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ABSTRACT 

Recently Chatzidimitriou-Dreismann has challenged the basic 

theorem which relates the two stationary correlation functions 

<B(0)B(t)> and <B(0)B(t)> of statistical thermodynamics: 

d 2 
<B(0)B(t)> = - zdt---~<B(0)B(t)> 

where the dynamical variable B is, for example, a molecular 
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vector. In this paper the theorem is tested to a precision of one 

part in a million for the unit vectors along the principal 

molecular moment of inertia axes of an asymmetric top. The 

rotational velocity correlation function is fitted with a twenty- 

five term Chebyshev polynomial and the latter is integrated 

numerically to give a twenty seven term polynomial expression for 

the orientational a.c.f. The above relation is tested out 

rigorously for microcanonical ensembles consisting of 108 

molecules each of a) compressed hydrogen selenide gas; b) liquid 

tritium oxide; c) a nonequilibrium but stationary sample of water 

subjected to an intense uniaxial z axis electric field. Small 

Dreismann effects are found in cases b) and c); effects which are 

about three orders of magnitude greater than the numerical 

precision of the fitting method used. 

INTRODUCTION 

It is assumed in the equilibrium and, more generally, 

stationary nonequilibrium theory of molecular dynamics that for 

dynamical variables B(t) that depend on the canonical variables of 

a small number s of particles of a classical N particle ensemble 

the equalities 

d2<B(0)B(t)>/dt 2 = - <B(0)B(t)> (1) 

are in general true, as can be proved in a straightforward manner 

from fundamental considerations. Recently, however, 

Chatzidimitriou-Dreismann has challenged [i] this basic theorem, 

basing his consideration on the assumption of two body 

interactions, and building up the hamiltonian on these grounds. 

F~r reasons of clarity he also assumed that the liquid is made up 

of monatomic particles and that the interactions between particles 

have a finite spatial range. The correlation functions of the time 

dependent dynamic variables B and B can then be written in terms 

of s particle liouvillians and distribution functions [2,3] which 

depend on coordinates and momenta of each particle in the system. 

It is found that the second derivative theorem (i) holds 

rigorously for N particle dynamical functions (N-1023) but for s 
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particle dynamical functions, where s<<N, the equality is no 

longer always true. 

The Dreismann effect can therefore be defined as the 

difference predicted theoretically in ref. (I), between the r.h.s. 

and l.h.s, of equ. (i). The analytical prediction can be tested 

rigorously in a computer simulation, where the dynamics of s 

particles are considered, so that the correlation functions on the 

right and left hand sides of egu.(1) can be produced self- 

consistently. This paper attempts to show that in one such 

algorithm, there is a non-vanishing Dreismann effect for t>0, in 

other words the computer simulation shows that for s=108 the 

simulated correlation function on the left hand side of equ.(1) is 

not equal to the simulated correlation function on the right hand 

side for t>0. This is provided as the first numerical evidence for 

the analytical theory of [i]. 

In this paper we use the technique of molecular dynamics 

computer simulation to test the analytical theory [i] with a 

relatively small ensemble of 108 molecules under equilibrium 

conditions; a) in a condensed gas; b) in liquid tritium oxide, a T 

bonded liquid; and finally for a stationary ensemble of H20 

molecules out of equilibrium due to the strong alignment effect of 

a uniaxial electric field applied in the z axis. The analytical 

results of [i] hold true also for polyatomic molecules and for 

cross-correlation functions of time, and can be tested numerically 

as follows. 

NUMERICAL METHODS 

The numerical problem is to check against the results of 

molecular dynamics computer simulation [4-11] whether or not the 

rotational velocity autocorrelation function (r.v.c.f), for 

example, is the precise second time derivative of the 

orientational a.c.f, for a limited number (s) of pairwise 

interacting molecules, e.g. the 108 used in the simulation. This 

would check whether there is a difference between the r.h.s, and 

the l.h.s, of equ. (i). The method adopted was to fit the former 
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very precisely with a Chebyshev polynomial and then to integrate 

the polynomial numerically, while defining carefully the constant 

of integration. Using this method it was found possible to fit the 

r.v.c.f, to one part in a million for all t. Furthermore, 

precision is gained and not lost by numerical integration, so that 

the test provided by this method is precise to at least one part 

in a million for both the rotational velocity and the 

orientational a.c.f.'s. Up to twenty five terms of the Chebyshev 

polynomial expansion were used to fit the rotational velocity 

a.c.f, and after two numerical integrations a twenty seven term 

expansion becomes available to fit the orientational a.c.f. 

