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We describe group theory statistical mechanics, GTSM, which enables us to
predict new non-vanishing time correlation functions in fluids at steady state
subjected to planar couette flow. These are by symmetry trivially zero at equi-
librium. An ensemble average is treated using the rules of group theory in the
laboratory XYZ frame and in the molecule-fixed xyz frame of the point group
character tables. In this paper we determine the effect of couette flow on a
range of ensemble averages by establishing the symmetry of the strain rate
tensor in terms of the irreducible representations of the R,(3) rotation reflection
group in the XYZ frame. This symmetry, D{¥ + D{!! + D, is the same as the
pressure tensor, P and consists of an antisymmetric vorticity term, D! and a
symmetric strain rate component of symmetry D{® + D'¥. This allows non-zero
ensemble averages of the same symmetry in the XYZ frame. Depending on the
number of off-diagonal elements in the strain rate tensor, up to six new off-
diagonal elements of microscopic time-autocorrelation functions of type,
{A(0)AT()> appear by GTSM in the XYZ frame. We confirm this theory for
monatomic fluids using molecular dynamics computer simulation. The SLLOD
equations of motion for couette dvy/dZ flow were implemented. We calculated
non-vanishing peculiar quantity autocorrelation functions, ACF, of the gen-
eric form, {,(0)54(t)), <D 0)R4()> (R is the position of a molecule) and
(P 40)P4t)) for the Lennard-Jones fluid. The new correlation functions are
highly structured and generally have a finite negative value at t = 0. They can
exhibit time reversal dissymmetry, especially at low density.

1. Introduction

There have been a number of recent treatments of non-equilibrium fluids, char-
acterizing their microscopic dynamical evolution [1-3]. They illustrate the diffi-
culties in characterizing even the ‘simplest’ of non-equilibrium fluids.
Time-correlation functions are natural and sensitive probes of non-equilibrium
states. A shear field, for example, has a pronounced effect on the time correlation
functions of a simple fluid, although their underlying significance is still not clear
yet. The objective of this report is to describe the theory and provide verification of
a route which predicts those time-correlation functions existing in (symmetry
breaking) simple planar shear flow, which are trvially zero in the absence of shear
flow for symmetry reasons. The effect of a shearing field is to change the time
dependence of the diagonal elements of the pressure tensor and their time correla-
tion functions. This promotes the existence of hitherto unmeasured off-diagonal
elements which cannot be predicted from finite-clement analysis. The latter are
responsible for experimental observables such as the Weissenberg effect, which is the
flow imparted to a sheared liquid in an axis perpendicular to that of the applied
shear plane. There is no way of explaining the Weissenberg effect in terms of the
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molecular dynamics of shear without involving the effect of the time cross-
correlation functions of the type described in the paper.

Whiffen has recently introduced the concept of ‘group theoretical statistical
mechanics’, GTSM, based on the novel application of group theory to the ther-
modynamic ensemble average, <...» [4]. Symmetry can be used to predict those
averages existing and vanishing in both the laboratory fixed frame XYZ and the
molecule fixed frame xyz, applying group theory to the ensemble averages [5, 6].
Applications of this approach have recently been described [7-11]. Here, we make
the first application of this theory to planar couette flow, and verify it by molecular
dynamics computer simulation on model atomic fluids. At the present we are not
directly interested in the nature of the non-equilibrium states nor in the precise form
of the time correlation functions; only in predicting the ‘allowed’ time fluctuations

- of microscopic variables in fluids under shear flow, which become non-zero because

of the shear flow.

This paper is organized as follows. In §2 the GTSM theory is applied to simple
planar shear or couctte flow. In §3 the NEMD molecular dynamics model is
described and applied to determine shear flow time-correlation functions. Dis-
cussion of the results is given in §4. Conclusions are given in § 5.

