a very detailed way.

This is a great advance on the theories of molecular dif-
fusion currently available.

C. Angular velocities accelerations, and time
derivatives

1. Angular velocities
By definition,

[m](l.Z,S)‘ = [m](x.y,z) (15)

so there are no angular velocities other than the simple lab
frame angular velocity itself. As mentioned in the introduc-
tion, the cross correlation exists between this and the Newto-
nian linear velocity in frame (1,2,3). This was the first ccf to
be discovered by computer simulation,® viz.

(V(t)ﬁ)r(o))(l,z,S) .

The next section aims to show that systematic consideration
of the cross correlations in frame (1,2,3) between linear and
angular terms should reveal many more possibilities, all fun-
damental to molecular dynamics in condensed matter.
Whether or not these exist in frame (1,2,3) for an isotropic
sample could be checked with group theory, based on the
point group of the molecule under consideration, or, alterna-
tively, with parity and time reversal symmetry. This pro-
vides a sound basis for checking the accuracy of the comput-
er simulations of the ccfs, which should exist and which
should just be noise, i.e., vanish by symmetry.

For example, the ccf between the linear velocity o Xr
and the angular velocity o:
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(o) Xr()e’(0))

vanishes for nearly all molecular symmetries in frame
(1,2,3) by group symmetry for all ¢ and vanishes in frame
(x, y,2) by parity symmetry for all molecules. This has been
checked independently by computer simulation,?® which
gave the expected results for a sample as small as 108 mole-
cules of C,, symmetry.

2. Angular acceleration
This is generated by the usual operators

[0)s s = [Dm + 0X ][], (16)

[@]2s =[O —oX][@] 0, (n

which again give the simple result

(6] yn = (0] 23y (18)

Therefore, again, there are no noninertial angular accelera-
tions in either frame. It follows that there are none in frame
(1,2,3). By symmetry the only cross correlation function
between linear and angular acceleration that survives in an
isotropic molecular ensemble is

(V()67(0)) (123

in frame (1,2,3). All the other possible ccf’s between the
three non-Newtonian linear accelerations and o vanish by
symmetry in both frames.?® Again this has been checked
individually by computer simulation for a 108 molecule sam-
ple of C,, triatomic molecules.

3. Angular acceleration derivatives

At this stage in the development there appear the first
angular terms from the operators

[0]ix ) = [Dm +0X][0] 0,3,

= [(1')+(0Xd)](1_2,3y, (19)
[&]23y =[Dm — mx][d)](x.y,z)
= (@ — oXo] .- (20)

In total therefore, there are 16 possible ccfs between the
linear and angular acceleration derivatives in frames (x, y,z)
and (1,2,3) at this level of the development. All of these are
accessible for computation in most simulation algorithms,
which provide terms up to the second derivative of the accel-
eration.

1ti. CLASSIFICATION OF HIGHER ORDER CROSS
CORRELATION FUNCTIONS

From consideration of symmetry the higher order ccf of
the type

(o(1) X A()AT(0))

exists in the moving frame of reference (1,2,3) but vanishes
in the laboratory frame (x, y,z). This result originates in the
general expression for the derivative of order n in the rotat-
ing frame (1,2,3)’ and the laboratory frame (x, y,z):
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V138 = [Dm + X1y [P + @X ]2y
X [P, + ©X ] [V + 20Xy

+oOXr+ oX(@Xr) .y, (2n
(V1§23 = [Dy—oX]w [Py —oX]q

X[Dy — 0X ] m [V — 20XV

—aXr+oX(oXr]l, - (22)

A. The omega patterns
(1) It can be seen by inspection of Egs. (21) and (22)
that patterns of the type

(@(1) XAAT(0)) (1,3 (23)

(o(NX[0()XAM][@(0) XA ), (24)

{w()XB()B7(0) )(1,2,3);
(o () XC(1)CT(0)) 1235
(a()XD()D(0)) (1235

and so on.

B. The D, patterns

In addition to the above nonvanishing cross correlation
functions in frame (1,2,3), others exist in both frames
(x, y,2) and (1,2,3) because of the general result for all cor-
relation functions

(D,A()AT(0)) #0 fort>0 (32)
both in frames (x, y,z) and (1,2,3).

