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INTRODUCTION

Tiling is a subject that has been of interest to artists, c¢raftsmen and
geometers for thousands of years. More recently, because of its applications
in crystallography, in the machine shop for cutting and shaping of materials
and in pattern recognition, it has also become of 1importance to
chemists, physicists, engineers and workers in the field of Artificial
Intelligence.

An even more recent flip to the subject was given in 1984 when
researchers at the National Bureau of Standards in USA discovered [1] a
material whose structure exhibits five-fold symmetry which was thought to be
disaliowed by a most fundamental theorem of crystallography. Such materials
have since been called quasicrystals and it appears that their structure
characterises an intermediate state between the structures of cryStalline and
amorphous substances. The theoretical explanation of the structure of
quasicrystals has been given in terms of the mathematical theory of Penrose
tiling [2].

Penrose tiles not only explain the order underlying quasicrystals but
have fascinating mathematical properties [3,9, 10]. They also offer a new
spatial structure for creating aesthetically pleasing designs in applied arts,
and because they give rise to packed structures with five-fold symmetries,
the tilings may be useful in for modelling of biological forms.

Tiling theory comprises a vast body of knowledge which rather
surprisingly has only very recently been brought together in a definitive
treatise [3]. The object of our article is to describe the fundamental
concepts of Penrose tilings and their relation to Quasicrystals. He will
also give some examples of aesthetically pleasing designs based on the

structure of such tilings.

TILINGS AND ATOMIC ARRANGEMENTS IN SOLIDS

Since a- solid is a dense arrangement of atoms, the geometrical order
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displayed by 1its atomic structure reflects the constraints of packing
three—dimensional Euclidean space. The constraints on the two-dimensional
cross-sections of the solids are analogous to those experienced by tiles in a
mosalic. For this reason it is useful to compare atomic arrangements in
solids with tilings and the extensions of these shapes to three-dimensional
structures. Each tlle shape can be thought of as representing the
cross-section of a group of atoms.

‘The geometrical properties of tilings are endless and fascinating but the
properties that will concern us in this article have to do with perlodicity,
quasiperiodicity and symmetry.

Fig. 1 shows three different tilings. In fig. 1(a) there is no
structure and the tiling serves as a model of a glassy or amorphous substance

which arises from possessing a highly disordered atomic arrangement.

TR s

fig. 1 (a)
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fig. 1{b}

The tiling shown in fig. 1(c) is by contrast highly ordered. It can be
constructed by translating a "unit cell”, on a lattice. The shapes of the
tiles 1involved happen to have the special property that they fit together
periodically to fill space, leaving no gaps. The periodic latticework can be
thought of as producing holes which must be filled to pack space. This
imposes constraints bn the possible symmetries of the tiling which in this
case has six-fold rotational symmetry. This tiling serves as a model of a
crystalline substance. '

A crystalline substance, like the tiling in fig. 1(c), is a structure
constructed from a periodic packing of 1ldentical clusters of atoms. The
tiling explains the two kinds of long range order that are the hall mark of
such a substance. Since the position of any one unit cell fixes the
positions of all the other unit cells through the regular distribution of
lattice points, a crystalline substance shows a long range positional order.

The fact that the structure is produced by simply translating a unit‘cell on a
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star shape which 1ls oriented in the same way wherever it occurs. The shape
also exhibits local regions of five-fold symmetry. The observant reader will

find many such properties and in fact it is the kind of tiling that has been

used to explaln quasicrystals.

PENROSE TILES

The shapes known as Penrose tiles, shown in fig. 3(a), were discovered by
Roger Penrose [4)] in searching for tile shapes that force a nonperiodic tiling
of the plane, 1.e. a tiling which cannot be produced through translations of a
unit cell. Shapes that can be used to construct nonperilodic tilings are not

all that speclal. For example, fig. 2 shows a nonperiodic tiling with
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five~fold symmetry which utilizes a common triangular shape. However, the
same triangular shape can also be utilized very obviocusly to generate a
periodic tiling.