2. Group theory statistical mechanics

The irreducible representations of the rotation-reflection group, R,(3) in the
XYZ frame are denoted by D', ..., D! and DIV, ..., D{, respectively; where the
subscript, g (or gerade) denotes even to parity reversal symmetry and u (or
ungerade) denotes odd to parity reversal symmetry. The superscripts refer to the
order of the spherical harmonics. In couette flow in an incompressible liquid (a
frequently employed macroscopic simplification) Newton first derived the relation-
ship between shear strain rate and stress, IT,

dvy
Tz’
where 7 is the viscosity, a simple scalar of Dg symmetry. The streaming velocity is

vy(Z). This formula (1) applies in the limit dvy/dZ — 0. At finite shear rate n is a
function of y = dvy/dZ and a more complicated stress tensor is required. In general,

= 20(7)1. @)

In both situations GTSM applies at steady state in the presence of shear flow,
where the isotropic R,(3) symmetry of the fluid is distorted, showing up in new
non-zero terms in the stress tensor. The latter is found by considering the tensor
product,

)

sz =

7=vr, 3)

making up nine elements of the velocity gradient. Here, r, is the position vector
whose single laboratory frame component is Z. This product has the D symmetry,

TWI(~t) = DPDE = PO 4+ W 4+ D@, )
where we have used the Clebsch—Gordon theorem [5],
D™ptm = platm o 4 pla=m] )
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In (1) and (2) the symmetry of the shear viscosity, 7, is that of a scalar, D'; with
negative time reversal symmetry because it has units of pressure muitiplied by time.
The symmetry of the shear stress tensor is the product of that of the shear rate and
that of the shear viscosity. The time reversal symmetry of the shear stress (or
pressure) tensor is therefore positive. It follows that the shear stress tensor must also
have the symmetry, DY + D + D{?, along with the pressure tensor (P = —M).
The representation, D\ + DV + D, of the strain rate tensor reflects the fact that it
has an antisymmetric component of vorticity, of symmetry, D{"), and a symmetric
traceless component of symmetry, DI + D'?. (The mathematical treatment of these
effects in a molecular fluid is formidably complicated. Evans showed that there are
five conservation equations and eight constitutive equations [12].) A system under
shear at steady state causes the R,(3) symmetry to be broken by the strain rate
tensor of symmetry, D + D{ + D, whose effect is to make possible the existence
of ensemble averages of this symmetry according to GTSM. On the molecular scale,
the strain rate tensor applied in couette flow makes possible the existence of time
correlation functions of the same symmetry both in the XYZ frame and in the
molecule fixed xyz frame. (In atomic fluids the second case is inapplicable.) The
tensor symmetry of all time correlation functions of the type: (A(0)AT(t)>, where A
is a polar or axial vector is also, D{¥ + D{" + D{. Thus all nine elements may exist
in an atomic fluid under shear. Where there is only one component of the velocity
gradient in the planar couette flow, e.g. dvy/dZ, then only one independent off-
diagonal element of the time ACF, (A(0)A™(t)> appears in the laboratory XYZ
frame. However, this may appear in all time cross correlation functions of this type
(i.c. containing the X and Z superscripts) and will be the microscopic characteristic
of the applied strain rate tensors. The strain rate tensor will also allow the existence
in the XYZ frame of time cross correlation functions of type, (A(0)B”(¢)), with
DY + DY + DY), symmetry.

In the special case of shear applied to an atomic liquid, treated in this work, the
D + D + D' symmetry of the applied field (1) causes the off-diagonal peculiar
velocity time correlation function, {B,(0)J.(t)> to appear in the laboratory frame,
along with the off-diagonal element of the pressure tensor time correlation func-
tions, {Pyf0)Pyz(1)>, {Pxz(O)Pyx(t)>, {Px0)Pyy(t)) and (PyA0)P;(t)>. These
results are obtained recognizing that, (P, (0)P,t)), contains the component
(o0 (D, (0)vt)>. The two correlation functions contained within this time
average are non-zero. Similar remarks can be made for (Pyz(0)Pxx(t)> and
{PyxA0)P,4(t)>. In each of these cases the component velocity time correlation func-
tions exist by symmetry. Thus the existence of {v4(0)v,(t)} implies the existence of
certain elements of the pressure tensor autocorrelation function. The full symmetry
of the time correlation function of the pressure tensor in the laboratory XYZ frame
is

