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Abstract

The discovery is reported of numerous new cross correlation functions in the laboratory frame ol reference
(x.y,z) which ure invarant by panty and reflection symmetry operations. These are obtained systematically
by repeated differenuation of coordinates aund momenta in a rotating, or dynamically non-inertial. {rame of
reference. In principle, these cross correlation functions can all be used to analyze the nature of molecular
dynamics in a computer simulation, and therefore greatly add to the methods already available for dynamical

correldtion.

I. Introduction

The recent introduction!-7 of the rotating frame of reference has improved our understanding of molecular
dynamics by increasing the number of cross correlation functions available for the staustical correlation of

dynamical quantities in a molecular dynamics compulter simulation. That work resulted in the discovery!-}
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and implementation*? of several different types of single particle cross correlation [unction in the moving
frame of reference defined by the principal molecular moments of inertia. However, none of the new cross
correlation functions established by these means existed in the laboratory {rame of reference (x.y,z), which is
a handicap to their eventual experimental determination. In this paper systematic use is made of the rotating
frame of reference to establish the rules by which the existence of laboratory frame cross correlation functions
(c.c.'s) may be determined analytically. The rotating lrame is delined as in previous work!-3 as the frame
(1,2.3Y which rotates with the angular velocity ol the molecule with its origin fixed at that ol the lab. frame
(x.y.z). It should therefore be carefully distinguished from the moving frame of the molecular pnoncipal
moments ol inertia (1,2.3) which both rotates and translates with the molecule. This letter shows that the
systematic differentiation with time of dynamical quantities in the frame (1.2,3)" and subsequent back trans-
formation into (x,y,z) produces a set of symmetry rules by which to anticipate the existence of c.c.("s direct in
frame (x,y.z). As far as we are aware this is the first time that the laboratory frame c.c.fs have been explicitly
shown to exist, i.e., a set of c.c.f's is denived analytically, each member of which survives the tests8 ¢ ol parity
and reflection symmetry io {rame (x,y,z). This implies that these c.c.[.’s can be ulilized lor the analysis of
molecular dynamics using the lab. frame directly, previous analyses along these lines having been restricted to
frame (1,2,3) and therefore to computer simulation. The only previous report!! of a non-vanishing laboratory
frame c.c.f. has been in the presence of a strong uni-axial electric field which destroys the symmetry invuni-

ance to parity reversal of the classical hamiltonian.

H. Analytical Theory

If the frame (1.2.3)" rotates with respect to (x,y,z) at the angular velocity @ the differential operalor. ;!—/ = D,
- . v t :
in frame (x,y,z) is equivalent to
[Dp + wxpy 23y (1)

i [rame (1,.2.3)" by a basic theorem of classical dynamics.!2 (The following analysis has its full quantum
mechanical equivalent.) If the position of the molecular center of mass is r then 5, operales on 7 to produce
the iinear center of mass velocity v. A further operation produces the acceleration and so on as usuial. In
Eqn. (1) the operator ém is mmplied to act in frame (1,23}, the rowating frame, to produce the velocity and

acceleration with respect to frame (1,2.3)". With these definitions we obtain the reciprocul relations
0¥ Doy = [y + wxr ]y 23y )

[vInzay =0V —oxr Ji,, 3

In these equations cverything within the square brackels on one side is equivalent to the contents on the other
side. i.e.. in the other frame of relercnce. Accordingly the linear center of mass velocity v in [rame (x.y.z) is
equivalent to the sum of two terms in frame (1,2,3), known in the lilerature as the ‘inertial’ velocity v and
the ‘non-inertial” velocity wxr. Newton's laws of motion apply to ‘inertial’ frames. and do not upply to
rotation superimposed on translation, or to ‘non-inertial’ frames. It is of course well known thut clussical
molecular dynamics are ‘non-inertial’, the rotational motion being represented!? by Euler equations or
through Hamilton's quaternions. However, the effect of this basic everyday behavior on statistical cross cor-
relation in ensembles of N molecules is unknown in frume {x.y,z) and is the subject of this analysis. The

accelerations equivalent to the velocities in Eqns. (2) and (3) are geoerated by two differential operations:
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DADF) = (Dyy + @x)((Dyy + @3)7) (4)
DD ) = (Dy = &x){( Dy — &x)7) (5)

producing the result

[;](x\y.:) = [;‘ + 2(;X;‘ + 5x7 + LZX(ZU-XF)](l‘z_}): (6)
[;.](1.2.3)’ =[v — 2wxy — wxr + (_f)x(ax?)](x‘y_:) 0