In one sense the result

(0XA(1)AT(0))#0 fort>0 (33)

in frame (1,2,3) is a special case of Eq. (32), which vanishes
in frame (x, y,z) because of the parity symmetry difference
imposed by the vector cross product X A(?). Using the
result (32), then both in frames (x, y,z) and (1,2,3) the fol-
lowing patterns of nonvanishing higher order cross correla-
tion functions emerge from inspection of Egs. (21) and
(22),

(1) (D,A(HAT(0)),
(DA (DA)T(0)),
(D}A()(D3A)T(0));

(2) (Do) XA ][w(0)XA0)]T),
(Do) X[a() XA(ND]}

X{w(0) X [0(0)XA(0)]}7);

and finally; analogous with Egs. (29) and (31):

(DB(1)B7(0)),

(D,C(1)CT(0)),

(D,D(1)D7(0)),

(34)

(35)

(36)

BE{O)XD/A([) +D/[wa(t)]}(|'2_3)y ‘
C={(D; —oX)[0XDA() + D/ (e XA(1))]} 12
D={(D; — oX) (D, — oX)[@XD,A(t) + D/(&0XA())]} 123
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(o() X{o(t) X [a(?) XA()]}
X {2 (0) X [@(0) XA(0)]}T ) (123> (25)

and so on exist in frame (1,2,3), where A denotes the vector
generated in frame (1,2,3) from

[V —_ 2(.l)xv —_ (I)xr + wx(mxr)](x.y.z)

through the frame transformation (5).
(2) Furthermore, patterns of the type

(@(t)XD,A()[DA0)]T) (123 (26)
((.o(t))(D}A(t)[D}A(O)]T>(1.2,3): 27
(@()XDJA)[DJAO)]T) 123y (28)

and so on exist in frame (1,2,3) using the same notation as
Egs. (23) to (25).

(3) Finally, in this group, cross patterns exist in frame
(1,2,3) of the general type:

(29)
(30)
(3D

[
where B, C, and D are defined as in Egs. (29) to (31).

IV. DISCUSSION

The above classification schemes allowed the identifica-
tion of nonvanishing higher order ccfs in the moving frame
(1,2,3) which have not been considered hitherto in the the-
ory of molecular diffusion because of its inherent approxi-
mations. Access to conventional pipeline processors has
been limited but this situation is now rapidly changing, al-
lowing the systematic exploration of new liquid state proper-
ties. In many respects the cross correlation function has ad-
vantages over the autocorrelation function, for example:

(i) there are many more ccfs than acfs, and they can be
used to investigate the interrelation between different kinds
of molecular motion in critical conditions such as phase
changes.

(ii) the ccfs have the extra property of amplitude as well
as time dependence. In other words the ccf is zero at t = 0
and at long times but has finite maxima or minima in the
intermediate interval which characterize the molecular dy-
namics. The amplitude and frequency of the oscillations are,
in general, different for each element of the cross correlation
matrix. Thus, the computation of these amplitudes is a new
method of monitoring molecular dynamics which could
prove fruitful in many different problems.

A. Monitoring of phase changes in the ices

The detection and description of phase changes by mo-
lecular dynamics computer simulation is a challenge which
can be met adequately only with a sufficient number of mole-
cules in the molecular dynamics sample. This is because a
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phase transition, especially liquid to crystalline solid, is es-
sentially a cooperative process, in regard to both rotational
and translational motion. At some stage the motion in the
molecular liquid must give way to cooperative rotation and
translation in the solid, where lattice modes are observable in
the Raman or far infrared. The implementation of single
molecule ccfs of all types to monitor these transitions is a
natural method of analysis when these functions are them-
selves made up both of rotational and translational variables,
together with the center of mass coordinates r.

The various experimentally identified phases of ice and
the ice water transition itself present an interesting challenge
because the intermolecular pair potential for water is known
with increasing accuracy. Large molecular dynamics sam-
ples for water should, therefore, be capable of detecting the
phase transitions in ice with careful monitoring of the molec-
ular dynamics with ccfs. It should be particularly advanta-
geous to use ccfs in solid-to-solid phase transitions, where
spectral changes and changes in acfs are usually difficult to
detect with certainty in the appropriate subpicosecond time
interval.

