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ABSTRACT

The theory of molecular diffusion is extended to include consideration of
the position vector r of the centre of mass of each molecule in the ensemble,
This implies automatically that the interaction of rotation and translation
must be considered in the treatment of non inertial accelerations in the
molecular ensemble. This leads to a consideration of vortex and irrotational
fields in the theory of molecular dynamics in the laboratory frame (x,y,z) and

in the moving frame (1,2,3) defined by the frame of the principal molecular

moments of inertia. Computer simulations of supercooled liquid water are used
to determine the nature of the time dependence of some of these autocorrelation
functions involved in the development of the theory. This in turn might lead
to a method of linking the ideas of molecular dynamics and hydrodynamics in

the theory of fluids.
INTRODUCTION

The increasing power of digital computers means that a larger number of
molecules per simulation can be used [1]. The borderline between molecular
dynamics and hydrodynamics runs in the region where single molecule properties
give way to multi-molecular ones, involving the collective motion of many 1
thousands of molecular entities [2]. The collective motion may be a vortex
flow with respect to a given axis in the sample or with respect to a given
origin. This automatically brings into consideration the position vector of
the molecular centre of mass, because the vortex field is made up of molecules
in the sample rotating cooperatively with reference to the laboratory frame
(x,y,2). This generates orbital angular momentum in the complete sample and
leads to the problem of how vortex fields could be generated on a molecular
level in a simulation. This paper introduces the vector r into the analysis

of molecular dynamics, where x is the position of the centre of mass of a
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molecule with respect to an origin in the laboratory frame of reference
(x,y,z). This introduces into consideration a method of analysing the way in
which the rotation and translation of the molecule are inter—dependent [3-10].
After establishing the new terms that appear in this way directly in the
laboratory frame it can be shown with a Taylor expansion that the number of new
terms rapidly increases with the order of differentiation. An analysis of these
terms is' then pursued by taking the vector curl of each new field. This shows
that some of the new fields are irrotational and some are vortex fields [11].
Furthermore it is possible to generate auto and cross correlation functions
using the vortex and irrotational fields using the information available in

the molecular dynamics simulation. This may all be achieved on a single
molecule level by generating the trajectories in a simulation and
systematically investigating the cross—correlation functions of importance.
After establishing the relative importance in this way an attempt may then

be made to extend the analysis to properties and correlation functions
involving more than one molecule, i.e. to use cross—correlation functions among
molecules as well as those correlating different vectors on the same molecules,
This last stage of the analysis would need a very big molecular dynamics

sample [2] and a supercomputer, In this paper the development is confined

to evaluating the various molecular irrotational and vortex fields in terms of
their auto and cross-correlation functions. In the end analysis it might

be anticipated that some of the cross-correlation functions, generated from
first principles, would be more important than others in the generation of
observable macroscopic properfies. Conversely the root cause of some of these
well known phenomena, such as different types of vortex, might be traced to
single molecule properties.

The position vector r does not appear in the theory [12] of uncoupled
rotational or translational diffusion, which is therefore incapable of producing
vortex fields of the right type for generating hydrodynamical properties from
single molecule properties, at least without assuming the intermediacy of
a fluid medium, slip and stick conditions [13], rototramslational friction
coefficients [14~18] and so on. It is mot really valid to assume the
presence of such a medium when it is known that true molecules interact through
an intermolecular potential, and that a molecular liquid is, self evidently,
made up of nothing but molecules. In other words the hydrodynamical
principles are laws governing macroscopic properties whose origins are
molecular dynamical. The computer power is now available to make the link
between molecular dynamics and hydrodynamics, but only if the mutual

influence of rotation upon translation is recognised from the start.
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2. THEORY INVOLVING THE POSITION VECTOR

Consider a frame of reference (1,2,3)' which rotates with respect to the
laboratory frame (x,y,z) at the angular frequency |%|. Each frame has the
same origin. Let X be the position vector of the centre of mass of a molecule
in each frame. Let Qfg be the linear velocity of the molecular centre of
mass relative to (X,y,z) and ng that relative to (1,2,3)'. This defines
the differential operators Rf and Rm. Let us now examine the Taylor expansion
of r in the rotating frame of reference, derivative by derivative. This
examination generates terms in the laboratory frame which have their origins
in the fact that the rotation and simultaneous translation of the molecule is
in dynamical terms non-inertial. The velocities in the fixed and moving

frames are linked through
Rek = Rk * 8 X X (1)

Ruf = Rek — R % % )

where it is understood that all the terms on the r.h.s. are defined with
respect to frame (1,2,3)', and that on the l.h.s. with respect to frame
{x,v,2z). The angular velocity @ is the same in both frames because it is
the rate at which one frame rotates with respect to the other. Eqn (2) is
the interesting link between rotating frame velocity (l.h.s.) and laboratory
frame velocity (r.h.s). The r.h.s. automatically employs

two velocities:

Y17 2 By, 2 (3)
N2~ [Rf{](x,y,z). (4

The velocity Ny depends on the position vector %,and it is possible to

show ©11] that the vector curl of N1 is w, i.e.

