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The methods of group theoretical statistical mechanics are used to investigate the sét of naime torretationfunetiens inisetropic
molecular liquids and in molecular liguids subjected to exl«;rri'z}l electric and magnetic fields. 1t is found that the groef# “'Icory
corroborates-the results of computer simulation where these are available, both for auto- and cross-correlation functions, in the
field-off and ficld-on equilibrium conditions. Many more elements of the time corrclation functions are allowed by symmetry in
the presence of fields. For the first time, the symmetry and time dependence of higher-order n-time correlation functions are
investigated by group theory. This results in a great simplification of the exploratory work of the computer simulator. because the
group theory clearly distinguishes between those elements that vanish for all 1 and those that may exist in the laboratory frame
(X. Y, Z) and the molecule-fixed frame (x, ¥, z). Group theoretical statistical mechanics reveal clearly that the statistics of a
molecular liquid cannot be Gaussian in gencral, because three-time and highcr-order corrclation functions cxist by symmetry.
These should be observable in future computcr simulation. Thus we arrive at the important conclusion that group theory applied
to the dynamics of molecules in the liquid state invalidates a large number of literaturc theories of diffusion. including all those
based on the Debye concept of “rotational” diffusion. These theories should be modified accordingly.

i. Introduction

The methods of non-equilibrium statistical mechanics [ 1-5] have recently been supplemented by a powerful
new axiom, that the ensemble average can be treated using the methods of group theory [1]. The new methods
of “group theoretical statistical mechanics” allow the determination of non-vanishing elements of time correla-
iion functions, including cross-correlation functions (ccfs). The application of group theory very clearly reveals
that certain elements vanish for all 7 at field-free equilibrium, that others exist for 0 < < oo, andthatstttothers
appear when the molecular liquid is subjected to external force fields such as a magnetic field H or eletric field
E. Time correlation functions are Fourier transforms of spectra, and can also be integrated to provide transport
coefficients. They are cornerstones of any detailed investigation of the condensed phase dynamics of molecular
matter. The application of two-time autocorrelation functions (acfs) such as (A(1)47(0)) is well known in
the literature [6] on the various kinds of spectra of the liquid state, and it is slowly becoming apaparent that
cross-correlation functions are important to the fundamental theory of liquid state chemical reactions [3,7], 10
the understanding of field effects [ 5], including electric, magnetic, and electromagnetic fields, and to the fun-
damental theory of molecular dynamics [ 1-5]. The detailed time dependences of some members of the set of
non-vanishing time ccfs are known from computer simulations [8-12], and consideration of the properties of
members of this set has recently been extended to cross-correlations between molecular transiation, rotation,
and vibration. In recent years the fundamental characteristics of molecular diffusion have been found t69e non-
Gaussian [13], non-Markovian [13,14], and non-linear [15]. The diffusion equations [16] used for the de-
scription of the molecular liquid state have therefore to be a class of stochastic non-linear partial diffé¥8ntials
such as the Kramers equations. Consideration of their structures leads to the necessity of expanding our knowl-
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edge of time correlation functions as a class. In the treatment of non-Gaussian processes, for example [15].
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knowledge is required about three-time correlation functions such as (v(£,)vT(£2)vT(¢3) ), where v is the mo-
lecular linear centre of mass velocity, or {@(¢;)@ ™ (%)@ ™ (¢) ), where @ is the angular velocity. Fuller consid-
erations take into account all members of the set of multi-time cofrelation functions <A4(t;)..47(¢,)>. Other
branches of the theory of molecular dynamics [17-20] require consideration of cross-correlation functions of
the type (A, ({)A4 {2, (0) > between the same dynamical variable on different molecules. These latter may have

the same symmetry, as in a pure molecular liquid, or different symmetry as in a solution of non-reacting or

reacting molecules. Standard theories of molecular diffusion are usually severely restricted by the assumption
that one mode of motion, such as translation, is independent of others such as whole molecule rotation and
intra-molecular vibration within the diffusing molecule. If these restrictions are lifted it immediately becomes
necessary to investigate ccfs, and therefore it becomes essential to know how many elements vanish for all £ due
to symmetry, and to classify those that do not vanish for the various molecular point groups. This lays the
foundations for future theories and computer simulations of the class of non-vanishing time correlation func-
tions in general, and for its utilisation in many circumstances of interest. For the purposes of group theoretical
statistical mechanics this class is made as broad as possible, and includes members from two-, three- and n-time
correlation functions, and equivalent cross-correlation functions, between molecular dynamical variables such
as translation, rotation and vibration. In principle, consideration can-be extended to quantum mechanics of
molecular diffusion in the liquid state [21].

In this paper the methods of classification are developed for two-, three- and four-time correlation functions
of the C,, point group, representing a dipolar symmetry such as that of water or dichloromethane, and for the
Ta non-dipolar point group exemplified by a solvent such as carbon tetrachloride. Vanishing and non-vanishing
elements are classified for time correlations involving translation, rotation and normal modes of vibration, and
the effect of fields such as E and H established in the laboratory frame (X, Y, Z) and the molecule-fixed frame
(x, y, 2) of the standard literature point group character tables [22-25]. The results serve as reference data for
theories of diffusion in a particular context, such as the treatment of non-Gaussian molecular statistical me-
chanics, the theory of intermolecular correlation and chemical reactions in solution.

