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Abstract—The Mori continued fraction representation of the memory function is used to predict the
bandshape of rotational type absorptions in the microwave and far ir. (0.1-250 cm™") for t-butyl
chloride (rotator phase I) at 238 K and for 2 chloro 2 nitropropane (liquid) at 293 K. These curves are
fitted to the experimental data of Lassigr et al. [15] and of CremmMeTT et al. [16] and HarrManns
et al. [17] over a total of three decades of frequency. The theoretical and experimental curves
superimpose satisfactcrily, in contrast to a model of librational motion based on the hard-core
m-diffusion mechanism which corresponds to a truncation of the Mori series one level before the one

used here.

INTRODUCTION

The memory function [1] representation of time-
auto-correlation functions [2] is proving useful [3]
in inter-relating experimental data and theories of
molecular motion and interaction in the condensed
state. In particular, the Mori continued fraction
representation [4} of the memory function, trun-
cated at convenient levels, can generate spectral
functions which are directly comparable with ex-
perimental data. Such data is available from, for
example, microwave and far i.r. absorption [5],
depolarized Rayleigh scattering [6], NMR spin-
rotation relaxation [7], isotope mass-diffusion etc.,
and can be cast into the form of time correlation-
functions using the fluctuation-dissipation theorem
[8] of non-equilibrium statistical mechanics.

This pote intends to show how the autocorrela-
tion function {u(o0) - u(r)), where u is a unit vector
fixed in the molecular frame (usually along the
dipole moment, if this exists), available [5] from
microwave and far ir. (0.1-200 cm™) absorption
measurements [9], can be usefully approximated by
particular truncations of the Mori series. The re-
sulting spectral intensity, expressed as a(w), where
w is the angular frequéncy (rads™") and « the
power absorption coefficient per unit path length of
absorber (neper cm™') is compared with experi-
mental data over three and more decades of fre-
quency for (CH,),CCl in the rotator phase [10] at
238K, and for 2-chloro 2 nitropropane in the
liquid phase at 293 K.

These two compounds are chosen because of the
following reasons.

(i) The translational contribution [11] to
(u(0) - u(t)) is eliminated in the rotator phase of
(CH,);CCl so that the molecular motion can be

described in terms of a modified rotational Lange-
vin type equation [1, 5, 8]. Any induced absorption
[9, 11, 12] caused by the electrostatic fields of
neighbouring molecules will be minimized by their
symmetric arrangement [11] with respect to a given
central molecule.

(i) Induced dipolar absorption [12-14] will be
present in the spectrum of liquid 2 chloro 2 nitrop-
ropane in the region 0.1-250cm™, but will be
negligible compared with the intense permanent
dipolar absorption of this molecule. A pure transla-
tional mode will be present but again of the order
of magnitude in intensity of the induced absorption
[11], so that this strongly dipolar, rigid, pseudo-
spherical molecule is well-suited for comparison
with a model of rotational type molecular motion
of the permanent dipole.

(iil) Good microwave [15, 16] and acceptable far
i.r. data are available over most of the frequency
range of interest.

(iv) These spectra have been compared [17] pre-
viously with bandshapes predicted by a model of
molecular torsional oscillation [18] based on the
well-known M-diffusion model [2, 5, 7] of the
motion of vibrators interrupted by collisions taking
place at random times which randomize the
molecular angular momentum in direction %ut not
in magnitude. It will be shown below that this
model corresponds to a truncation of the Mori
series one level below the one used in the present
paper, which describes the experimental data more
accurately.

THEORY

The fluctuation—dissipation theorem of linear re-
sponse theory [1] relates the energy dissipated by a
system when it is exposed to an external field to a
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time correlation function which describes the de-
tailed way in which spontaneous fluctuations re-
gress in the equilibrium state. Quite generally, it is
possible to use projection operators to show that
any autocorrelation function C(f) can be written as:

iC(t)=—J,[K(t—'r)C('r) dr (1)
at o

where K is a response function which is even in
time (as is the equilibrium property C(t)), and
whose Fourier transform is a frequency dependent
Langevin type [8] “friction coefficient.” In the sim-
ple case where K has no memory of past events,
i.e. is given by vy8(¢) where 5(¢) is a delta function,
then the correlation function is a simple exponen-
tial, exp(—vyt), i.e., is not even and is always posi-
tive. Therefore K must be time dependent in gen-
eral, and is by causality known as the memory
function. The experimental autocorrelation func-
tion is observed [3, 6, 12] to be even at short times
(zero slope as t—0) and pseudo-exponential at
long times, so that the theoretical K must behave
accordingly.