R=t0xy )

For each molecule therefore the curl of the linear velocity y. is the angular

1

velocity w. The field ¥ x N1 is therefore provided with the rotational

property w. In other words vortex rotation occurs in regions in the
molecular ensemble where ¥ x Y1 does not vanish. For a given @ the velocity
Yy is proportional to the position vector r. Therefore with respect to a
given origin in the laboratory frame (x,y,z) the further out from this origin
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the greater will be the velocity y This is characteristic of a vortex field,

1
In this picture, therefore, each molecule generates its own vortex field
vx X1 In a computer simulation the autocorrelation of this vortex field

can be built up as

< xy(e) . ¥ x X1(°)> (6)
in the laboratory frame (x,y,z) and in the moving frame (1,2,3)'. This is
possible and the running time average < > is well defined because the sample
origin is fixed by the definitions <r>= g; and <p(t).r(0)> = o; t==.

i.e. the sample is defined to be isotropic and the a.c,f. of the position
vector vanishes in frame (x,y,z) as t -+ =, The origin of the laboratory
frame is therefore not arbitrary with respect to r for each molecule, but

is defined in such a way as to ensure that the mean over the positions of all
the molecules disappears in an isotropic sample.

Therefore for velocities the use of the moving frame and introduction
of the position vector r results in the appearance of an irrotational field
and vortex field in the laboratory frame of reference.

Turning now to the next term in the Taylor expansion and therefore to
a consideration of accelerations in the laboratory and moving frames there
emerge the following results from two applications of the differential

operators Rm and Rf in frames (1,2,3) and (x,y,z):

2 - p2

Rer “ReRet) =Rk * 20 x Rpp + Q) x p + o x (g x 1) )
2 - p2y - -

mro Rm(Rma) - gf% g % gf& (Rf%) XxErgx (% x £). (8)

These equations introduce the Coriolis acceleration, the centripetal
acceleration, and the non uniform acceleration into both the moving frame
(r.h.s. of eqn (7)) and the laboratory frame (r.h.s. of eqn (8)). 1In the
classical Newtonian concept of force is equal to mass multiplied by
acceleration these accelerations are not accounted for explicitly. For

an object moving on the rotating earth's surface this is a good approximation
but for rotating and tramslating molecules the acceleration terms on the
r.h.s. of egqn (8) become just as important as the first (Newtonian) term on
the r.h.s. of that equation. This implies that molecular dynamics are in
this sense "non-Newtonian', simply because the translating molecules are
simultaneously rotating and the frame of the laboratory is a non~inertial
one with respect to the moving frame (1,2,3)' or indeed with respect to a

frame defined by the principal molecular moments of inertia. In the numerical
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technique of molecular dynamics simulation the mixing of rotation and
translation occurs by writing the Newton equations for translation and the
Euler equations for rotation. The mixing of rotation and tramslation then
occurs through the presence in the classical hamiltonian of a pairwise additive
intermolecular potential. This generates the individual molecular trajectories
and these can be used to build correlation functions. It has been shown
elsewhere [3-10] that correlation functions of the Coriolis, centripetal and
non-uniform accelerations exist in both frames of reference used in equns (7)
and (8) and also in the frame of the principal molecular moments of inertia,
This is a direct proof of the non-Newtonian nature of molecular dynamics in
terms of the new accelerations, whose correlation functions are now known in
detail from computer simulation. Having shown this, it is possible then to
examine each acceleration term to see whether it is an irrotational or a
vortex field. This will show which of the new accelerations are potentially
capable of generating a macroscopic vortex, and which do not. After this it is
possible to show using cross—correlation functions generated by simulation
whether the vortex fields are correlated to irrotational fields on the single
molecule level. This should show whether this type of correlation would then
be possible macroscopically. This type of mutual influence of one mode on
another should finally be describable with the macroscopic, hydrodynamic
equations of motion.