2. Field-free equilibrium. Laboratory frame (X, Y, Z2)

2.1. Two-time acfs

In group theory [1] the symmetry of the frame (X, Y, Z), that of isotropic three-dimensional space is the
rotation~reflection group R, (3), whose irreducible representations [23,24] are denoted DI, .., D" and
D, .., D{. Here the subscripts g and u denote gerade and ungerade respectively, and the superscripts the
order of the irreducible representation. In this notation, a scalar has symmetry D, a polar vector such as » is
D", and an axial vector such as @ is D{"’. The statistical mechanical ensemble average (4), where 4 is a
dynamical variable, will exist if the symmetry representation of 4 includes the totally symmetric representation
(tsr) of the group Ry, (3), i.e. D{?’. Therefore an average over a scalar will always exist in frame (X, Y, Z), an
average over a vector such as v or @ will vanish. The two-time autocorrelation function {(A(£)4AT(0)) existsin
frame (X, Y, Z) because the product of representations I'(4(¢) )T (4(0) ) always contains the tsr D{®. This can
be demonstrated with the Clebsch~Gordan theorem:

D(”)D("')=D("+””+...+D“"_m”. (l)

From (1) itis clear that the product of a symmetry representation D' with itself will always contain D{®’, an¢
that a two-time acf will exist in frame (X, Y, Z).
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2.2, Two-time ccfs

A time cross-correlation function <.4{0)BT (7)) will exist in the laboratory frame (X, Y, Z) if the product of
-epresentations I (4)I'(B) contains the tsr at least once. If the tsr appears more than once, then more than one
ndependent element of the ccf exists for 0 < ¢ < co. For example, the cef (w (¢)»T(0) ) vanishes for all 7, i.e. the
:cf has no non-vanishing elements in frame (X, Y, Z). The time dependences of such ccfs have recently been
studied in detail using computer simulation [8-121]. The results of group theoretical statistical mechanics and
>f computer simulation are entirely in agreement, i.e. the elements predicted by the former to exist for 0 <7< oo
are indeed found to have a dependence upon time in several independent simulation algorithms.

2.3. Three-time acfs

The theory of non-Gaussian processes [15] takes into consideration three-time and multi-time correlation
functions, both for linear centre-of-mass diffusion, involving v, and rotational diffusion involving the molecular
angular velocity w. The three- and odd-time acfs vanish for Gaussian processes and the even-time cfs reduce to
products of two-time correlation functions. However, computer simulations [6,14,15] have shown clearly that
the diffusion process is in general [ 13] non-Gaussian and non-Markovian, so that a method is needed to deter-
mine which elements of the possible multi-time cfs exist in frame (X, Y, Z), and also in the molecule-fixed
frame (x, v, z). Group theoretical statistical mechanics [ 1-5] reveals immediately results such as the following
two examples.

(1) Three-time and odd multi-time correlation functions involving a polar vector of D{"’ symmetry such as
v vanish for all 7, because the relevant product of representations does not contain I{°’. However, this does not
imply that the diffusion process is in general Gaussian, because the even-time cfs of ali orders will exist and wili
not in general reduce to products of two-time correlation functions. Evidence is available from several computer
simulations [6,13-15] to show that the linear velocity’s diffusion process is in general non-Gaussian.

(2) Three-time and odd multi-time correlation functions involving an axial vector of D{'’ symmetry such as
w exist in general, because the products contain Déo’. This result, obtained on the grounds of symmetry alone,
is in direct contradiction with diffusion equations that do not take into account the non-Gaussian nature of the
molecular liquid state, such as the simple Smoluchowski and Fokker-Planck equations [14,15], but again in
agreement with the indications of computer simulations in frame (X, Y, Z). These show that diffusion processes
involving e are in general non-Gaussian, non-Markovian and non-linear.

2.4. Three-time ccfs

The existence of two-time ccfs such as (A(0)BT(¢) ) in frame (X, Y, Z) implies that of higher-order ccfs, and
the set of non-vanishing three-time ccfs can be defined to exist for 0 <t < co if the relevant product of represen-
tations contains the tsr at least once. For example, the three-time ccf may exist if the vectors making up the
products are all gerade or all ungerade, but will always vanish for all ¢ if the product of the three is of ungerade
parity.

3. Field-free equilibrium. Molecule-fixed frame (x, y, z)

Ensemble averages of statistical mechanics can be written in terms of the molecule-fixed frame (x, ). z) as
well as the laboratory-fixed frame (X, Y, Z). In fame (x, y, z) time cross-correlation functions can exist for
0 < t<co which vanish for all ¢ in frame (X, Y, Z). An example is (¥ ()@ T(0) ), which was first discovered by
computer simulation [8]. In frame (x, y, z) the symmetry of scalars, vectors and tensors is different for each
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molecular point group, thus implying the need for separate consideration of non-vanishing ccf elements for
different types of molecule.

3.1. The >, point group

A diffusing molecule with C,, symmeitry is a dipolar asymmetric top. An example 1s the water molecule. The
symmetry of a vector such as v or w is found by mapping the representation in frame (X, Y, Z), i.e. the R,(3)
rotation-reflection group, onto C,,. The methods for doing this are available in the literature [23]. A scalar in
the point group C,, has the totally symmetric representation A, the polar vector v maps onto A; +B,+B,; and
the axial vector w onto A,+ B, + B,. The product of representations of the time ccf {v(#)@T(0) ) is therefore

T ("T (@)= (A, +B, +B,) (A, +B, +B,) =2A, +3A, +2B, +2B,,

which shows that A, occurs twice. This implies [ 1-5] that two independent elements of the ccf exist in frame
(x, y, z) for 0<t<co. The results of computer simulation fully agree with this prediction, for C,, diffusing
asymmetric tops such as water and dichloromethane. Traditional theories of diffusion, based on Smoluchowski.
Fokker-Planck and Kramers equations, have not yet been effective in reproducing such fundamental properties
of the molecular liquid state, and much remains to be done in modifying the equations themselves and in finding
effective numerical algorithms for their solution. The diffusion equations must ultimately be capable of predict-
ing the non-vanishing ccfs of all orders, both in frame (X, Y, Z) and (X, p, z). In this context, group theoretical
statistical mechanics is a powerful guide, for example, in the context of three-time acfs and ccfs in frame (x;, y.

z).

3.1.1. Time ccfs involving the molecular Coriolis acceleration, 2vX @

An example of a physically meaningful three-time ccfin frame (x, y, z) is that [26-30] between the molecular
Coriolis acceleration 2y X w, and the same molecule’s linear velocity v or angular velocity . The ccf under
consideration may be defined as ¢2[v(¢) X@(¢) ][vT(0)) or (2[v(?) Xw(?) @ T(0)) in frame (x, y, z). It is
clear from foregoing considerations that the second of these ccfs disappears in the laboratory frame (X, Y, Z}
because the parity of v is ungerade and that of w is gerade. This is corroborated by computer simulation [31].
In the frame (x, y, z), computer simulations have revealed non-vanishing diagonal elements of the ccf between
the Coriolis acceleration and the molecular linear velocity, », in frame (X, y, z) for 0<{<co. All elements of
{2[v(¢) X (1) J@T(0)) vanish in the simulation [31] for all # for C,, symmetry in both frames. The following
illustrates how group theoretical statistical mechanics reproduces this result precisely. As yet there is no equiv-
alent procedure from the traditional theory of molecular diffusion.