The Mori theorem [4, 1] allows one to write K

as:
t

%(Kn_l(r)) =—j K=K, y(ndr ()

0

with n=o,..., N, and where K_,(t) = C(r). Taking
Laplace transforms of Equations (2) gives:

C(o) C(o)
= = = e 3
DR Ko )
p+Ki(p)

with C(0)=1 by definition. This is a continued
fraction representation of the Laplace transform of
C(1). It is straightforward to show that the equilib-
rium averages K, (0),..., K,(0) are related to the
coeflicients a, in the expansion:

- t2n
C t)= n » 4
(1) La ai @)
so that, for example,

) a
K (o)=a,—.
a;

Ky(0)=—a,;

It is a useful property of Equations (3) that a
general complex spectral intensity C(—iw) can be
defined as being the Fourier/Laplace transform of
C(p), and may be obtained by replacing p by —iw
in Equations (3). Thus, with the memoryless K,(p)
a simple constant, the real part (absorption) of
C(—iw) is a Lorentzian, (and C(t) an exponential).

M. W. EvaNs

As an illustration of the physical significance of the
series of Equations (3) it is instructive to consider
the truncation:

Ko(t) = Ko(0) exp(—y,t), (5)
so that:
K(o)
K = ,
P v
and
P+
C(p) =—-=tt0
?) = o (©)

The absorption cocflicient is given as [19]:
a(w) < w? Real [C(—iw)]

_ w?y,Ko(0) 7
[Ko(0) = w P +wive
which is asymptotic as w™" at high frequencies, in
contrast with «a(w) derived from a memoryless
K, (1), which is asymptotic as w°, i.e., does not pre-
dict the observed [9] return to spectral transparency

~1

which takes place typically at ca. 100-300 cm™ in
rotator and liquid phases of dipolar molecules (see
Figs. 1 and 3).

Inverting Equation (6) gives the autocorrelation
function C(t) as:

C(1) = exp(—vyot)[cos( Ko (0) — vo2/4]*t)

ko(0) +12Q[— y—:—]—llz sin([KO(o) —YTO]mt”

for Ko(0) > v,%/4
=exp(—vyot)[1+vyot/4] for

K()(O) = 702/4
(8)

= exp(—yot)[cosh( yo*/4 — K(0)]/*1)

2 -1/2 2 1/2
Yol| Y .
+—29{70—K0(o)] smh([l:——Ko(o)] t)

for Ko(0) < v,°/4

whose Maclaurin time expansion is even up to t%,
but has a term in ¢>. Its physical significance is clear
because it is the time autocorrelation function de- *
rivable from solving the Langevin type equation [8]
of a vibrator of natural frequency w, randomly
perturbed by collisions separated by a mean inter-
val 7.

X+X/7.+we'x = A(t) ©)

Here, x has the units of angular velocity, and

(x(0) - x(1))/{x*(0)) is given by Equation (8) with v,
replaced by 1/7. and K,(0) by w,%. A(?) is a stochas- -
tic torque per unit mass, uncorrelated with x, so
that: ;

(A())=0; (Ao) x(1)=0.
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The situation is identical with that where hard-core
collisions between molecules are envisaged to take
place at random times so that the molecular angu-
lar velocity vector is randomized in direction. lIts
macroscopic value is then the root mean square, w,.
Therefore the M diffusion model envisages the case
where K(1) is a single exponential, given at ¢t =0 by
Ko(0)=wo" =2kT/I; for a linear molecule or a
symmetric top. Brior et al. [20] have demonstrated
that if the collisions were to randomize the angular
velocity in both direction and magnitude, the J-
diffusion model, then:

K(1) = Kre (1) exp(—yo|t])

would be the equivalent response function, with
Ker(t) that corresponding to a Gaussian distribu-
tion of freely rotating molecules.