(D + DO + DPYD® + DV + D),
which is
(D(," + Dg” + D{¥ + Dg“’) + 2(D§,” + D}f’ + D}f’) + 3(D;°’ + Df," + D),

which includes scalar, vector and tensor symmetry up to rank (4). For a shearing
field of the type, dvy/dZ, the above symmetry allows the existence of the foregoing
off-diagonal elements of the pressure tensor time correlation functions, together with
the usual diagonal clements. These time correlation functions are the dynamical
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manifestation of the Weissenberg effect, the occurrence of changes in P,, due to
shear [13, 14]. The existence of this series of time correlation functions tests the
validity of the GTSM theory out of conventional thermodynamic equilibrium. The
details for the evaluation of these functions are given in the next section.

3. Simulation details
The MD simulations used particles interacting via the Lennard-Jones potential,

&) = 4el(a/r)'? — (a/r)°), (©)

The basic technique has been described elsewhere [15]. The MD simulations were
performed on a cubic unit cell of volume V containing N = 108 Lennard-Jones (LJ)
particles of mass, m. The interactions were truncated at 2-5¢. A large time step
version of the Verlet algorithm was used to increment the positions of the molecules
[16]. We use LJ reduced units throughout, ie. kz T/e = T, and number density,
p = Na3/V. Time is in a(m/e)*/?, shear rate is in (¢/m)'/?/s, viscosity is in (mz)!/%/g?
and stress is in eo~ 2. The temperature was fixed by the gaussian isokinetic scheme
[17]. The time step was 0-0075. The production simulations extended for over
500000 time steps for unsheared and sheared LJ states. Each state point was per-
formed twice in individual segments of ca. 600000 time steps. Two state points were
examined. There was a near triple point state, at p = 0-8442 and T = 0-722, In the
sheared case, 7 = 1-0, producing n = 2-1, about 30 per cent shear thinning [18]. A
time origin for the correlation functions was taken at each time step. The shear
velocity profile was introduced in the fluid using isokinetic SLLOD equations of
motion [17, 18]. A low density state p = 0:1 and T = 2-5 was also examined. At this
density the shear viscosity is dominated by the kinetic component, #,. Here in the
7~ 0 limit, # = 0.27 and #, = 0-26 [19]. The sheared state was at = 1-0. The shear
viscosity (p = 1-0) at this state was 0-149 with i, = 0-132, The low density state is
dominated by kinetic effects arising from 7, whereas the high density state is govern-
ed mainly by the change in the local structure induced by the shear.
The peculiar or thermal velocity is denoted by ¥,

Ry = 050y + jRg, (7
Ry = vy =y, L))
Rz =v, =7y, 9)
dv -
d—tx=Fx/m")"Uz—ﬁf7x, (10
dv ~
d—:=Fy/m—va, (11)
and
B2 = Fofm— B, (12

where the « component of the force on a particle is F,, the velocity is v,, the
peculiar velocity is ©,, and f is the coefficient in the gaussian isokinetic ther-
mostatting control [18].
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We can also define a quantity, R,, a ‘peculiar’ position, R,(t) = R,(t) — R(0),
neglecting the streaming component,

R = j D,(t) dt'. (13)