3.1.2. Time ccf between Coriolis acceleration and linear velocity

The symmetry representation of the Coriolis acceleration in frame (x, y, z) is the product I'(v)I"(w), so that
the symmetry of the complete time ccf is 6A; +7A,+ 7B, + 7B-. This contains the tsr of the group C,, six times.
implying that there are six independent elements of the general triple product {» ()T (z)»T(0) > that may have
a finite time dependence for 0 <¢<co. Thus, 21 out of the 27 possible elements of the tensor triple product
()T (¢)vT(0) ) must vanish for all ¢ in frame (x, y, z). To investigate the origin of the six non-vanishing
elements we note that they come from the following triple products of irreducible representations:

Bl Bl AI = <v,\'wyv: > = < (VX(D):U: >r BZBZAI = < Uy, 0 > = < (VX(D)_—,_-U;),
AIBI BI = <U:w_l»'v.\'> = < (vxw),\‘v,\‘>’ BZA.’ZBI = < vyw:v.\‘> = < (VX(D),\-U'\->,
AiB:Br = (0.0, ) =((»X®),0,), BiABr= (0,00, )= (yX0),0,).

Considering the product B,B|A, for example, it represents {v,w,v.> because in the product of representa-
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tions I'(»)I"(@)I'(v), B, refers to v, the second B, to @ and A, to v. The existing element of the time ccf
2v()Xw()1vT(0)) in frame (x, y, z) represented by the product B;B,A, is therefore (2v,.w,v->. Simi-
larly, the existing element represented by B,B»A, is {2v,w.v. ). Proceeding in this way it can be seen that the
non-vanishing elements of (2[v (1) X (¢)]v7(0)) are the diagonal elements (2[v(¢) X (2)];v:(0)>:i=x, y.
z. In general these have a different time dependence in frame (x, y, z) because they are independent by sym-
metry, and this is exactly what is found by computer simulation, both in liquid water [32] and in liquid di-
chloromethane [31].

3.1.3. ccf between Coriolis acceleration and angular velocity

This ccf is a special case of the tensor triple product (v ()T ()@ T(0))> with 27 elements in general. In the
point group C,, the product of representations I'(v)I' (@ )T (@) is 7A, +6A,+ 7B, + 7B,, indicating that there
are seven occurrences of the tsr A,. However, only two of these have a meaningful Cartesian representation from
the C,, point group character table, and these are the triple products B,B,A, and B,B,A., equivalent to
{wv,0.) and {w.v,..) in the general triple product (w(?)»T(¢)wT(0)>. These elements do not occur in
the cef (2[w(t) X v (1) ]@T(0) ) which is therefore zero for all #. Again this is precisely what is found for all nine
elements of the ccf by separate computer simulation, both in liquid water and liquid dichloromethane. The five
other triple products of representations that give A, are A, A,A,, A, B;B,, B,A,B,, A,B>B,, and B,A,B,. If
these are investigated with reference to the literature point group character table it is found that none is a valid .
element of the ccf <2{w (1) X v (1) 1@T(0) ). In A, A, A, for example, A, referring to w has no R representation
in the C,, point group character table, i.e. is an irreducible representation that cannot refer directly to rotation.

3.1.4. Three-time acfs

Molecule-fixed frame (x, y, z). The theory of molecular diffusion must encompass the existence of three-time
and multi-time autocorrelation functions in frame (X, y, z) as well as frame (X, Y, Z). The great majority of
theories assume at present that three-time autocorrelation functions vanish as a consequence of the Gaussian
view [14] of statistical mechanics. It is straightforward to use group theoretical statistical mechanics to show
that this approximation is not valid in general. Consider for example the three-time acfs (v (£,)v7 (Z2)vT(43))
and (o (1) ()w(L3)), each of which has 27 elements in general. The respective products of representa-
tions in C,, symmetry are 7A, +6A, + 7B, + 7B, and 6A, +7A, + 7B, + 7B,. Therefore there are seven and six
occurrences respectively of A ;. In the former case the seven non-vanishing elements are found as follows: ™

AA A =v(0)v(8L)v(5))>, ABB =u(1)v(2)v(3) ), BiAB = ui(n)v()ve(t3)),
BB A = v (1) v (0)v-(13) ), BABy=(w,(1)v:(02)v:(83), ABBy=<v.(1)v,(02)v,(8)),
BB, A, = (v, (1) v, (1)v-(8) ),

and in the latter the six non-vanishing elements are

A,B, By = (0-(1) 0, (5)0y(1)), AsBaB, =<w-(1) 0 (1)@, (1)), B AB = (@, (1) w-(1) 0. (1)),
B B A= (o, (1)) o (h)w:(5)>, B:AB = (t)w:(L)w,(1)), BB A= (w(t)w(L)w(1:)).

Any theoretical approach which is implicitly or explicitly Gaussian in nature implies that a// the above three-
time acf elements must vanish for all 1. Clearly, if computer simulation corroborates their existence, as seems
likely, the Gaussian view must be discarded in favour of something more realistic.

Laboratory frame (X, Y, Z). Irrespective of molecular symmetry, the three-time autocorrelation function of
linear velocity vanishes in the laboratory frame for all ¢ because the relevant product of representations,

(M) (x) =D DD

cannot contain the tsr D{®. In contrast the three-time acf of molecular angular velocity contains D{®’ once:
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T'(@)T (@) (0)=D{" DD =D +3D{V +2D{» + D,

SO Wj one independent element exists for all molecular symmetries in frame (X, Y, Z). This is the trace element
[ P

Cox(th)wx(bL)wx(t) ) ={wr(l))wy()wy () ) ={w(1))wz(L)wz (1) ), (2)

which should therefore be observable by computer simulation. The Gaussian view of molecular statistical me-
chanics leaves this out of consideration, i.e. implicitly assumes that it vanishes for all £. There is no way therefore
of obtaining the time dependence of (2) from a simple Gaussian diffusion equation such as the Debye diffusion
equation. )

3.1.5. Four-time correlation functions

Utilisation of group theoretical statistical mechanics achieves a great simplification in the treatment of four-
time correlation functions when these are looked at from the non-Gaussian viewpoint, i.e. are not simply prod-
ucts of two-time correlation functions.