Until 1964 it had been assumed by tiling theorists that the situation
depicted in fig.2 represented a fundamental truth - 1i.e. that if a shape or
a finilte set of shapes gave rise to a nonperiodic tiling then the same shape
or the set of shapes could always be utilized to generate a periodlc tiling
also. It was in 1984 that Robert Berger first succeeded, through devising a
set involving more than 20,000 pleces, to disprove this view. His unwieldy
number was shrunk several times by himself and others until Penrose reduced it
in 1974 to Just two shapes. These shapes have the very remarkable property
that although they admit infinitely many tilings, yet none are periodic.

Penrose tiles in their original form are two quadrilaterals, known as the

Dart and the Kite. They are derived by dissecting a rhombus as shown in fig.

3(a). The Kites and darts have characteristic lengths whose ratio is the
famous golden ratio e = (1 + ¥/8)/2 favoured in classical Hellenic
architecture and in many subsequent theories of aesthetics. In fact

this ratio turns up over and over again in mathematical properties of Penrose
tilings [3].

Penrose's discovery was first announced to the general public by Mariin
Gardner in the journal Scientific American [4] and his article is the best
general introduction on the subject. For a more detalled discussion of the

mathematical properties of Penrose tiling the reader should refer to [3].

MATCHING RULES

Clearly, since the Dart and the Kite fit together to form a rhombus and a
rhombus can easily be used to construct a periodic tiling, it is 6bvious that
by themselves the shapes do not necessarily force a nonperiodic tiling. It
is only by imposing some further restrictions on the placing of adjacent tiles
that a nonperiodic tiling can be generated.

For example, one can imagine some design inscribed on the shapes, as
done in Jigsaws, and demand continuity of pattern. One could colour the
edges Iin different colours and require colour matching according to some
formula. Some notches and projections could be made on the edges forcing
them to fit together in some restricted configurations and so on. It is only
through associating some extra intrinsic properties of these kinds with a set
of shapes that it has been possible to force them to produce nonperiodic
tilings only.

The restrictions imposed on the placing of adjacent edges are called
matching rules and can be expressed in a variety of equivalent forms. The

matching rule invented by Penrose can be enforced, for example, by colouring
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the vertices with black and white dots as shown in fig. 3(b) and requiring
that only vertices of the same colour be placed adjacent to each other. This
gives rise to the five allowable edge-to-edge arrangements as shown in that
figure and seven allowable types of vertices as shown in fig. 3(c). A
nonperiedic Penrose tiling is formed only when the pleces are fitted together

in conformity with these réestrictlions.

PENROSE RHOMBUSES .

Although the Penrose tiling patterns were originally introduced in terms
of Darts and Kites, papers related to quasicrystals [5,8] have chosen to
depict them in terms of the simpler palr of shapes known as Penrose rhombuses,
which were also discovered by Penrose. The baslic reason for this is that the
rhombuses generalize easily to rhombohedra in three dimensions [B,7] and are
therefore more convenient to relate three-dimensional solid structures.
However, the use of these rhombuses has been some source of confusién.

In fact, the two sets of shapes are related in a very straightforward way

as shown in fig. 4(a). A Dart can be dissected into two half-rhombuses and

one complete rhombus. A Kite can be dissected into the same two

half-rhombuses that occur in the Dart. Thus any Dart-Kite structure can

alternatively be depicted in terms of two rhombuses, a2 fat one and a thin one

as shown in fig. 4(b). It is easily verified that in any of the five
(a)

(b)
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edge-to-edge placings, the halves that arise on adjacent edges always pair up.

The transformation on matching rules is also obvious from the consiruction.

Flgs. 5(a) and 5(b) show two alternative versions of the same tiling.
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fig. 5 (a)

CONSTRUCTION OF PENROSE TILINGS

In the case of a perlodic tiling it is obvious how to proceed to generate
the structure. Given the unit cell, all we need do is construct a lattice on
which to copy the unit cell through a series of translations. It is not at
2ll obvious how to achieve the same for a tiling that is nonperiodic.