Taking the vector curl of each acceleration term on the r.h.s. of
eqn (8) in the laboratory frame the only vortex field is that defined by
v x ((Rf%) X £). The curl of the other three accelerations disappears in
both frames of reference. Therefore the Newtonian field (the first term on
the r.h.s. of eqn (8)) is an irrotational field and does not have a vector
curl. This implies the natural result that translational diffusion does not
generate a vortex on a single molecule level without the simultaneous
presence of molecular rotation. The theory of translational diffusion cannot
describe molecular vortex fields. Similarly the Coriolis acceleration has no
vector curl, i.e. the Ux operator in this context means differentiation with
respect to the components of r. Since v and L are conjugate variables the
differentiation of one with respect to the other produces zero. The Coriolis
acceleration is therefore an irrotational field on a single molecule level.
The only time the Coriolis acceleration generates a vortex is when the
molecular centre of mass velocity ¥ i1s explicitly dependent on the laboratory
frame coordinates x,y, and z. In this case there must be an external
macroscopic force on the molecular ensemble which acts in such a way that
there is a gain of fluid (i.e. in the number of molecules) per unit volume

per unit time. In hydrodynamic terms the f£luid is compressible and the
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divergence of the fluid velocity does not vanish. In molecular terms, more
molecules must move systematically into a given volume, so that the external
pressture on the molecular ensemble is increasing.

The vector curl of the molecular centripetal acceleration Xx(%x(%xg))
vanishes and this is not a vortex field. There remains the non-uniform
acceleration,

If the "orbital" velocity

v w X
] Ay

T
Y

is differentiated with respect to time we obtain the "orbital" acceleration

_ . . .
v wxr wx I (%)
which is a sum of the non—uniform acceleration and the Coriolis acceleration.
As we have seen the vector ecurl of the Coriolis acceleration vanishes in the
absence of a pressure gradient across the molecular ensemble, which leads to

the result:
=%zx,‘zl (10)

i.e. the vector curl of the orbital acceleration of each molecule is an angular
acceleration, which is therefore an orbital angular acceleration, involving

the position vector r. A number of individual molecular accelerations of

this nature could act cooperatively to result in a macroscopic vortex.

Turning now to the third term in the Taylor expansion of the molecular
centre of mass position vector, the differential operators in the moving and
fixed frames are applied three times in the forward and back transforms,
producing eight new terms in both frames which have the dimensions of

derivative of acceleration. These are

RE, = Rok * RuC2Rup) + Rp(Rpy) x 5) + Ry x @ x )
Fx e x xR tex (B xp) +ex (gx (yxp) (11)
Rér = m§£ ~ Re(2 x Rep) — Re(Rew? x 1) + Relw x (g x gD
“x DR v (2 xRep) v ox ((Qud xF) g x (wx (xr) (12)

These equations re::al the existence of many higher order terms in the moving

and laboratory frames, some of which are vortex fields. The autocorrelation
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functions of all these terms can be constructed by computer simulation, and
so can a large number of new molecular cross correlation functions between
terms in both frames. liote that these are all essentlally single molecule
properties, the cross correlation is between a particular vector property at
t =0 and a time t later for the same molecule, an average being taken over
the product for each molecule and for each time interval according to the
standard rules of rumning time averaging. We have not yet started to take into
account cross—correlations between molecules, because we are still at the point
of establishing the single molecule dynamics. Essentially speaking,
cooperativity of these single molecule auto and cross correlation functions
would lead to the evolution of hydrodynamical modes of collective motion from
the equations of molecular dynamics, essentially the equations of classical
mechanics are used in computer simulation. This kind of investigation is
possible with the fast array processors now being built. [1,2]

The vortex fields on the r.h.s. of equn. (12) in the laboratory frame are

those for which the curl exists, as usual. TFor example:

Ix (px Gxgp)) ~pxp (13)

and the irrotational fields are those for which the curl disappears, e.g.

v x (g x (% x (% x 5))) =0 (14)

N

A summary of these properties is given in table 1.

TABLE 1

Vortex and Irrotational Fields for Eqn. (12)

Field Irrotational Vortex

3 /

3@ X v v

R x /

3 x (g xy) v

e G x Gx ) /

R x5 /

2% X (Q X {) 4

Q X (% X T) Y/

———y
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3 ANALYSIS INVOLVING THE MOLECULAR DIPOLE MOMENT n

If we now substitute the position vector of the molecular centre of mass

(E) by the vector:

K=k Tk (15)
s@me useful results can be obtained, based on the analysis of the foregoing
section. In eqn. (15) M is the dipole moment vector of the molecule, which
can be considered as the difference between the vectors X1 and %o from eithex
end of J to the origin of the laboratory frame. Employing the kinematic

relation:

B=pxp (16)

it is seen from eqns. (3) to (5) that

w=4tg*y (17)
In other words the curl of E with respect to the coordinates x,y and z
(i.e.
Y PR B
Nx= Gy A*rgyi g kix (18)

is proportional to the molecular angular velocity g at an instant t. The
coordinates x,y and z in the partial derivatives of eqn. (18) are defined in

the context of egns. (15) to (18) by:

x=xl—x2
Y=Y 7Y (19)
z =z -2,
where (xl, Yy Zl) and (x2, Yqs zz) relate to £ and L respectively.
With these derivatives one may similarly define:
_ 4,9 . 9 . a
V-EGRirwitemk) (20)
- _ 92 32 32
;Z‘;é:vzz(—+__+~_) (2D
ax? ayz 322

the Laplacian operator.
It follows from eqn. (17) that vV x é does not vanish, and that é
generates a vortex field. Taking the a.c.f. of the molecular angular velocity

, using eqn. (17), it is seen that:
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(t) 0> = <4y x p(t) . 4y x j(o)> (22)

and using the vector identity

AxB) . (CxD=®G.C B.D-@.D (.0 (23)
produces
t) . gplo)> = {<v2(pe) . o) > - L 9 . i) ¥ . i(e)> (24)

where the V operators are defined as in eqns. (18) to (20). Because the l.h.s.

of eqn. (23) cannot be negative the result is obtained that

<2 (u(t) . j))> # o (25)

and therefore

V2 (u(t) . po)) # o (26)

for each molecule of the ensemble. Therefore the product g(t).g(o)
does not obey Laplace's equation in general.

Eqn. (23) demonstrates the dependence of the angular velocity a.c.f. on
the spatial derivatives of the vector ji, which is the derivative of ¥ with
respect to time. This shows the inevitable interdependence of rotation upon
translation providing the vortex field demonstrated in eqn., (17). For a system
where the kinematic relation, eqmn. (16), is not valid (e.g. in which there is

no rotational motion) Laplace's equation

724 = o (27)

becomes valid for the appropriate scalar . One such system is an ensemble
composed of atoms (where ji = R). Therefore it is concluded that Laplace's
equation (27) is valid for an ensemble of atoms, but is not valid in an ensemble
of molecules, where there is the additional degree of freedom represented by
eqn. (16). It might, then, be argued that eqn. (26) is in the class of

Poisson equations, so that the Laplace operator v2 applied to the vector product

g(t) . é(o) produces a Poisson equation.
EXTENSION TO HIGHER DERIVATIVES

Using the 'spatial definition' of the dipole vector K {eqn. (15)) produces

with eqn. (18), the laboratory frame result:
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. e . .

lg,e, "M - Zx g -gxgrex rply o o (28)
with the attendant vortex and i;rotational fields as discussed for the fields
generated from the centre of mass vector X- The equivalent of eqn. (9) is:

w d . .

K=ar Wxw =gxprexi (29)
which is seen to be the sum of a "non uniform" acceleration % x | and a
Coriolis acceleration R X g . As in section (2)

gx@xp =g 30

because there is no net translational flow in the molecular ensemble, and in
consequence neither @ nor X are specifically functions of x,y and z of

eqn. (19), From eqns (28) and (29)
R= 4y = I (31)
and, following egns. (21) and (23):

<@(t) . glo)>

= %<V2(E(t) . g(o))> - i<y . u(e)y . u(r)> - (32)
The processes leading to eqn. (24) and (32) can be continued naturally to
higher derivatives of the molecular angular vélocity w.

The terms on the r.h.s, of eqns. (24) and (32) can be expanded further
using the vector identity, eqn. (23), again. The 1l.h.s. of eqn. (25) is

therefore expanded as

<92(i(t) . R(0))> £ o

[}

<92 (p(t) x pu(e) . wlo) x plo))>

]

<V2((@(t) « o () « plod)))>

<@2(p(r) . p(0)) (wlo) . p(r)))> (33)
Egqn. (33) implies the result:

() + @(eIV2Qu(E) . p(o) > # o (34)

because g(t) . %(o) is a constant with respect to the operator V2 as defined

by eqns (18) to (21). Finally, therefore, eqns. (34) gives the result
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v2(u(t) . o)) # o0 . (35)

which is also obtained from the definitioms in eqns. (15) to (21). Eqns. (35)
and (26) show how the molecular vector products E(t) . &(o) and n(t) . o)
respectively, obey a "Poisson equation" rather than a "Laplace equation" when
operated upon by V2, the ome result (eqn. (26)) implying the other, eqn. (35).
This set of results proves that in equilibrium molecular ensembles the
dynamics of position and rotation are always linked inextricably. This is
for ensembles in which there is no net flow. If there is flow then the
various ¥ operators will produce non zero results when applied to the various
molecular velocities, and there will be many implications. If there 1s an
accelerated translational (or rotational) flow, the v x; Y- and X.x ¢ )
operators will produce non zero results when applied directly to both
velocities and accelerations, making possible many new results. This process
can obviously be continued ad infinitum, depending on the nature of the flow,

and therefore on the type of external field applied to the molecular ensemble.
4. ANALYSIS INVOLVING THE INTER MOLECULAR SEPARATION R