Four-time autocorrelation functions. Molecule-fixed fame (x, y, z). The symmetry representation of
(T ()v T ()7 (1)) is 21A, +20A,+20B, +20B, and of (@ ()0 (L))o (L))o (1)) is 20A, +
21A,+20B, +20B,. Therefore it can be seen that only 21 elements and 20 elements respectively can exist out
of a possible 81 in each case for C,, symmetry. However, these are all independent in general and with a different
time dependence in each case. Obviously, different results are obtained for different point groups.

Laboratory frame (X, Y, Z). For four-time velocity and angular velocity acfs the respective products of rep-
resentations are:

D{V"D{D{V D =3D§? + 6DV +6D? +3D{> +D{*
and
Dé”Dé”Dé”Dé" =D\(,”D\(,”D‘(,”D\(,“,

from which it can be seen that in each case there are three occurrences of the tsr for all molecular symmetries in
frame (X, Y, Z). Therefore three independent elements of the four-time correlation functions may exist in the
laboratory frame, with different time dependences, even for spherical top symmetry. For example, one of the
three non-vanishing tsrs may indicate that the three diagonal elements exist of the higher order acf ( [v(?)-
v(t)}[v(0)-»(0)]), well known from computer simulations of non-Gaussian processes [6,13—15], another
may show the existence of the acf { [v(¢)-»(0)]2), whose three diagonal elements have the same time depen-
dence in isotropic three-dimensional space, and the third may indicate the existence of the elements

(1)) v (83)vx(ta) ) = vy () vy (L) vy () vy (L) ) = (v (8 v (L) v (1) v, (1))

and so on.
3.2. Tetrahedral symmetry (T,), spherical top

In the laboratory frame of reference the same symmetry considerations apply as in the case of the C,, sym-
metry asymmetric top, but in the molecule-fixed frame (x, y, z) the individual characteristics of the two-, three-
and four-time correlation functions are considered separately in this section for auto- and cross-correlations
between dynamical variables of the same diffusing molecule.

3.2.1. Two-time correlation functions

In the molecule-fixed frame (x, y, z) the linear velocity, v, or any polar vector such as an axis, #, through the
molecular centre of mass, maps onto the T, symmetry representation T, and an axial vector such as @ onto T,.
The time cross-correlation function {»(¢)@7(0) ) therefore vanishes for all ¢ in frame (x, ¥, z) because
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FrMT(w)=T, T =A,+E+T,+ T

does not contain the tsr of the T4 point group. A,. Autocorrelation functions such as those of v or @ have one
independent element represented by a single occurrence of A, in the respective products of representations,

T‘_)Tj_ =T|T1 =A| +E+T| +T2.

This means that the three diagonal elements of (v(¢}¥T(0)> and (w(t)®T(0) > in frame (x, y, z) have respec-
tively the same time dependence for T, symmetry. This is what is found by computer simulation [26]. Note
that the cross-correlation function [9] (v{t)uT(0)) between an axis of frame (x, y, z) and v defined in this
frame has the same characteristics. This fundamental property appears rarely if ever from the standard literature
approach to the theory of molecular diffusion. For example it is unclear how, or impossible 10, obtain the time
dependence of (v(t)uT(0)> from the theory of the itinerant oscillator [33].

3.2.2. Three-time correlation functions

For the two-time correlation functions the results of computer simulation and group theoretical statistical
mechanics provide detailed agreement, those elements that exist by symmetry in frame (x, v, z) are found to
have a time dependence by computer simulationn. This is strong corroborative evidence for the inadequacy of
contemporary diffusion equations whose inherent approximations prevent them from drawing anything but the
roughest outline. A mathematically intricate but physically almost meaningless model such as the two-dimen-
sional itinerant oscillator is not able to provide the time dependence [$] of (v(z)u#T(0)), as mentioned already.
Any data matching exercise with such a model is open to serious criticism stemming from the fact that much of
the fundamental physics is missing. Any prediction from such a theory must be viewed with caution. This point
is brought home with clarity by the combined use of group theoretical statistical mechanics and computer
simulation.

As for the asymmetric top of C,, symmetry, the ccf between the molecular Coriolis acceleration, 2y X @, and
the linear velocity v can exist by symmetry in the laboratory frame (X, Y, Z). The great majority of diffusion
theories restrict themselves to *“pure” rotation or translation, and cannot describe this result, even in outline. In
the molecule-fixed frame (x, v, z) the symmetry representation of the three-time ccf (2[»(1) Xw (1) 1»7(0))
for T4 symmetry is

FrO)M )T (v)=T,T, T =A, +A; +2E+4T, +3T,,

showing one occurrence of the tsr. This comes from the product of triply degenerate Cartesian representations
of the T, point group character table, 1.e.