The hard-core M diffusion model was extended
by Bror et al. [18] and by Larkin et al. [17] to
describe librational reorientation in energy wells of
rotator phases and liquids where the duration of
the local structure lasts longer than the mean wait-
ing time for a reorientation of the reference
molecule. The contact with the thermal bath is now
provided by both weak collisions, which change
only the librational state in the well, and by strong
ones which induce a change of wells. The theoreti-
cal a(w) of this model has been compared with
experimental data by LarkiN et al. [17], and the
behaviour of the related correlation function has
been investigated by Evans [21] for about thirty
molecules.

As would be expected from a model involving
instantaneous reorientations of angular velocity,
the correlation function is badly behaved at short
times, and the spectral intensity distribution at high
frequencies is such that transparency is regained
too slowly (the w™> dependence of Equation (7)).
Equation (5), and the C(t) of Equation (8) do not
take account of any coefficient in Equation (4)
other than a,, which Gorpon [22] has shown to be
a single molecule property (a, = ~2kT/I5). The first
term specific to molecular interaction is a,, which
for a vectorial time autocorrelation function de-
rived from a rotational type i.r./microwave band is
given for a linear molecule by [221:

1<kT>2 1
ay==|— ) +=—
37T 2471

(0* (V)

where (0*(V)) is the intermolecular mean square
torque. This term becomes instantaneously infinite
In any hard-core model of molecular interaction.
« Therefore any analytical expression for C(t) (and
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thus for C(—iw)) that invokes a well-defined
{6*(V)) with no singularities must be derived from
a truncation of the series of Equations (3) inclusive
of the equilibrium average K,(0). This can be
achieved [3] with the approximation:

K\(t) = K,(0) exp(—v:1)

so that the overall response function K of Equation
(1) is given by:

10)

K(1)=K(0)f(1)

where f(t) is defined by Equation (8) with Ky(o)
replaced by K;(0), and 'y, by 7,. Therefore the
function K is even up to ¢*, and C(t) therefore up
to t*. To extract the physical implication of Equa-
tion (10) it is useful to see that the overall K is
exactly the same in form as the C(t) of the m-
diffusion model. By Kubo’s second fluctuation—
dissipation theorem [23]:

K(1) = (F(o) - F(1)) (11)

i.e., K is the correlation over time of the Langevin
type of random force F(t) exerted on a Brownian
particle by its surroundings. If this fluctuates so
rapidly that the particle experiences only a steady,
overall frictional reta‘rdation, then K is a delta
function. The Debye model of dielectric relaxation,
which invokes this concept, works well at low fre-
quencies, but absorptions in the far i.r. of the
Brownian particle (or molecule) fluctuating as
rapidly as the neighbouring ones which make up
F(t) have to be described by a finite K, dependent
on past time and past events.

So a M-diffusion type memory function (or
force-correlation) implies that the derivative of the
related angular acceleration is randomized in direc-
tion by events separated by a correlation time v, ',
in a way exactly analagous to that where the de-
rivative of position (the angular velocity) is ran-
domized in direction by events separated by the
critical time r, of M-diffusion.

Using Equations (3) and (10), we have:

o w’Ko(0)K (o)1
712(K0(0) —wh)+ WZ(WZ —(Ko(0)+ K (0)))*"
(12)
the correlation function being now of the form:
C(t)=(Fgcos Bt + T, sin Bt)
Xexp(—a;t)+T, exp(—a,t)

a(w)

where Ty, Ty, s, @), a; and B8 are functions of
K(0), K,(0) and vy, such that C(t) is even up to t*
in its Maclaurin expansion. The proportionality
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constant in Equation (12) is given [19] by A(e,—
€.)/n{w)c, where n(w) is the refractive index. The
problem of the internal field [9] correction (A) has
been discussed by many authors in the past [19,
24-281, but a recent study [29] leads to the conclu-
sion that such an involved correction might be
often overestimated in importance. Certainly in the
far i.r. it is almost bandshape independent, and can
be roughly approximated by the PoLo/WiLson fac-
tor [307 of A =9n,%/(ny,°+2)*, where ny, is the D
line refractive index.