B. Representations of flow phenomena on a molecular
level

Recent molecular dynamics simulations®® of two-di-
mensional flow around a circular obstruction, using up-
wards of 160 000 hard disks, have revealed the existence of
eddies, and Reynolds number flow phenomena, using mo-
lecular dynamics computer simulation methods. This is an
important step forward in our knowledge of the relation be-
tween molecular and hydrodynamics, and was achieved
with a simple hard disk potential. With this, however, there
is no scope for the investigation of ccfs of the type mentioned
in this paper, because the angular motion of each individual
disk is not accounted for. Nonetheless, the phenomena that
can be seen with this system include many of the systems that
are well known from continuum hydrodynamics, such as
eddy pair formation downstream of the circular obstacle. In
the region of the eddy pair the translation motion of the flow
prior to its encounter with the obstacle is obviously trans-
formed into rotational motion, clockwise in one eddy and
counter clockwise in the other. In three-dimensional fully
molecular systems the ccf in the region of the eddy, down-
stream of the cylindrical obstacle should be significantly dif-
ferent in time dependence on a molecular scale than those in
the flow region outside the eddy.

The eddy and wake patterns downstream also change
with time, and depend, as in the hydrodynamics of true
flows, on the initial conditions. Therefore, the construction
of ccfs by running time averaging would have to depend im-
plicitly on the assumption that certain regions of the flow
were statistically stationary for a long enough time interval
over which to construct the running time averages. Never-
theless there is reason to believe that such a study would
provide significant information on the behavior of three-di-
mensional flow around a cylindrical object in a three-dimen-
sional molecular dynamics simulation.

Another possibility provided by large molecular dy-
namics samples is that of setting up vortices in the sample

=33
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with the help of rotating external electric fields, or a circular-
ly polarized electric field such as

E,=E, cos(a)t ) —i) . 37)
c
E, = j;Eosin((ot—(o—x—), (38)
c
which is assumed to generate a torque of the form
p'xE = i( .uyEz —'.quy) _j( #sz _#zEx)
+k(uE, —p E,) (39)
with
E =0, E,=Eycoswt; E, = + E;sinwt. (40)

Therefore, the torque will be dependent on whether the
field is right or left polarized. The right polarized torque is

(PXE)r =E0 sin a)t( #yi _:uxj)

+ E,cos wt( u k —p,i) (41)
and the left polarized torque is
(WXE), = — Eysinowt(p,i—p.j)
+ Ejcoswt( pu k — p, i). (42)

If selected sample regions of the molecular dynamics cube
are irradiated in a computer simulation with fields of type
(41) or (42) vortices will be set up in a clockwise or counter-
clockwise direction. It would be interesting to check the ef-
fect these vortices would have on the rest of the sample; and
to see if the subsequent effects could be monitored by com-
puter simulation. The hydrodynamic theory of counter ro-
tating vortices would be checked against the indications of
the simulation. This would also be a situation accessible to
experimental investigation with two strong laser fields, one
right and one left circularly polarized. Particularly interest-
ing effects would be seen with chiral molecules, because a
strong circularly polarized field would rotate the chiral mol-
ecule, causing subsequent translation of the center of mass.
Bigger or smaller regions of sample could be treated with the
laser fields and the effects monitored.

C. Vibration/translation/rotation coupling

The introduction of bond vibration into the intermole-
cular potential energy representation will allow the consi-
deration of cross correlation between vibrational coordi-
nates, rotation, and translation of the molecule’s own center
of mass. In the context of quantum mechanics the cross cor-
relation between vibration and rotation is already well
known, and manifests itself in infrared and Raman spectra.
In quantum mechanics the effect of rotation/translation
cross correlation has been reviewed for HD liguid. If the
center of mass translation is correlated to the molecular rota-
tion then the usual selection rules are changed, extra absorp-
tion appear, and the overall spectrum is significantly affect-
ed.

The rules that govern the existence of these quantum
mechanical cross correlations are expected to be the same as
those governing the classical mechanical counterparts dis-
cussed in this paper. Similarly, whenever a classical ccf is
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induced to exist directly in the laboratory frame (x, y,z)
there will be analogous quantum effects directly visible in the
laboratory frame spectra, i.e., the application of an external
electric field to vibration rotation or rotation translation
quantum lines of a gaseous sample for instance could result
in the splitting of the observable quantum lines into further
fine structure. This would be detectible with double reso-
nance techniques at ultrahigh resolution and is roughly anal-
ogous to Stark splitting, where an external electric field is
used to split quantum lines.

The cross correlation between center of mass translation
and bond vibration has not been considered in terms of either
classical cross correlation functions or their quantum me-
chanical equivalents in the theory of condensed phase mo-
lecular dynamics, and there is scope for considerable devel-
opment in this area.
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