< (U'\-, Uy v:)(w,\" w_w (l)_-_-) (U.\') Uy, ”:))7

meaning that the three diagonal elements of the ccf (2[v (1) Xw(?) 1wT(0)> can exist in frame (x, y, z) with
_the same time dependence. Again this is exactly as found by computer simulation {26]. The latter also shows
that the diagonal elements of the time ccf between the Coriolis acceleration and the same molecule’s angular
velocity vanish in both frames of reference for all ¢. In frame (x, y, z) the relevant product of representations 1s
now

TlTZTl = < (w,\'s w{v: (l):) (1)_‘., Uy; l):) (w.\‘y 60_\,, w:)))

but in this case the complete ccf vanishes in frame (X, Y, Z). In general, the six off-diagomal elements of
Q2w () Xv(1)]oT(0)) exist in frame (x, y, z) on the basis of symmetry for the tetrahedral spherical 10p.
{Recall that all elements vanish in frame (x, y, z) for C», asymmetric top symmetry.) No contemporary diffts
sion theory is capable of dealing with these subtleties, and this is a fundamental problem.
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3., Mime correlation Junctions involving transiation, rotation, and-normal modes-of vibration of a diffusing
molecule

The symmetry representation of normal modes of vibration [22] in frame (x, v, z) depends [25] both on the
meteeular symmetry and-the number of atoms in the molecule. In this section we restrict our consideration to a
simple triatomic-of C,-symmetry, the water molecule, and a pentatomic of T, symmetry, carbon tetrachloride.
Group theoretical statistical mechanics is used to show that normal modes of vibration in these diffusing mole-
cules are correlated in many different ways to the translation and rotation of the molecule as a whole. These
effects show up [14] in infrared and Raman band shapes of the liquids, but at present very little is known about
them, either from diffusion theory or computer simulation. Most theories decorrelate vibration from rotation
and translation at the outset, and flexible model potentials for computer simulation [ 12] are not yet in general
use.

The water molecule (C,, symmetry). The symmetry representation of the normal modes of vibration of the
water molecule is [25]:

'(Q,)=2A,+B,.

There are three proper modes (fundamentals) with symmetry A, (symmetric stretch), A, (symmetric bend),
and B, (asymmetric stretch ). Each of these may be cross-correlated in frame (x, y, z) with molecular transla-
tion, rotation, or Coriolis acceleration, involving the latter simultaneously. If the normal modes are denoted by
Q, @, and @Q; it becomes possible to construct cross-correlation functions such as
(o()QT(0)), Co(t)Q%(0)> and Cw ()@ (0)) whose existence in frame (x, y, z) for 0<t<oo is deter-
mined by the respective products of representations I' (@ )I'(Q,), I'(@w)I'(Q,), and T (@) (Q5). Of these only
the last product includes the totally symmetric representation of the C,, point group, A,. This appears from the
product B,B, providing the non-vanishing ccf elements (x, )=~ (y, x) of (@ (2)Q¥(0)>. In liquid water
therefore there is a time ccf between the B, proper mode of vibration and the molecule’s own angular velocity.

Similarly, the existence of time ccfs between the molecular linear velocity and normal modes of vibration can
be established [5] using similar procedures. The method is illustrated with respect to establishing the various
time cross-correlation functions between normal modes of vibration and the Coriolis acceleration. The appro-
priate products of representations are as follows for each of the fundamentals Q,, Q,, and Q4:

B/B,A, and B,BA,, ie. {((¢yX®).0\.>; BB/A; and B;B;A;, ie ((yXw).0:.);
AyB;B, and B A;B,, ie. {(yXw), Q5.

Therefore cross correlations exist in liquid water between the molecular Coriolis acceleration and all three
fundamentals.

The carbon tetrachloride molecule (T, symmetry, spherical 10p). Here the vibrational symmetry representation
is

F(Q)=A(Q))+E(Q:)+T2(Q:) +T2(Qx)

and using this it may be shown that there is no time cross-correlation function between molecular angular veloc-
ity and the normal modes of vibration of the same diffusing molecule. (In fact this is true [ 5] for all non-dipolar,
achiral molecules.) However non-vanishing diagonal elements of the ccf between the linear velocity and fun-
damental vibrational modes can be shown to exist using the methods of group theoretical statistical mechanics.
Normal-mode vibration in a diffusing molecule is never decorrelated from centre-of-mass translation [5], and
also Coriolis acceleration. This is important in the theory of sound dispersion and light scattering {13], and
more indirectly, in the fundamental theory [6] of absorption processes in the infrared, far infrared and lower
frequencies. The newer methods of computer simulation, using flexible [12] ab initio potentials such as the
MCYL, have already been used to investigate time cross-correlations involving intra-molecular vibration in the
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diffusing water molecule. Knowledge concerning these correlations from standard approaches is nearly nor

existent at present, even in the classical context, because the relevant diffusion equations are cumbersome and
insoluble. Some idea of the large gap that now exists may be obtained from the example of the rigid planar
itinerant oscillator [16], which ignores all processes except planar rotation in simple symmetries. However,
group theoretical statistical mechanics produces clear results about time correlation functions for all molecular
symmetries and all physically meaningful dynamical processes, both in classical and quantum mechanics. The
symmetry considerations simplify considerably the exploratory work of the computer simulator, obviating the
need to simulate time correlations that vanish by symmetry, but-alse-suggesting, conversely, the need to expa{ﬂ'
and deepen our knowledge of non-Gaussian, non-Markovian and non-linear processes. Nor is the group theo-
retical approach restricted to the isotropic state, the effect of symmetry-breaking processes such as externally
applied force fields, can be taken into consideration as follows.

s

4. Equilibrium in the presence of fields

An electric field E breaks R, (3) symmetry and allows ensemble averages to exist in frame (X, Y, Z) whicl}

would otherwise vanish in the isotropic liquid. In terms [1] of irreducible representations E allows ensemble ;

symmetry to supplement the isotropic D{®! quantities. The new averages have the same D symmetry as the
applied field itself, thus E is D'’ and H is D{"’. Proceeding in this way E? allows averages with D{® + D{?*
symmetry, E* with D{"? +D{» symmetry and so on. A combination of fields allows a combination of new
averages and so on. Using these symmetries it is possible to evaluate in detail the effect of fields on multi-time
correlation fucntions, referring to computer simulations where these are available.

" 4.1. Two-time correlation functions

One of the most well known results of treating a molecular liquid with an electric field E is to induce birefrin-
gence. As we have seen, the product of representations of an autocorrelation function of vectors such as », w or
4 (dipole ) always contains the tsr of the R, (3) point group, D{®’. For the dipole acf for example

T(@)T(#) =D’ D =D +D{V + D),

a product which also contains D{"’. The latter is allowed in the presence of H and is indicative of birefringence.
If E is applied in axis Z the acf { z(t)x,(0) ) is finite as t—o0, and is one of the trace elements with D®
symmetry.