DISCUSSION

In applying Equation (12) to the experimental
data, the coefficients K;(0) and vy, are regarded as
phenomenological with Ky(o) fixed at 2kT/Iz. The
data is then fitted by minimization of squared de-
viations from the analytical curve a(w), or for
microwave regions, €”"(w) (the loss factor, given by
€"=n(w)a/w). The theoretical microwave absorp-
tion was generated from the far i.r. analysis. The
results are illustrated in Figs. 1-4, and the parame-
ters used are listed in Table 1.

At low frequencies (where w* is negligible com-
pared with w?) Equation (12) reduces to a Debye
type loss curve (e"(w) = w/(A +Bw?)) as is seen in
Figs. 2 and 4. In the far i.r., the overall absorption
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Fig. 1. Far ir. absorption of (CH;);CCl (rotator I) at

238 K. .--I~ Experimental [ 15] with uncertainty limits. —
Equation (12). Ordinate: a(w)/neper cm™'; abscissa:
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Fig. 2. Microwave absorption of (CH,),CCl at 238 K. O
Experimental [15], (klystrons at 32.5, 12.5, 8 and 2 mm).
— Equation (12), function as predicted from the far i.r.

fitting. Ordinate: €"(w); absicissa: #/cm™.
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Fig. 3. Far ir. absorption of 2 chioro 2 nitropropane
(liquid) at 293 K. ---F~ Experimental, [10, 17] with up. 3%
certainty limits. — Equation (12). Ordinate: a(w)/neper o}
cm™Y; abscissa: pem ™.
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Fig. 4. Microwave curve predicted from the far i.r. fitting \

of Fig. 3. Ordinate: €"(w); abscissa: p/cm™'. The arrows

show the positions of the observed [10, 17] maximum loss
and microwave critical frequency.

is reproduced satisfactorily (Figs. 1 and 3), the-
predicted return to transparency being much more..
rapid (a(w)— w™*) than that of the extended
diffusion mechanism of Brot [18] and Larkin [17
21). The fit is arguably better for (CH;);CCl in the.
rotator phase than for the liquid phase of 2 chioro-
2 nitropropane, although the theoretical band is
always inside the far i.r. experimental uncertainty " §
for both cases. The torque term K,(o) is fraction-
ally lower for (CH,);CCl in the rotator phase,
which may be a reflection of the increased intra--
molecular and inter-molecular symmetry of this
compound. More and better quality data are
needed, especially in the interesting region from

Table 1. Parameters of Equation (12) used in the curve

fitting
Iy Jee 1 100,
Molecule Phase  T/K [iff] a(‘%-Kl(o) g o
t butyl
chloride Rotator(I) 238 13.8 103.5 269
2 chloro
2 nitro-  Liquid 293 122 115.6 494
propane
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2_515 cm”' and over an extended range of tempera-
ture and/or pressure before the usefulness of Equa-
tion (12) may be fully ascertained. Nevertheless,
this is an encouraging start.

APPENDIX
Since K;(t) is an even, equilibrium function of
time, the truncation in Equation (10) is not satisfac-
tory, although the predicted C(t) is even up to t*,
and the spectral function calculated therefrom lies
close to the experimental. The form:

K (t)= Ky(0) exp[1— (1 +(¢/m)*)""*]
first used by BirnBaum and Couen [31], is even in
time and well defined at ¢ = o.
The corresponding spectral function is:

a(w) x 7eZ’ K (Z)K,(0)K,(0)w?/D(w)
where

D(w)=[Z*(Kq(0)— w2+ w?7?K,(0)
X(1+¢(w)T +[K,(0)wreZK,(Z)F

where Z=(1+w’t5)"?; K\(Z) is a modified [32]
Bessel function (first order) of the second kind;
and:

1

P(w)= eJ exp(—(1+w'r*(1—7")"") dx.

This is a function that fulfills the requirement
that K;(t) be even, and which also has the advan-
tage of including the torque term K, (o), so that a
measure of intermolecular effect is attainable. It
reduces to the Debye type:

szeKl(Z)Kl(O)Ko(O)
Ko*(0)+ wr*(2K(0)Ko(0)(1+ ¢)
— K:*(0)e’K,*(2)) ~ 2Ko(0))
It microwave frequencies.

t(w) x
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