0
Computations were carried out on a CRAY-1S at the University of London
Computer Centre,

4. Results and discussion

We evaluated over at least two independent segments of 500 000 steps each, the
correlation functions:' A1)  BlOBA)), <Br0)Bx(D)), <(FAORKD)D,
COlORx(1)),  <TAORADD,  (V/kg TKPxyO)Px(t)),  (V/ky TIXPxz(0)Pxs(t),
(V/kg T)XPyz(0)Py1)), (V/kg TIXPxz0)Py(2)>, (V /kg TIXPyz(0)Pyy (1)),
(V/ka TPxOPyz0),  (V/ka TKPxOPxxld)),  (V/ks TICPxo0)Pyy()>  and
(V/kg T) Pyz(0)P2(t)>. In the absence of shear we note that reversal of the time
arguments in the above correlation functions leaves them unchanged. This was also
checked numerically. However, with shear there could be a departure from this
stationarity principle. An estimate of the noise level in each time correlation func-
tion is the difference between the results of two segments. Therefore in the figures we
show the results from both segments to estimate the statistical uncertainty. This
permits the isolation of real effects from noise.

We predict by GTSM that the following correlation functions could exist in
dvy/dZ shear flow: (50)5x(t)), <{BAOR(1)), <ox(Qvx{e)), <(BxORAY),
(V/ks TKPxy(O)Pyo(t)),  (V/kg TKPxzA0)Pxx(t)},  (V/ks T)(PxA0)Pyy(t)> and
(Vikg T Pxz(0)P,,(t)). We also predict the same for these time correlation func-
tions with time arguments reversed.

We first consider the simulations performed on the high density state. In figure 1
{DA0)D,(r)) is given. The results from the two independent segments reveal unques-
tionably that this function exists. Unlike at y = 0 it starts from a finite negative
value, achieves a maximum at ¢t ~ 0-1 and then decays to zero in an oscillatory
manner. The function (v{0)v,(t)) is statistically indistinguishable from {,(0)ox(z)).
The insert in figure 1 shows {5,{0)0,(t)), which is very similar but has a slightly
deeper minimum. In figure 2 (5 (0)Rx(t)) is given. The results from the simulations
reveal its existence also. The function (V/kg T){P,y(0)Pyz(t)), is presented in figure
3. This function is zero in the $ — 0 limit. This cross-correlation function exists also
for $ > 0, commencing from a finite value at ¢t = 0 and rising steadily to zero by
t ~ 1-0. The generic functions, (V/kg T){PxA0)P,(t)> (where y =X, Y or Z), are
shown in figures 4-6. They all start at t = 0 from a finite negative value and rise
smoothly to a negative value, which is somewhat smaller. The extent of rise is more
pronounced in the order X ~ Z > Y. This is expected as the relative changes in the
values of the normal pressure components, (P,,) are also in this order. We found
P =0)=0025 Pyx(y =10)=117, Pyyp =10=079, Py (p=10)=125
and P(y = 1-0) = 1-07. Note also that the average value of Py, is negative under
shear (Py; = —2'08). We found that the other correlation functions were
statistically zero under shear as predicted by the group theory.

These non-equilibrium steady state cross-correlation functions can be related to
the temperature dependence of ensemble averages through [20, 21],

9%’?—“ ~ —(ABAH., —F, j " HCABOAID s, (14)
0
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Figure 1. The time correlation function {¥,(0)5,(t)) for the unsheared system (solid line} and
two independent contiguous segments of shear, A, and squares. p = 0-8442 and

T = 0-722. The insert is, <D (0)0(2)).
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Figure 2. The time correlation function {5,(0)R,(?)}, for the unsheared system (solid line)
and two independent contiguous segments of shear, A, and squares. p = 0-8442 and

T =0-722.
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Figure 3. The time correlation function (V/kg T){Pxy(0)Pyz(t)>, for the unsheared system
(solid line) and two independent contiguous segments of shear, A, and squares.
p = 0-8442 and T = 0-722. The insert is the same function with reversal of the time-

arguments: (V/kg T){ PyA0)Px,(2)).
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Figure 4. The time correlation function (V/kg T){PxA0)Pxx(t)), for two independent
contiguous segments of shear. p = 0-8442 and T = 0-722.
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Figure 5. The time correlation function (V/kg T){Pxz(0)Py/{t}> for two independent
contiguous segments of shear. p = 0-8442 and T = 0-722.
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Figure 6. The time correlation function (V/ky T){PxA0)Pz,(t)> for two independent
contiguous segments of shear, p = 0-8442 and T = 0-722
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where f = 1/ky T, B is a phase variable, H, is the internal energy, AB = B — (B),
AH,=H,— (Hy), F, is the external field (=9, here), J is the dissipative flux
(=Pxz V, here). In our study, Bis Py;, Pyx, Pyy, and P,;, for example.