Recent computer simulations [34-37] have revealed that the time ccf (y()®w"(0)) does not vanish in the
presence of E,. Thus D§'"? of the product of representations

(T (w)=D" DL =D +D{P +DE

represents the non-vanishing elements (X, Y)= — (Y, X) of the laboratory-frame ccf (Do T(0)>.

4.2. Three-time correlation functions

Symmetry considerations reveal that an electric field E allows the existence of thvﬁrrce-t—tmeeeFMC
tion of molecular linear velocity, », directly in the laboratory frame. This result is obtainmed through the-preduct
of representations:

T(#)[(»)T(») =D D DL =D +3D§Y +2D§ + DY
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witictr comtains- D{!? three times, indicating the existence by symmetry of three independent elements of

r'a(»tl T (1, )97%(13) ) inframe (X, ¥; Z) in the presence of E. It follows therefore that the statistical nature of
linear diffusion ¢annot be-Gaussian-tn-the presence of an electric field. Clearly, all the odd-time correlation
fnctions similarly exist ii (X, ¥, Z) in the presence of E.

In contrast a magnetic field i does not allow three-time and odd-time correlation functions of molecular
linear velocity. ' '

Electric field-induced three-time correlation functions are so far unexamined by computer simulation, and
much remains to be done in this area. The Fokker-Planck diffusion equation [6] for the probability density
function of linear velocity will not produce the required result in this context, because its structure is implicitly
Gaussian,

5. Some field-induced effects in the molecule-fixed frame (x, y, 7)
5.1. The C,, point group

There are many fundamental effects induced in this point group by electric and magnetic fields. This can be
illustrated in the class of non-vanishing ccfs involving the linear velocity v and angular velocity w of the diffusing
molecule. The first stage in the reasoning is to map the symmetry of the external field on to the Cs, point group.
This provides the following:

I'(E)=A;+B,+B,, I'(H)=A,+B,+B,,

I'(E?)=A,+(2A,+A;+B,+B,) (=D{®+D{») (symmetricpart),
T(H?)=A, +(2A, +A,+B,+B,) (=D +D{) (symmetric part),
F(E3)=(A,+B,+Bz)+(2A!+A2+ZB,+2B2) (=D +DE>) (antisymmetric part),
[(H?)=(A,+B, +B;)+ (A, +2A,+2B, +2B,) (=D{"+D{») (antisymmetric part).

Thus, an electric field E allows ensemble averages of symmetry A, B, and B, to exist for Cs, in frame (x, y,
z). A magnetic field allows ensemble averages of symmetry A,, B,, and B,, and so on. It is clear that more
elements of time correlation functions exist in field-applied equilibrium, whatever the nature of the field, than

- in field-free equilibrium. Furthermore, the fundamental nature of the molecular diffusion process is changed by
a simple electric or magnetic field. The field-on and field-off dynamics are wholly different, and this difference
expresses itself through time cross-correlation functions of all orders. None of this is accounted for in standard
theory, such as that of dielectric relaxation [17], the dynamic Kerr effect [6], infrared and Raman band shapes
[14,18], and in first approximations such as the various rotational diffusion models [33].

5.1.1. Two-time ccfs

Considering the cef ¢(»(#)wT(0) ) the product of representations contains the individual products
r(l’)r(w) = (Ag +B) +B2)(A2 +B1 +B2)

=A|A2 +A|B| +A| B_2+B|A2 +B|B| +B| Bz+B2A2 +B2B| +B2Bz.

Of these, products which produce A,, B, or B, will be finite ensemble averages in frame (x, y, z) in the presence
of E, and those which produce A,, B, or B, in the presence of H. These are in the presence of E:

AB, =B, =(v.()w,(0)>, A B,=B,=(v.()w.(0)), B;A;=B,=(v.(Nw.(0)),
BIBI=AIE<v,\'(I)wy(O)>; B2A2=BIE<U_|'([)(L):(O)>’ B2B2=A|E<Uy(l)(0x(0)>,

ke
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and in the presence of H:

A/B =B, = (v.()w,(0)>, ABy=By=(v.(1)w.(0)>, B,A;=B,=(v.(1)w.(0)),
AAz=A, = (0(D0:(0)y, BrAs =B, =(n,()w.(0)), BiBy=A,= (v, (1)wy(0)3,
B,B, =A, = (v, ()w,(0),

so that there are no less than six independent elements of the tensor (v(f)@7(0)> in the presence of E. The
electric field-induced symmetry change is

0- a0 0 ay b
C,.: —-a, 0 0 +E-|—-a, 0 ¢
0 0 0 (x5 iy bz = 0

(x..z2)

The magnetic field allows the existence in frame (x, y, z) of seven new elements, including the diagonal ele-
ments, as well as the original field-free elements (x, y) and (y, x). Therefore in the presence of H the matrix is
{ull, with nine independent cross-correlation functions. This fundamental field-induced change is important in
any consideration of molecular diffusion processes in an aligning magnetic field, such as those in a room tem-
perature nematic liquid crystal. Very few, if any, of the contemporary molecular theories [6] of liquid crystal
behaviour take this into account.

5.1.2. Effect of electric and magnetic fields on three-time correlation functions

It has been shown already that a field E promotes the existence in the laboratory frame of the three-time
correlation function of linear velocity, so that the overall linear diffusion process cannot be Gaussian in general.
In frame (x, y, z) the effect of E depends as usual on molecular symmetry, and for the C,, point group many
new elements appear both for auto- and cross-correlation functions in frame (X, y, z), supplementing those in
frame (X, Y, Z). This effect is illustrated in this section with respect to cross-correlation functions between
molecular Coriolis acceleration and linear and angular velocity, and the three-time autocorrelation functions of
linear and angular velocity. Similar elements appear in the presence of a magnetic field H.