This reveals the existence of three non-inertial accelerations in both frames. In the laboratory frame (x.y.z)
two of themm are known traditionally as the Coriolis acceleration, — 2wxv , and the centripetal acceleration.
wx(wxr).'=? The third exists whenever there is non uniform angular motion, so that the derivative of the
angular velocity exists, i.e., whenever there are torques caused by intermolecular fields of force and torque.

Applying the differential operator n times produces

o A —_— A — A — — —_ e —— a _— —
v ]:';ji’, = [Dp, + wx]()[Dm + @x]aye s [ Dy + WX ][V + 20xv + wxr + wx{wxr )] 23y (8)
= n+2) A= A= A= e el
[v ]“'2‘3]' =[D, - wx]“)[Dm — wx]m ...... (D — wx]pmlv — 2wxy —wxr + wx{wxr )](J__‘..:, %)

so it becomes clear that the number of linear non-inertial terms rapidly increases with the order of differen-
uation. This is not un original result in itself, but the structure of Eqns. (8) and (9) is now used to provide a
set of original rules by which to deline the existence of new laboratory frame cross correlation functions in N
molecule ensembles. These can be investigated by numericul computer simulation' in situations of experi-
mental value and interest. Before proceeding to this the previous work in the moving frame (1.2.3) can be

summarized very succinctly in terms of three sets of patterns of non-vanishing c.c.f.’s in this frame:

{1) The Omega Paitern: By inspection of the terms in the laboratory [rame and by application of the
standard rotation operation!3 into {rame (1,2,3) from {rame (x,y.z) (or any dynamical vector it emerges that

c.c.I's of the following type exist for + > 0 in frame (1,2,3)%:

<;mx2m2ﬁm > .23 "

This confirmms the work already in the literature, which was produced by actual computation'-? of cross corre-
lation functions. The omega pattern of Eqn. (10) contains the c.c.f’s which were found to exist by computer

simulation, thus confirming its validity.

(2) A subset of the w pattern is <(D[t)x13_,¢¥(1)d)7(0)> . all members of which exist in frame (1.2.3) [rom

inspection of the general Eqn. (9).

(3) Finally in [rame (1,2,3) there exist patterns of c.c.f.’'s made up of cross terms of the operator multipli-
cations in Eqn. (9). None of these seems to have been actually explored yet for its time dependence from
computer simulation, but each and every one is potentially useful for the statistical analysis of ensembles of

molecules under all conditions of interest.
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111. Non-Vanishing C.C.F.’s in the Laboratory Frame (x,y,z)

The basic condition for the existence of laboratory [rame cross correlations is a very simple one, but when

applied to linear non-inertial terms in Eqn. (9) it immediately produces a number of original results.
It is well known that laboratory frame c.c.f's of the type

<A(1) e AT0)> (1

(xy.2)

exist for r > 0. Here the cross correlation is constructed between an inertial term such as the Newtonian linear
cenier of mass velocity v and its time derivative. By applying the theorern (11) to linear non-inertial terms we
come to the essence of this letter, for this process immediately produces the required patterns of non-
vamshing c.c.f's involving both angular and linear molecular motions. These patterns may be summurized
succinclly as follows , aad emerge, as for frame (1,2,3), {rom an inspection ol the general operator equation
(9).