Define the vector between the centre of mass of molecules 1 and 2 by:

R=R1 R (36)

If the two molecules are moving in such a way that this vector remains constant
then the motion can be defined as cooperative. Assuming that the motion of

the two molecules is cooperative in this way then and are also rotating

about a common axis (like planets at the 6pposite ends of a common orbit) then
the orbital motion is that of a macroscopic vortex. The kinematic relation (16)

applies in this case to the intermolecular vector R, and may be written
R=gxR (37)

where Q is the angular velocity generated by the cooperative orbital motion

of the two molecules. In analogy with equation (17) therefore:

R 38)

i.e, the curl of g exists and this is therefore a vortex field.

More generally, if the vortex angular velocity defined in this way
exists by dint of the cooperative motion of two molecules, then an indication
of the existence of a macroscopic vortex from a computer simulation might be

obtained through the existence of correlation functions of the type (22), and
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therefore of type (24), (32) and (33) with the dipole vector y of these
equations replaced by R and the molecular angular velocity p by the cooperative
angular velocity Q. The existence of correlation functions of this type is
therefore a direct test of the build up of a vortex using the dynamics of
molecules, rather than the principles of fluid dynamics, which use no molecular
concepts, but rather points in a fluid.

. It is clear that this analysis, based on the cooperative motion of two
molecules, can be extended to inlcude the motion of many molecules, given the
computer power. Note that the swirling motion represented by eqn. (37), the
kinematic equation for the intermolecular vector, need not be confined to a
plane, and may be approximately valid even when the intermolecular distance is
not rigidly constant, but fluctuates, as is the case in a true molecular
liquid. The existence of the a.c.f. of the orbital angular velocity { is ome
way of testing for the existence of the cooperative vortex maotion represented
by eqn. (37). Using and adapting the results of section 3 wany new correlation
functions of this kind can be shown to exist theoretically and explored using

simulation.

COMPUTER SIMULATION METHODS

In order to put some numbers on the sum of the above analytical theory
a computer simulation of supercooled liquid water at 150 K; molar volume
0.06 x 1027cm3 was utilised to compute the sum autocorrelation functions of
interest. The potential energy between two water molecules was modelled with a
five by five site - site approximation consisting of Lennard Jomes and partial
charge terms described elsewhere [19]. Autocorrelation functions were
generated from the trajectories held on tape and computed with running time
averages in the usual way. In particular it is of interest to compute the
autocorrelation functions in frames (x,y,z) and (1,2,3) of the orbital velocity
X1 and the spin angular velocity . . It is also interesting to compare the
orbital linear velocity with the centre of mass linear velocity itself in order
to measure the effect of the frame transformation from (x,y,z) to (1,2,3);
a transformation basic to the methodology behind this paper.

The running time averages for these autocorrelation functions were

computed with segments of about 1000 time steps each, recorded every two

steps.
RESULTS AND DISCUSSION

In fig. (1) are summarised the results of the computer simulation of the
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o} 05 1.0  t(ps)

Fig. 1 Autocorrelation functions from a computer simulation of supercooled
liquid water. |

(1) Autocorrelation function of the orbital linear veloéity

(2) Autocorrelation function of the angular velocity in both frames

_ Autocorrelation function of the linear velocity in both frames.

Abscissa time (ps).

orbital velocity autocorrelation function <¥l(t) . ¥1(0)>/ v%> compared with
the a.c.f. of the lipnear velocity correlaton function itself,

The interesting result emerges that the time dependence of the a.c.f. of
the two quantities is approximately the same in both frames of reference; and
also that the a.c.f. of the orbital velocity in frames (x,y,z) are virtually
identical., This ensures that the analytical results of the foregoing section

will be valid under conditions typified by those in supercooled water.

CONCLUSIONS

It has been established that non inertial accelerations play a fundamental
role in the molecular dynamics of condensed matter and that consideration of
these accelerations in the moving and fixed frames of reference leads to the
classification of the various dynmamical quantities in terms of vortex and
irrotational fields. This might ultimately lead to a way of identifying
some aspects of molecular dynamics with fluid dynamics in condensed media.

The existence of the orbital linear velocity a.c.f. has been illustrated with

computer simulatiom.
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