Having first considered those correlation functions which become non-zero in
the presence of shear, we now discuss briefly the change in form in the correlation
functions due to shear that are still non-zero in the absence of shear. With increas-
ing j the y = 0 allowed correlation functions are known to become highly structured
in two dimensions [22] and three dimensions [18], reflecting a restriction in acces-
sible phase space.

At the onset of shear thinning we observe a change in (P (0)Pxy(t)>, and
{Pyz(0)Py,(t)>. Figures 7 and 8 demonstrate an increase in the ¢ = 0 values for these
functions and a more rapid decay than the corresponding y = 0 functions. The
change in {Pxz{0)Px,(t)) (shown in figure 9), is much more dramatic as the limiting
t = oo value is {Py,>* which is non-zero in dvy/dZ planar shear flow.

We now consider these correlation functions of the low density state. In the
absence of shear all diagonal elements of the pressure manifest a value of 0-236.
We found P(p=1)=0234, P, p=10)=10363, Pyy$=10)=0171 and
P,,(3 = 1-0) = 0-167. As for the high density state, the function {v{0)v,(t)> is
statistically indistinguishable from {¥,(0)0x(t)>. However, there is a noticeable differ-
ence between {5,(0)0,()> and {F,(0)bx(t))> as figure 10, and insert reveal. (There is
some evidence of this at the high density also; see figure 1 and insert.) The failure of
time reversibility is a feature of non-equilibrium states. The time correlation func-
tions therefore provide a rich reproducible characterization of the dynamics of non-

00 0.4 0.8 12

’

Figure 7. The time correlation function (V/ky T) Pxy(0)Pxyt)y for the unshcared system
(solid line) and two independent contiguous segments of shear, A and squares.
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Figure 8. The time correlation function (V/kg T) Py, {0)Py(t)> for the unsheared system
(solid line) and two independent contiguous segments of shear, A, and squares.
p=908442 and T = 0-722.
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Figure 9. The time correlation function (V/ky T){P,,(0)P,(t)> for two independent
contiguous segments of shear, p = 0-8442 and T = 0-722.
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Figure 10, The time correlation function {5;(0)5,(t)) for the unsheared system (solid line)
and two independent contiguous segments of shear, A, and squares. p =01 and
T = 2-5. The insert is {Tx(0)D(t)).

000 T

o
(@]

04 (o1:] 12

!___
o
'Y
~~ -0.05
-
— >
i :
—~ Y. b 3 -010 I
9 ® 0;, H
& v g
G.>><\ LA > _o1sf
14
>

-015

a

A

]

&

E t 1 1 I L L

Q.0 0.4 0.8 1.2
t

Figure 11. The time correlation function (¥ /kp T){Pxy(0)Py,(t)), for the unsheared system
{solid line) and two independent contiguous segments of shear, A, and squares. p = (-1

and T = 2-5. The insert is the same function with reversal of the time-arguments i.c.

(V/ks TIXPy(0)Px2)-
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Figure 12. The time correlation function (V/kg T)XPxz(0)Pxx(t)) for two independent con-
tiguous segments of shear, p = 0-1 and T = 2-5. The insert is (V/kg T){ P x20)Pz2(t)).

equilibrium states. The function (V/kg T) Pxz(0)Pyz(t)> also manifests time
irreversibility as revealed in figure 11, The cross-correlation functions
(V/kg T) Px2(0)P,,(t)> also reveal a statistically significant time development. Two
examples for the sheared states are given in figure 12, where y = Z in the main
figure and y = X in the insert. The y = Y is also structured, showing a maximum at
. t~02 before decaying to (V/kg T){PxzA0)Pyyt)y ~ —11-0 at t~ 15. The
(V/kg T){P,4(0)P4(t)> correlation functions decay more rapidly under finite shear,
with (V/kg T){P,50)P,4(0)> = 0-43.

