A self-consistent theory of laboratory frame cross correlation functions
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A theory is developed for laboratory frame cross correlation functions detected recently by
computer simulation. It is based on the concept of itinerant oscillation as developed by Coffey
et al., and for the first time provides a self-consistent analytical description of numerically
observed laboratory frame time cross correlation functions in molecular matter.

INTRODUCTION

A number of recent computer simulations'~® has re-
vealed the existence and time dependence of cross correla-
tion functions (ccfs) in the laboratory (x,y,z) and moving
(1,2,3) frames of reference. These are fundamental to the
understanding of classical molecular dynamics.

The first attempt to develop a theory for fundamental
laboratory frame ccfs was made by Condiff and Dahler® us-
ing linked Langevin equations involving the molecular cen-
ter-of-mass linear velocity and molecular angular velocity in
the laboratory frame for statistical cross correlation. This
leads, however, to the incorrect result

(@()¥(0)T)y>0.

There has been considerable interest, subsequently, in
developing the theory of molecular diffusion for the descrip-
tion of ccfs between fundamental dynamical variables.”'*
Computer simulation has been of key importance in pin-
pointing the ccfs that are symmetry allowed in the laborato-
ry and moving frame of reference defined by the three princi-
pal molecular moments of inertia, and has revealed the
shortcomings in the theory of molecular diffusion when this
is extended to involve more than one fundamental degree of
freedom, i.e., to involve rotation superimposed upon transla-
tion. Furthermore, the computer simulation results have in
turn promoted further theoretical investigation of the many
new types of ccf that have recently come to light in molecular
liquids from spherical top to chiral symmetry. During the
course of these investigations, several new experimental
methods have been devised to measure the effect of statistical
cross correlation, > !% including a method based on the com-
parison of far infrared spectra of an enantiomer and its race-
mic mixture, and another based on the application of an
uniaxial electric field. This is especially straightforward in
liquid crystal media such as nematogens, where a weak elec-
tric or magnetic field easily induces birefringence at room
temperature. In field-on equilibrium in these media, the nu-
merous cross correlation functions now known to exist a
field-off equilibrium are supplemented by further direct
cross correlation'® in the laboratory frame which vanishes
when the aligning external field is removed. In liquid crys-
tals, therefore, the appearance of new cross correlation func-
tions is a fundamental consequence of the aligning effect.

) Present address: Department 48B/428, 1.B.M. Corporation, Neighbor-
hood Rd., Kingston NY 12449 and Visiting Academic, Dept. of Micro-
electronics and Electrical Engineering, Trinity College, Dublin 2, Repub-
lic of Ireland.

J. Chem. Phys. 87 (12), 15 December 1987 0021-9606/87/247257-04$02.10

The latter cannot be described theoretically without the use
of ccfs. Further support for the fundamentally important
nature of dynamical ccfs in molecular liquid mixtures has
been obtained recently in a computer simulation of water/
carbon tetrachloride microemulsions, where the moving
frame ccf between molecular linear center-of-mass velocity
and angular velocity exists strongly in pure liquid water but
vanishes in the microemulsion, thus revealing the link be-
tween dynamical ccfs and H bonding. The dynamics of H
bonding can be described in terms of the time dependence of
statistical cross correlation functions.”

The moving frame (1,2,3) is that of the principal molec-
ular moments of inertia, and a vector quantity A defined in
the frame (x,p,z) is rotated or projected into (1,2,3) for each
molecule of the ensemble. The group theory of cross correla-
tion functions in frame (1,2,3) has recently been developed
extensively by Whiffen'® and provides a method of deter-
mining which ccfs exist in frame (1,2,3). The role of parity,
time reversal, and reflection symmetry in frame (x,y,z) has
been defined by the present author. In neither frame, how-
ever, do the symmetry rules define the time dependence of
the ccfs explicitly, and in this letter therefore a theory is
developed for this purpose. For the first time it provides a
simple self-consistent analysis of the time dependence of sev-
eral auto and cross cfs in terms of two parameters of the
itinerant oscillator equations of Coffey et al.'”**

THEORY
On elementary grounds the ccfs

(v(OHRTON
and

(vORT0)N

exist in the laboratory frame of reference. Here p is a molec-
ular axis unit vector such as that of the net dipole moment,
and v is the molecular center-of-mass linear velocity. This
implies that parity, time reversal, and reflection symmetries
of the vectors v,p, and ju are identical in frame (x,y,z). Thus,
equations of motion involving these vectors may be written
in this frame and solved for auto and cross correlation func-
tions with the methods developed by Coffev er al.'®** It is
resonable to write the equations of motion as the linked Lan-
gevin equations of the type used in purely rotational itiner-
ant librator theory'$-2":