This was achieved for input molecular dynamics simulation 

data using the N.A.G. routines EO2AGF and EO2AKF. 

The Chebyshev polynomial was integrated using the N.A.G. 

routine EO2AJF, and the orientational a.c.f, obtained in this way 

from the rotational velocity a.c.f, compared with the equivalent 

from computer simulation, obtained entirely self consistently with 

the same set of simulation trajectories, using the basic [12] 

kinematic relation: 

/~ = ~o x 1~. (2) 

In the computer simulation it is not assumed that the one 

correlation function is the second time derivative of the other. 

In equ. (2) ~ is the molecular dipole moment and ~ the molecular 

angular velocity. The two correlation functions are, however, 

obtained using the same number of time steps and under precisely 

similar thermodynamic conditions using the same algorithm to 

compute the running time averages. Therefore they are obtained 

entirely self consistently and there is no reason to suppose that 

one is any less precisely computer simulated than the other. 

CHECKS ON THE NUMERICAL INTEGRATION METHOD 

A check to machine precision on the UMRCC CDC 7600 was 

carried out on the accuracy of the numerical integration 
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algorithm. The first step consisted of the simple integration 

ff cos(t) dt dt = - cos(t) (3) 

The initial machine generated cosine function was fitted 

accurately with a twenty five term Chebyshev polynomial so that 

the fitted cosine was indistinguishable from the original cosine 

to machine single precision (about fifteen decimal places). The 

Chebyshev polynomial expansion of the cosine was then integrated 

numerically twice to produce the coefficients of a twenty seven 

term Chebyshev sum. This was then evaluated for all t and it was 

checked that this gave the original machine generated cosine with 

all signs reversed, as implied in equ. (3), to machine single 

precision. 

The Constant of Integration 

Having carried out this check for the elementary double 

integration of the cosine there remains the need to determine the 

role of the constant of integration and to incorporate into the 

algorithm a method of evaluating this under exactly self 

consistent conditions with the computer simulation of each 

correlation function. The proper constant of integration for the 

results from the computer simulation can be found by a Taylor 

series expansion [2] of the (classical) orientational a.c.f.: 

t 2 - - t 4 
<]!(t) "]~(0) > = 1 - < ~ ( O ) - ~ ( O ) > ~ ] - . i  + < t t ( O } ' u . ( O ) > 4 ! ~ .  - ~ -  - (4) 

Double differentiation of the Taylor series leaves at t=O the 

constant -<~2(0)>. If the numerical integration exercise is 

carried through by fitting a rotational velocity a.c.f, initially 

normalised to unity at the time origin, as in the computer 

simulation then the proper constant of integration is: 

-<~2(0)>/<~2(0)>. 

This was incorporated into the numerical integration 

algorithm and after evaluation from exactly the same set of 
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molecular dynamics data as used in the computation of the 

individual rotational velocity and orientational autocorrelation 

functions. If the data being considered are for an asymmetric top 

molecule then the three individual ratios: 

<el>/<_~l>; _ _ ; 

were evaluated from the same segment of simulation data, where ~i' 

~2 and ~3 are unit vectors in the three principal molecular 

moments of inertia. The rotational velocity and orientational 

a.c.f.'s of each of these vectors can be obtained from the 

simulation and the second derivative theorem (i) explored for 

each ratio. 

MOLECULAR DYNAMICS SIMULATION METHODS 

A sample of 108 molecules was chosen to represent the 

stationary ensemble. The conditions chosen to test the considered 

theoretical prediction [i] ranged from a compressed gaseous sample 

of hydrogen selenide to a T bonded sample of liquid tritium oxide 

at room temperature. A stationary, non equilibrium sample of 

liquid water subjected to an intense uniaxial electric field was 

also investigated using the same number (108) of water molecules. 

The following sections deal in turn with the conditions under 

which the simulations were carried out, the nature of the 

potential, the time step, number of time steps per segment, and so 

on. Common to each computer simulation is the use of periodic 

boundary conditions, the pairwise interaction approximation; and 

centre of mass to centre of mass cut off of the interaction 

potential. 