Three-time acf of molecular angular velocity. Effect of E. This is a time correlation function which is almost
never considered in the theory of electric fields applied to molecular liquids, for example, the theory of dielectric
relaxation [6,17]. However, group theoretical statistical mechanics clearly reveal its properties, both at field-
off and field-on equilibrium. These are obtained as usual in frame (x, y, z) by considering the relevant product
of representations:

IFNo)['(w)[(w)=(A,+B,+B,) (A, +B, +B,) (A, +B, +B>)

consisting of 27 terms. In the absence of E we have seen already that there are 6 non-vanishing terms in general,
coming from individual terms in the product which have overall symmetry A,. In the presence of E, products
which give A,, B,, and B, provide non-vanishing ensemble averages in general, so that all the terms of the general
triple product (@ ()@ ()@ (t3) ) exist with the exception of

(w:(l)w-(L)w(13) ), (w()w,(L)w()), (wlh)odlb)ods)),
(o ()oAL)o,()), (o(t)w(L)w(h)), (oli)o(b)ols)),
(o) ol)w.(5)). |
In the presence of the electric field,-E, therefore, there are no less-than 20 independent elements-eﬁmw

time acf of molecular angular velocity fer C,, symmetry. For other molecular symmetrles-thefeﬂmﬂ-be-d-rﬂi:m s
~ _ numbers of independent non-vanishign elements. Contemporary Gaussiam theories, suclras the oﬂgmahheo‘fy'

of rotational diffusion, fall well short of providing an adequate description of these. Indeed, for all dipotar



a4 M.W. Evans / n-time correlation functions

symmetries. rotational diffusion theory, and variations thereof such as the rotational itinerant oscillator, implic-
: me-that-all elements vanish for all 7 and for all E. Contemporary computer simulation is expected to
rde a-mteh-more accurate-description, and in particular, all elements that vanish by symmetry should van-
_igh-imrthe simmoiation. We-are {eft-with the familiar pattern that contemporary analytical theory lags far behind
contemporary numerical simulatiorr. Furthermore, the indications of group theoretical statistical mechanics
ghallenge the most basic of accepted concepts in fluctuation—dissipation theory [14], which lies at the root of
the theory of dielectric relaxation and non-equilibrium processes in general. This can be illustrated by reference
to a statement of the fluctuation—dissipation theorem in the linear response approximation which asserts { 14}
that the equilibrium autocorrelation function (for example the two-time acf of orientation) has the same nor-
malised time dependence as the fall transient from equilibrium in the presence of a field such as E to field-off
equilibrium. It is difficult if not impossible to reconcile this theorem with the symmetry properties revealed by
group theoretical statistical mechanics. There are many time correlation functions of all orders that display a
time dependence by symmetry at field-on equilibrium but which vanish by symmetry at field-off equilibrium.
Any fall transient from field-on to field-off equilibrium will reflect a profound change in the statistical mechanics
of the molecular ensemble, and its time dependence can, in consequence, be only fortuitously the same as an
equilibrium time correlation function. This in turn affects the validity of the Onsager reciprocal relations and
related long-accepted concepts. The delicate and subtle processes that become visible by symmetry considera-
tions, once we realise that the ensemble average is governed by group theory [ 1], are accessible to contemporary
computer simulations but to no other established technique as yet. Once this is realised and generally accepted
it becomes inevitable that less emphasis remains with the traditional “data-fitting” approach to molecular dif-
fusion [33]. Thus, the illusory success of the Debye rotational diffusion theory and variations thereof has to be
attributed to lack of appropriate, and appropriately discriminating, data.
Similar considerations lead to the conclusion that a magnetic field, H, in general allows the existence of all 27
elements of the three-time acf of angular velocity at field-on equilibrium.
Three-time acf of molecular linear velocity. Effect of E. Similar considerations lead to the conclusion that at
field-on equilibrium (E=#0) all the elements of the three-time autocorrelation function of molecular linear ve-
locity exist in frame (x, y, z) for C,, symmetry except for the following:

<l):([,)l)b\-(lg)l)_y([3)>, <l):(l‘)l)_,,(12)l)_\-([3)>, <v.\‘(tl)v:(t2)vy([3)>a
<U_\.(zl)1/\.(t2)l}:(!3)>, <Vy(ll)v:(tl)v.\‘(13)>’ <v_v(zl)v,\'(zl)v:(t3)>'

Therefore, the linear diffusion process at field-on equilibrium cannot be Gaussian and the 21 independent ele-
ments that exist in the presence of E provide a tapestry of information on the statistical nature of linear molec-
ular diffusion.

A magnetic field, H, in this context allows all 27 elements to exist independently, as in a magnetically aligned
nematic liquid crystal.

Three-time ccfs in the presence of fields. The effect of an electric field or magnetic field on ccfs extends to
elements of the time correlation function between the Coriolis acceleration and the molecular linear or angular
velocity. The symmetry effect on the form, for example, by an applied force field E is as follows

1
|
4
1

el A

a 00 a 0 d
Cy: 10 b O +E->{ 0 b e
0 0 ¢ (xo) f g G (x.vz)

In general, all the elements of the tensor triple product (v(¢,)®T (£ )v7(43))> become visible in a field E in
frame (x, y, z) except for the following seven:

<v:(tl)w:(l2)v:(13)>v <y.\'(ll)w.\'(zl)v:(l3)>7 <U_v(tl)wy(12)vz(13)>r (v:(t,)w_\,(tz)v,‘.(h)),
<v,\‘(tl,)w:(l'l)v.\‘(t3)>) <v:(tl)wy(12)vy(13)>y <v,v(ll)w:(t2)v,\’(t3)>'
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3.2. The T, point group

Considerations of field effects with the linear electric field E or magnetic field H in the laboratory frame (X,
Y, Z) parallel those for C;, symmetry. However, any molecule with T, symmetry is non-dipolar, and conse-
quently there is no torque generated between the molecular dipole moment and E. Meaningful physical discus-
sion is restricted therefore to the torque generated between the magnetic field H and magnetic dipole moment
Hy.

The magnetic field H allows the existence of thermodynamic averages with symmetry D{"" and in conse-
quence off-diagonal elements of any two-time autocorrelation function in frame (X, Y, Z) exist in the presence
of H. If the axial vector H is directed along the Z axis, the off-diagonal elements are (X, ¥)= — (Y, X), repre-
sented by the D{"’ in the product of representations of the field-on acf. Similar elements can appear in the T,
symmetry group for the set of n-time correlation functions.