F+BE+V (r—pn) =41, (1
B+BRp—V'(r—p) =20 (2)
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Here r is a unit vector in the axis joining the origin of frame
(x.3,2) to the center of mass of a diffusing molecule in this
frame. Thus, r is the unit vector of the molecular center of
mass linear velocity. In Eqs. (1) and (2), 8 a Langevin fric-
tion coefficient which is assumed equal for the simultaneous
rotational velocity and linear velocity of the diffusing mole-
cule. In this limit?*?! the equations of the two friction itiner-
ant oscillator are soluble analytically. The use of an equal
friction model implies that the rotational velocity acf and the
linear center-of-mass velocity acf must have the same time
dependence when both are normalized to one at the origin.
This limits the applicability of the model to molecular diffu-
sion processes in the medium to high friction limit. The pres-
ent model is not applicable in the free rotation limit because
in that case the acf of the center-of-mass linear velocity
would be a constant and that of the rotational velocity a
hypergeometric Kummer function. The use of a two friction
io model with different frictions would produce different
time dependencies for the two acf’s but at the expense of
considerable analytical complexity as fully described in
Refs. 20 and 21. For the sake of simplicity the equal friction
model is used in this paper. The potential term is generated
by assuming that the two types of motion are not statistically
independent in frame (x,y,z), i.e., by assuming that the ccf
between the rotational and linear molecular velocities exists
in frame (x,y,z). In general, the dependence of ¥ on its argu-
ment {r — ) is intricately nonlinear and is unknown ana-
lytically. However, it can be assumed that ¥ can be expanded
in a Taylor series in the argument. If it is assumed further
that the term ¥ originates from time differentiation of a po-
tential energy generated by the simultaneous rotation and
translation of the diffusing molecule, then it follows that the
potential energy will be a function of the intermolecular
forces and torques, and will have maxima and minima de-
pending on atomic coordinates relative to the molecular cen-
ter-of-mass. It is reasonable to approximate these potential
wells with an even powered Taylor expansion such as a co-
sine, or in the first approximation by Hooke’s law, the har-
monic approximation:

Vir—p) = =2V(r—p) . 3)

The terms on the right-hand sides of Eqs. (1) and (2) are
Wiener processes as in the literature.'’

The use of a nonlinear potential in Egs. (1) and (2),
e.g., a cosine potential, would introduce into consideration
barrier crossing processes superimposed on molecular diffu-
sion, and therefore open the door to many interesting nonlin-
ear effects. However, this would again be at the expense of
analytical intractability, and considerable numerical diffi-
culty when attempting to solve the cosine potential two fric-
tion i0 equations with differential differencing. This is dis-
cussed more fully in Refs. 17 to 22. Note that if the potential
energy well is a cosine then the derivative of this with respect
to the angular coordinate is a sinusoidal torque which is ap-
proximated in this paper by its harmonic limit. This is a
physically reasonable assumption when the torsional oscilla-
J

(R()(0)) = kT /2 {e"P/B% ye " [B/2sin(w,1) —w, cos(w,1)]} .
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tion of the diffusing molecule is constrained to the bottom of
the potential well, with small angle oscillations so that the
sine function is adequately approximated by its argument.

In the harmonic approximation, Eqs. (1) and (2) may
be solved analytically, adapting straightforwardly the meth-
ods developed by Coffey ef al.'’~* The results are given here
in terms of # and the parameter

w1 = (4¥,— B4 -
LINEAR CENTER-OF-MASS VELOCITY ACF
(F(2)(0)) = kT /2{e P 4 e~

X [cos(w ) — B/(2w,)sin{w,1)]} .
(5)
ROTATIONAL VELOCITY ACF
(n(0)p(0)) = (F()-F(0)) .
CROSS CORRELATION FUNCTION

(6)

(R()T(0)) =kT/2{e ' — e~ 172

X [cos(w,t) —B/(2w,)sin(w,t)]}. (7)

Other cfs of interest in the laboratory frame can be ob-
tained from Egs. (5)-(7), e.g.,

(n(0)-r(0))

= —kT/2[e " #/B + e V* /o, sin(w,)]. (8)

ANGULAR VELOCITY ACF

Using the vector identity

(AXB):(CXD) = (A-C)(BD) — (AD)(B-C)
then

(1(0)-(0)) = (() Xp(1)(0) Xp(0))

= (o()»(0)) (n(t)n(0))
— (o(1)1n(0)) (1) w(0)) .