Compressed Hydrogen Selenide Gas 

This is a C2v triatomic asymmetric top with one very heavy 

central (Se) atom attached to two very light hydrogen atoms. It 

was simulated in the gaseous state at 300K at a molar volume of 

404.1 cm 3. A literature bond length of 1.47 ~ was used with the 
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known [13] included angle of 91 ° . The pair potential was mimicked 

with a three by three Lennard Jones potential with atom-atom 

parameters as follows: 

~(H-H) = 2.40 ~; e/k(H-H) = 21.1 K; 

~(Se-Se) = 3.90 ~; c/k(Se-Se) = 218.0 K. 

It is known that hydrogen bonding in liquid hydrogen 

selenide, unlike liquid water, is negligible, and in consequence 

it was not considered necessary to mimick H bonding with for 

example an ST2 type of potential [14]. The mass distribution in 

hydrogen selenide is such that the Se atom is about 79 time 

heavier than each H atom. This makes the principal moment of 

inertia distribution very anisotropic, and in this paper we 

attempt to explore the consequencies for the three orientational 

and three rotational velocity autocorrelation functions. The 

Lennard-Jones parameters used in this simulation produced a 

pressure satisfactorily constant at about six bar of compressed 

gas, with a much smaller uncertainty of about 0.5 bar either side 

of the computed mean. 

For each simulation segment the rotational equation of motion 

for the 108 molecules were integrated by computing the torque from 

the resultant forces on each atom. The torque is evaluated at four 

points in time before being integrated numerically for the angular 

momentum. This integration proceeds in four stages, is relatively 

time consuming, but accurate. The translational equation of motion 

in TETRA, the simulation algorithm, is valid for the polyatomic 

asymmetric top provided that this is rigid. It uses periodic 

boundary conditions and centre of mass to centre of mass cut off 

criteria. It uses periodic boundary conditions in an entirely 

conventional cubic array, the melt run being carried out from a 

face centred lattice. The number of atoms in each molecule and the 

number of molecules can be increased indefinitely provided the 

computer time is available. It incorporates corrections for long 

range forces and has facilities for using pair potentials of the 

site-site type. For input temperature and molar volume the mean 

pressure is computed, together with the relevant thermodynamic 
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parameters such as the mean internal energy, potential energy, and 

translational and rotational kinetic energy. The run can be 

stopped and restarted at will, and therefore an indefinite number 

of steps can be used. The restrictions on time steps and number of 

molecules reported in this paper are purely economic. 

Liquid Tritium Oxide 

This is a modified ST2 potential which includes atom-atom 

terms centred both on the oxygen and tritium atoms. This method 

eliminates automatically the need to use the switching function 

devised by Stillinger and Rahman [15]. The empirical pair 

potential is then described as follows: 

e/k(O-O) = 58.4K; ~(O-O) = 2.8 ~; 

E/k(3H-3H) = 21.1 K; ~(3H-3H) = 2.25 ~; 

e/k(O-H) = [~(O-0) .~(e 3H_3H)]1/2,. 

= 1 a(O-H) ~-(a(O-O) + ~(3H-3H)) ; 

where e/k and ~ are the usual atom-atom Lennard Jones parameters. 

In addition the original tetrahedral arrangement of charges in the 

ST2 potential was used unchanged together with the original ST2 

geometry. The time step used was 0.5 femtosecond, with no Ewald 

corrections and simple cubic periodic boundary conditions. The 

total mean configurational energy at 300K, molar volume = 18.07 

cm3/mole, was for a typical segment of about i000 time steps -35.2 

kJ/mole. Long range corrections were applied to the virial sum and 

to the total configurational energy for Lennard Jones terms only, 

because they diverge for charge-charge terms. The range of 

a.c.f.'s illustrated in Section III were evaluated with running 

time averages over two or more segments of i000 time steps each. 
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These results were obtained using a sample of 108 water 

molecules as described in detail elsewhere [15]. The H20 pair 

interaction potential was the same as that used above for liquid 

tritium oxide, although the mass distribution among the atoms was 

of course different. 