(1) The [3, Pattern: This is simply
<D,8(n8T0) > (12)
r {xy.0} 2

where in general the vector quantity B is a linear non-inertial dynamical variabie. For exumple, one of the
simplest applications of Eqn. {12) 1s
< DAV ) = BOxF (0)(F (0) — G{OT ()7 > (13

which immediately shows the possihle. existence of the six fab. frame cross correlation (unctions:

o <v(vT(0)

7 (xg2) (14a)
b < (@O O > ez (146)
e <D OTO)> (14c)
4 <wox (1)570) > () (14d)
e. <a(nxy (V@O 0)> ey (14e)
fo <@ (@OXF O) > (x, (14/)

The first of this group of six is the Newtonian (or linear inertial) c.c.f. The other five all contain the molec-
ular angwiar velocity and are linear non-inertial in nature because of this. They vanish only when @ vanishes

and therefore distinguish molecular from atomic ensembles,
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[t is now easy to see that repeated application of the above procedure for more complex B's from inspection
of the general equation (9) will produce very many new lab (rame c.c.f.'s whose existences do not seem to be
shown in the literature and whose explicit time dependences are unknown. Having taken the argument this
far it is a small further step to obtain the actual time dependence by computer simulation. A second example
will be sufficient illustration of the analytical argument. Applied to the B which is one of the terms in Egn.

(9), theorem (12) then produces the following cross correlation functions
< DB (1) — (KT (ON@O)X(E (0) — @) O)) > (15)

which all exist in frame (x.y,z) and this time are all linear non-inertial in nature.

(2) The D, pattern just described can be extended to certain cross terms [rom Eqn. (9) provided that the

general symmetry remains that of Eqn. (12). These terms can be obtained easily {rom Eqn. (9} by inspection.

IV. Parity, Reflection Symmetry, and Time Reversal

Parity and reflection are well known symmetry operations$-1% in frame (x,y.z) which apply for isotropic non-
chiral ensembles in the absence of external force [ields that may affect the invariance to these symmetry oper-
ations of the classical hamiltonian. They cun be used to test the validity of the results oblained already in this
letter. Since all the single particle cocrelatians listed in Eqas. {14a-f) will not have any spatial dependence due
to the homogeneity of the system, all these c.c.[’s should therefore be invariant under the panty and
reflection operations. This is indeed the case as cun be easily checked out. Note that a c.c.f., such as
< w(f)xv{)wT(0}) >, which does not fit into the general [3, pattern fails both symmetry tests. Another example
is the simple c.c.f <v(0)w7(0)>. This c.c.[. passes the reflection test but is not invariant under parity operu-
tion. This agrees with the pioneening work of Ryckaert er al. who were the first to detect the time depend-
ence of this c.c.[. only in frame (1,2,3). Using the arguments of this letter this can now be classified as the
simplest c.c.f between the lincar inertial velocity v and the angular velocity @, and thus belongs to a different
pattern of c.c.f.’s because the c.c.f.’s considered in this wark are always among linear terms of some kind. be
these inertial or pon-inertial in origin. For example, the centripeta) and Coriolis accelerutions are linear accel-
erations, although they are generated [rom cross products containing the angular velocity. So, when a discus

is released by the thrower it has a linear trajectory as for a lincarly propelled projectile such as a javelin.

All the c.c.f.’s in Eqn. (14) change sign under time reversal operation. That means if they do exist in the

laboratory frame, they should be odd functions of ¢ and vanish at t=0 . Cross correlation lunctions of this

type. for example <Z)(1)x;(1)(5)(0)x;(0))7> . have already been observed in our laboratory.

V. Discussion

The analytical arguments of this letter have revealed the existence in principle of cross correlation functions

ol many different kinds directly in the laboratory [rame (x,y.z). The time dependences of these are unknown.
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indeed the only lab frame c.c.l explored so [ar is one gencrated by an external electric fietd.'! The new c.c.f.’s
pass the appropdate symmelry tests and are all potentially useful as analvtical tools for use in computer
simulation. It would be particularly interesting to implement these new c.c.[’s in the invesiigation by com-
puter simulation of hydrodynamical flow phenomena, phase transitions, and likewise which need correlation
critenia particularly sensitive to the interaction between rotational and translational motion in frames (x.v.z)

and (1.2.3). Work in these directions is in progress in our laboratory.
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