The existence on elementary grounds?® of

(r(0)+v(0))
and

(R(2)v(0))

implies that the parity, time reversal, and reflection symme-
try of p and |x are both the same as that of ». However, the
parity symmetry of @ is opposite to that of v so it follows that
it is also opposite to that of both p and p so that

9

(10)

o, (0} +B2/4)

(a()n(0)) = (()n(0)) =0 (1
and
(@) 0(0) = EOBO) (12)
(n(0)+n(0))
ORIENTATIONAL ACF
Double integration of Eq. (6) produces the result
(13)
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ACFS OF THE CORIOLIS AND CENTRIPETAL
ACCELERATIONS

The molecular Coriolis, centripetal, and nonuniform
accelerations appear in frame (x,p,z) for all molecular en-
sembles and have recently been simulated.'-> The vector
identity (9) provides the simple result

((2) Xv(1)-@(0)Xv(0))
= (@()@(0))(v()v(0)) (14)

so that the acf of the Coriolis acceleration is obtainable from
Eqgs. (5) and (11). Similarly, the acf of the lab frame cen-
tripetal acceleration

(o) X[w() Xr(1)]:0(0) X [»(0) Xr(0)])
= [(0()*&(0))]*(r(¢)r(0)) (15)

and is obtainable analytically in terms of two parameters.

Finally, by differentiating the analytical expression
(14) for the Coriolis acf it is possible to obtain analytical
expressions for laboratory frame ccfs such as shown”® to exist
recently in all molecular symmetries, including spherical top
symmetry, i.e.,

4 a0 (+0+(0)]
= (@ () Xv(1)w(0)Xv(0))
+ (0 (1) XV(1) 0 (0)XV(0)), (16)
which is also obtainable analytically.

COMPUTER SIMULATION

In order to match the analytical results against indepen-
dently obtained numerical results, a computer simulation of
liquid water was carried out under conditions designed to
maximise the cross correlation between rotational velocity
and linear center-of-mass velocity. This was achieved by
simulating liquid water under shock wave treatment** at 250
kbar, 1043 K. The interaction between two water molecules
was modeled by a potential devised elsewhere in the litera-
ture®® consisting of Lennard-Jones terms between the oxy-
gen and hydrogen atoms superimposed on an ST2 charge
distribution. The simulation was carried out using standard
constant volume methods and provided the results illustrat-
ed in Fig. 1 for the normalized linear center-of-mass velocity
acf, the rotational velocity acf and the cross correlation be-
tween the two dynamical variable, which under shock wave
conditions is very intense.

RESULTS AND DISCUSSION

The overall behavior of the system of Egs. (1) and (2) is
similar to that of cfs from computer simulation. A compari-
son is given in Fig. 1. For a given value of the friction coeffi-
cient the rotational velocity and velocity acfs become more
oscillatory with increasing ¥, and the cross correlation func-
tion between the rotational and linear velocities becomes
stronger and more oscillatory. The barrier height ¥is there-
fore directly responsible in this theory for the strength of the
laboratory frame cross correlation. It follows therefore that
V is dependent on intermolecular forces and torques as well
as the molecular point group symmetry. The harmonic ap-

10 1 T T T T
N\ a
0.5k \ AN -
\
0 /\/ S
3
40.5_ ]
05 15 20 pe
\l T T T ¥ T 1 10
| b
T L05Y
16
O

014 ps

FIG. 1. Comparison of theoretical correlation functions (a) with computer
stmulated equivalents for liquid water, computed using a site—site model of
water described in Refs. 4-6. (a) (1) Orientational correlation function for
B = 10: v, = 1000. (2) Rotational velocity acf. (3) The cross correlation
function (Ref. 8). (b) As for (a) from the simulation, carried out at 250
kbar, 1043 K. Note that the sign of the cross correlation function from the
computer simulation has been reversed, for the sake of illustration. The sim-
ulated ccf is normalized according to
e(r) = (R(OyvT(0)) /[ () *(v?)'"?] . (a) and (b) are not intended as
“best fit” comparisons but as illustrations of the theoretical results for a
given set of parameters.

proximation is the simplest possible representation of these
complicated dynamics. There are mathematical and phys-
ical limitations on the theory as follows: (1) The friction
coefficient S is assumed to be the same in both Egs. (1) and
(2). More generally (and more intractably'’~*?), different
friction coefficients can be generated by linear and rotational
velocity. (2) The nonlinearities of the Euler equations®® are
assumed to be operative through ¥ and do not appear expli-
citly in the linked Langevin equations. The assumptions un-
derlying this statement can be seen more clearly by adding
Egs. (1) and (2), giving

2
L et +BL+w =40 + A0, (D
dt dt

which is a simple Langevin equation in the linear velocity of
a point in the molecule at one end of the axis . The rota-
tional motion of the molecule affects this linear velocity
through the potential ¥ and there are no explicit Euler
terms'' in Egs. (1), (2), or (3). (3) Equations (1) and (2)
are subject to the general limitations on all Langevin equa-
tions, recently discussed in detail in the literature.””> Given
these limitations, systems (1) and (2) appear to be a new
approach to theoretical molecular dynamics which has the
advantage of being analytically tractable, giving results
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which can be compared with computer simulations and
data.
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