With a time step of 0.5 femtosecond and no Ewald corrections 

the mean configurational energy at 300K, molar volume 

18.07 cm3/mole, for a typical segment of about 1000 time steps was 

-35.5 kJ/mole. This compares with -34.3 kJ/mole at 314 K obtained 

by Stillinger and Rahman [16] also in the absence of Ewald 

corrections. For two body interactions the inclusion of Ewald sums 

by Clementi et al. [17] reduced the internal energy from their 

Monte Carlo simulation to -38.6 kJ/mole, and their consideration 

of three and four body terms brought this closer to the 

experimental result of -41.0 kJ/mole. After equilibration, rise 

transients and fall transients to and from a nonequilibrium 

configuration can be generated using the technique developed by 

Evans and described fully elsewhere [18]. Essentially speaking, 

the application of a uniaxial, static, electric field E in the 

lab. frame z axis produces the torque -~xE on each molecule in the 

absence of any polarisability effects. If the unit vector £i' is 

defined in axis ! the equilibrium average <elz> becomes nonzero as 

a result of this torque. The field is applied at t=0 and the rise 

transient brings the sample to a stationary but non equilibrium 

condition in the sense that the potential energy is higher than it 

would be in the absence of the field [19]. 

RESULTS AND DISCUSSION 

Liquid Tritium Oxide 

The rotational velocity and orientational a.c.f.'s and the 

constants of integration were simulated self consistently from a 

segment of 886 time steps of 0.5 fsec recorded every two time 
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steps. This provided 443 records from which the relevant averaging 

was carried out using the same algorithm for both correlation 

functions. The ratios of relevance were averaged for each record 

over the 108 molecules of the sample. For liquid tritium oxide 

this gave the results 

2 .2 
<el>/<el> = 1/136.998 x i0-24s2;• 

2 -2 
<e2>/<e2> = 1/147.644 x i0-24s2; 

2 .2 <e3>/<e3> = 1 / 6 1 . 9 1 3  x 1 0 - 2 4 s 2 ;  

which were then used in the numerical integration algorithm. The 

simulated rotational velocity a.c.f, was fitted with a twenty five 

term Chebyshev polynomial to a precision of one part in a million 

as described already, and the numerical integration then carried 

out to give the twenty seven term Chebyshev polynomial as 

described above. For tritium oxide the results of this fitting are 

illustrated in fig. (i). The vector e coincides in direction with 

the dipole moment vector ~. In fig. (la) the comparison is made 

between the two correlation functions <el(t)-~l(0)> and 

<~l(t)-~l(0)>/<e2>-- from the simulation and numerical integration. 

The simulated and fitted a.c.f.'s are indistinguishable on this 

scale but there is a small difference of about one part in a 

thousand between the simulated and numerically integrated results 

for the orientational a.c.f. This difference is given in detail in 

table (i). The difference is small relative to the value of unity 

taken by the a.c.f, at the time origin, but is estimated to be at 

least three orders of magnitude larger than the precision with 

which the rotatinal velocity a.c.f, was fitted. Bearing in mind 

that the technique used of integration with the NAG routine E02AJF 

increases numerical precision rather than decreasing it as in 

numerical differentation then fig. (i) and table (i) are presented 

as the first evidence for the effect predicted analytically. 

Similar results were obtained for the tritium oxide 

r.v.c.f.'s and orientational a.c.f.'s pertaining to the vectors ~2 
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Fig.l. Curve i: Rotational velocity a.c.f, of liquid tritium oxide 

obtained from the computer simulation. Curve 3: Fit to curve 1 

using a 25 term Chebyshev polynomial. Curve 2: Orientational 

a.c.f, obtained from the computer simulatin. Curve 4: Fit to curve 

2 using a 27 term Chebyshev polynomial integrated from 3. 

Figure (a): Results for the orientational unit vector ~i" 

Figure (b): Results for ~2- Figure (c): Results for ~3" 
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TABLE 1. 

Oxide 

t/ps 

Dreismann Effect in <e2(t).e2(0)> for Liquid Tritium 

Autocorrelation Function 

Simulated Integrated 

0.00 1.00000 1.00000 

0.05 0.99589 0.99789 

0.i0 0.99052 0.99251 

0.15 0.98203 0.98400 

0.20 0.97101 0.97296 

0.25 0.95817 0.96010 

0.30 0.94425 0.94614 

0.35 0.92997 0.93183 

0.40 0.91593 0.91777 

0.45 0.90261 0.90442 

0.50 0.89034 0.89212 

0.55 0.87928 0.88104 

0.60 0.86945 0.87119 

0.65 0.86073 0.86245 

0.70 0.85295 0.85466 

0.75 0.84583 0.84753 

0.80 0.83912 0.84080 

and ~3" Here again the precision of the fitting of the r.v.c.f.'s 

was better than one part in a million for all t (i.e. for nearly 

one hundred input points along the time evolution of the a.c.f.). 