Penrose tiles have the fundamental property of self similarity. It is
this property which Penrose exploited to prove that the shapes can tile the
infinite plane nonperiodically and that the number of possible tilings is
uncountahle. It is this property which may be utilized to generate the

tilings recursively.
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(c)

fig. 6

Suppose now that we set up some arbitrary cluster of Darts and Kites in
conformity with the matching rule. Repeating the process of deflation on
this cluster generates a tiling in which the number of units is unbounded.
If we choose, we can apply a scaling transformation after each deflation to

enlarge the tiles, say to the same initial size. In this way we can tile the

whole plane,

PENROSE TILES AND QUASICRYSTALS

Originally, the interest in Penrose tilings arose from the property of
nonperlodicity. This is easy to prove from the decomposition process
depicted in figs 6(a) and 6(b]. We note that J Kites and k Darts
decompose into (2j Kites + j Darts) + (k Kites + k Darts) or into

(2) + k) Kites + (J + k ) Darts. Therefore as j and k grow, the ratio
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jsk approches (2j+k)/(j+k). Equating these in the limit and solving the
resulting quadratic for Jj/k gives for the positive root the value

j/k = (1 + VB)/2 , i.e. the golden ratio ¢ . Since this is an irrational
number, it follows that the tiling cannot be generated from a unit cell
containing an integral number of Darts and Kites.

Nonperiodicity by itself is not of any particular significance in the
context of the new findings in crystallography. The properties of Penrocse
tilings that are shared by quasicrystals [2]} are as follows.

Firstly, Penrose tilings possess a type of long range orientational order
in the sense that each edge of a tile, or a "unit cell", is oriented along one
of a set of five discrete directions. These directions are parallel to the
edges of a decagon as observable in fig. S. The same figure also shows
clearly the regular decagons and five pointed star shapes that arise in any
tiling forming local regions of five-fold symmetry. These cocmposite shapes
are all oriented in the same way. v

Secondly, despite the nonperiodicity of the tiling, there is a quasi-
lattice underlying the structure giving it a long range positional order.
This was pointed out by de Bruijn [8] and Steinhardt [2]. To demonstrate
this, these authors made use of the so called Ammann lines. These are flve

families of parallel lines that emerge if the tiles are marked in a speclal

way. The families intersect at angles that are multiples of 72 degrees
(2n/5) . The spacing between any two consecutive parallel 1lines in any
family is found to have just two values ~ long ( L ) and short ( S )

The sequence LS for any of the family of lines forms a quasi-periodic
sequence known as the Fibonaccl sequence [8,2]. This defines the positional
order and represent an intermediate structure between the perlodic lattice
planes of conventional crystals and the absence of any lattice for amorphous
substances. This structure, it has been shown (2], would cause X-ray or
electron diffraction patterns, from any position in the tiling, to possess
five-fold symmetry and thus serves to model quasicrystals.

Since Ammann lines, which have been used previously to show these
quasi-lattice, are obtained by a sort of a maglical procedure we have presented
in fig. 7 a much simpler method of observing the same. Fig. 7 is obtained by
marking off short segments of edges of the tlles and their centre lines. We
then easily see, in an average statistical sense, the five families of
parallel lines described above. We have shown the LS spacing for two of
these families. The meaning of "average sense” would become obvious if the

reader moves a straight edge along any of the five directions in the figure.
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silent swervi ng from accuracy by an Ilnch that is the uncanny element in
everything... a sort of secret treason in the universe."

In the designs of patterns, tiles, carpets, wallpapers and so on that
have been with us for centuries the artist has utilized symmetries and
regularities that are obvious. These designs do not encompass "the secret
treason" of the wuniverse that 1lies just below the surface everywhere.
Structures such as Penrose tilings offer a more sophisticated approach to

pleasing geometrical designs.
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We saw earlier that Kites and Darts could be “dressed up" alternatively
as fat and. thin rhombuses. In creating a tiling one can conceptually
separate the dividing of space and the drawing of a motif. By dressing up
the Kite and Dart in imaginative ways as different motifs we can create new
designs that celebrate a mixture of orderliness and deviations. Figs. 8 and

g are two examples of this approach to creating aesthetically pleasing

designs.
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