In the molecule-fixed frame the magnetic field H maps onto the symmetry representation T, of the T, paint -

group, so that ensemble averages in frame (x, y, z) with symmetry A, and T, do not vanish in general in the
presence of H, Thus the magnetic field does not affect the existence of n-time acfs or ccfs with ungerade sym-
metry in frame (X, Y, Z), and similarly in frame (X, y, z) will not affect them if their product of representations
does not contain T,. For example, the product of representations for (»(t)@" (0)) is

T (0)=T.T, =As+E+T, +Ts,

——

which includes T, once. Therefore the magnetic field has an effect in frame (x, y, z) of allowing non-vanishing’
elements of (»(1)@"(0)) to exist for 0 <t <co. In TCartesian represemntation;the product T>T s (x P, 23R
7., R.) from which the magnetic field symmetry change may be deduced as

0 0 0 0 a a
Ts: {0 0 O +H-|—-a 0 a ;
0 0 0 i —a —a 0 el

commmmmmMth&mw (y( L)w (0)> must be ungerade There are no
computer simulations avaita : 2 1
crystals. For T4 symmetry, the time dependence of each of the magneucally allowed ofll-dxagonaLelem

be the same, because symmetry allows only one independent fype of element. Eiquid-erystal-melecules-are lik

to be of low symmetry, for example C,;, or C,, but plastic crystals [6] often contain T4 symmetry molecules,
and are likely to be good examples of the above effect. The lower the symmetry of the molecule, the higher the
number of independent field-induced time correlation functions.

Similar considerations lead to the conclusion that four independent T, elements of the three-time ccf can exist
in general for ¢¥(¢)@T(¢)»T(0)), together with the original field-free A, element discussed already The chaf:
acter table for T4 does not allow the precise allocation of these elements in this case because all come from the
product

T2T|T2 = < (U'\-, v_v’ v:) (wx’ w_l’! w:) (l)_‘., v,\" v:) >

of triply degenerate translational and rotational Cartesian representations. In this case extra information is needet
and this can be supplied in principle by cosmputer simulation, but not by any of the traditional Gaussian diffu-
sion theories. Similarly, the effect of a magnetie -of-electric field on.cross-correlation and autocorrelation fuds
tions involving vibrational modes can be evaluated for all- point-groups using the appropriate products of
representations.
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$,4: n-time correlation functions in molecular mixtures

Finally we consider the properties of n-time correlation functions in mixtures of C,, and T, symmetry mole-
cyles [27]. The fundamental molecular dynamical processes of liquid mixtures and reactants involve phasing
and-dephasing processes [71 which have been considered recently by computer simulation and analytical the-
oK ?he roleﬂf time-eross-correlation functions was found [7] to be critically important at certain stages in the

-preeess between molecules of different symmetry. The first stages towards an understanding

ahe symmetry rules governing such cross-correlation- functions involve the use of group correlation tables

ZZ. 74T as well as point group character tables. There is a computer simulation available [27] of the molecular

dynamics of water—carbon tetrachloride mixtures in which time cross-correlation functions were evaluated of

the single molecule type, i.e. between a vector A(¢) and a different type of vector B(0) belonging to the same
(water) molecule.

In the laboratory frame (X, Y, Z) the same considerations apply without change to products of symmetry
representations of vectors on different molecules, because the symmetry of linear velocity is the same, for ex-
ample, for a water molecule or for a carbon tetrachloride molecule diffusing in frame (X, Y, Z). A time cross-
correlation function will therefore exist or vanish between vectors on different diffusing molecules in frame (X,
Y, Z) in an isotropic liquid. Thus the foregoing considerations of this paper apply without change to liquid
mixtures ior #-time correlation functions, and it is possible using group theoretical statistical mechanics to see
which of these vanish in the phasing or dephasing stages of a chemical reaction.

In the molecule-fixed frame (x, y, z) on the other hand some means must be found to compare the symmetries
of a given quantity in point group C,, and point group T4, in literature group correlation tables. A comprehen-
sive collection of such tables is available in ref. [22] and allow a symmetry representation of one point group to
be mapped onto another. For convenience the mappings from T, to C,, are listed as follows:

A(T)=A(Cy), Ax(Ty)=A2(Cy), E(Ty)=A,+A5(Cy),
Ti(Tq)=A,+B, +B,(Cy,), TZ(Td)EAl+Bl+B2(C2v)-

5.3.1. Two-time correlation functions

As usual, the theory of chemical reactions or of molecular dynamics in liquid mixtures should in principle
encompass time correlation functions of all orders in all frames of reference, including the frames (X, Y, Z) and
(x,» z).

To investigate the detailed symmetry of a two-time ccf such as (v, (/)7 (0)> the first stage is to work out
the product of representations. If, for example, », () refers 10 the molecule of C,, symmetry and w 1o that of T,
symmetry the appropriate product will be:

vl (@2)= (A, +B, +B:) ¢, (T))r, =2A, +3A, +2B, +2B,,

where @ has been mapped from the T4 group onto the C,, group. The resulting product of representations
contains A, twice, and therefore two independent elements of the ccf exist in frame (x, y, z). In other words the
linear velocity of the C,, molecule can be statistically correlated with the angular velocity of the T4 molecule. In
the case of two reactant species, molecules or radicals of given symmeiry, these considerations would lead to the
establishment of the role of time cross-correlation functions in the phasing stages of the reaction [7], as the two
molecules maneouvre into a position favourable for reaction to take place.

5.3.2. Three-time correlation functions

If we exemplify this class by an investigation of the possible time correlation [26 ] between the Coriolis accel-
eration of the T, molecule and the linear and angular velocities of the C,, molecule we have the following
products of representations, after appropriate mapping:

10 Mk

il s LA A3
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‘( (wa)l )F(V2)= (2A| +3A2 +2Bl +2B2)C2\(T2)Tu =6.‘\| +7A2 +7B| + 7B2
If, however, we map from the C,, group onto the T4 group, the product of representations is

A, +A, +2E+4T, +3Ts,

which is different, and contains a different number of occurrences of the appropriate tsr. The number of possible
different (independent) elements of the cross correlation function is represented by the product with the higher
number of occurrences of the tsr, but the time dependence of each element will be an average of the equivalents
generated by ensembles of each component molecule taken separately.
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