Again there was a difference of some one part in a thousand 

between the simulated and numerically integrated a.c.f.'s. 

Therefore this is presented as evidence for the Dreismann effect 

for the other orientational vectors of tritium oxide. The effect 

is therefore present for the three orientational vectors along the 

principal moment of inertia axes. 
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Compressed Gaseous Hydrogen Selenide 

In this case the orientational a.c.f.'s are different in 

appearance to those for tritium oxide because of the anisotropy in 

the moment of inertia distribution of the hydrogen selenide 

molecule and the absence of hydrogen bonding in the compressed 

hydrogen selenide gas. The rotatinal velocity a.c.f.'s are highly 

oscillatory in appearance and generate in consequence oscillatory 

orientational a.c.f.'s. 

The procedure described above for tritium oxide was adopted 

for hydrogen selenide with a self consistent set of simulation 

data from a segment consisting of 910 records, over which the 

a.c.f were computed by running time averages and the integration 

constants found to be 

<e~(0)>l<e~(0)> = 11103.380 x i0-24s2; 

<e~(0)>l<e~(0)> = 11135.828 x i0-24s2; 

<e~(O)>/<e~(O)> = 1/99.331 x 10-24s 2. 

The effect under consideration for compressed gaseous hydrogen 

selenide was found to be very small, less than one part in ten 

thousand. This result indicates that the dynamics of correlations, 

which cause the effect under consideration, are more pronounced in 

a liquid than in a gas. This is in line with the general ideas of 

nonequilibrium statistical mechanics; cf. ref.(1). 

Liquid Water in a Nonequilibrium Condition. 

In this case the r.v.c.f.'s of the three orientational 

vectors are highly oscillatory in appearance and generate in 

consequence oscillatory orientational a.c.f.'s, as for hydrogen 

selenide. The origins of the oscillations are, however, different, 

they are induced by the electric field which holds the molecules 
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Fig.2. As for figure i; liquid water in an external electric 

field. 
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t/ps Autocorrelation Function 
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Simulated Integrated 

0.000 1.0000 1.0000 

0.005 0.9940 0.9962 

0.010 0.9839 0.9860 

0.015 0.9706 0.9728 

0.020 0.9582 0.9604 

0.025 0.9496 0.9518 

0.030 0.9462 0.9485 

0.035 0.9474 0.9498 

0.040 0.9515 0.9538 

0.045 0.9558 0.9581 

0.050 0.9584 0.9607 

0.055 0.9588 0.9611 

0.060 0.9575 0.9598 

0.065 0.9554 0.9580 

0.070 0.9547 0.9572 

0.075 0.9553 0.9579 

0.080 0.9574 0.9601 

in a nonequilibrium state due to an externally imposed torque. 

AS for the other two microcanonical ensembles considered in 

this paper, the rotational velocity a.c.f, was fitted with the 

twenty five term Chebyshev expansion to one part in a million or 

better for all input data and the orientational a.c.f was 

generated from this fitting using the twenty seven term integrated 

Chebyshev polynomial. The difference between the orientational 

a.c.f, obtained in this way from the numerical integration and the 

simulated a.c.f, is shown in table (2) for the motion of the unit 

vector in the dipole axis of the principal moment of inertia 
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frame. The difference is also just discernible on the scale of 

fig. (2) and is about one part in a thousand. 

CONCLUSIONS 

The existence of the effect predicted analytically in [I] is 

evidenced in this paper for a microcanonical ensemble of 108 

molecules whose dynamical properties have been investigated using 

computer simulation. The equality in equ.(1) is not obeyed by the 

results from the simulation. The effect is about one part in a 

thousand in the picosecond interval of the evolution of the 

orientational a.c.f, as compared with its numerically exact second 

derivative. This effect is about three orders of magnitude greater 

than the precision of the determination of the correlation 

functions involved. Therefore it seems that a microcanonical 

ensemble of 108 molecules behaves dynamically in much the same way 

as the complete equilibrium ensemble, despite the fact that 

periodic boundary conditions were imposed in the usual way in the 

computer simulation. This is a good test therefore of the 

reliability of our algorithm, TETRA, whose results are reported in 

many papers and articles in the literature. Further work on cross- 

correlation functions showing the effect under consideration is in 

preparation. 
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