4. Conclusions

In this paper we have established the link between a macroscopic applied field
symmetry and the precise symmetry of the induced time correlation functions. We
have looked at planar couette shear flow, showing that there are new time correla-
tion functions in both the cartesian and peculiar frames of reference. It is not
obvious that shear will produce these new correlation functions without this treat-
ment. They do not arise from classical treatments of rheology. We belicve that a
description of couette flow is incompiete without these new correlation functions,
which potentially provide new experimental probes for the microscopic conse-
quences of non-newtonian flow. The Weissenberg effect (observed when a non-
newtonian fluid climbs up a rod rotating in it) is the result of the existence of cross
time correlation functions of the type first reported here. Therefore the Weissenberg
effect could be used as an experimental probe for these correlation functions.
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Chapter 7

THE PHOTON’S MAGNETOSTATIC FLUX QUANTUM Zu.

ON THE ABSENCE OF FARADAY INDUCTION
by
M. W. Evans',
Department of Physics,
University of North Carolina,

Charlotte, NC 28223.

ABSTRACT

The relativistic theory of fields is used to show that the recently proposed
magnetostatic flux quantum By of the photon does not result in Faraday induction because

the photon propagates at the speed of light. In consequence there cannot be components of
the classical B, orthogonal to the propagation direction, and straightforward application of
symmetry and the Lorentz transformations shows that components of the associated electric
field strength E; perpendicular to the propagation direction Z vanish in all frames of
reference. Thus E; can never be generated from B, in free space through Faraday’s non-

relativistic law of induction, in agreement with recent experimental observation,

Visiting Scientist and Leverhulm Senior Fellow, Cornell Theory Center, ithaca, NY 14853;
Senior Visiting Research Associate, Materials Research Lab., Penn State University, University
Park, PA 16802.
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172 The Photon’s Magnetic Field

1.INTRODUCTION

It has been deduced recently {1-7} that the photon generates the magnetostatic

flux density operator
By = BOL: (1)

J

where ¥ is the photon’s quantised angular momentum, a boson operator which has

eigenvalues only in the propagation direction {8} of the photon. B, is the scalar magnetic flux

density amplitude associated with a single photon, and ™ is the unit of angular momentum in
quantum mechanics, the reduced Planck constant. The classical equivalent of By is an axial

vector B, which is defined through the conjugate product E x E’ of the electromagnetic plane
wave solutions E and E’ of Maxwell’s equations. Here E is the oscillating electric field
strength vector in volts per metre and E’ is its complex conjugate {9-14}. The cross product
E x E’ is not in itself a solution of Maxwell’s equations, and is independent of the phase of
the plane wave. It can be expressed in terms of the vector, or antisymmetric, part of the

intensity of free space electromagnetic radiation

I,y = €,CE,E] (2)

where ¢, is the free space permittivity and ¢ the speed of light. It has been shown {1-7} that

E x E’ has magnetic symmetry, i.e. is negative to motion reversal T ang positive to parity
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~

P

inversion P _ It is a relative of the 7 and P negative Poynting vector

N=-LlExp* (3)
]

where p, is the free space permeability. The Poynting vector can be expressed in terms of the

scalar part, L, of the intensity tensor by
N=2In (4)

where m is a unit vector in the propagation direction of the electromagnetic radiation in free
space. Since E x E" is a purely imaginary axial vector {1-7} with magnetic symmetry, it is
straightforward to deduce {1-7} that there exists in the classical theory of fields a novel,

purely real, axial flux density vector B, with the recquired umits of tesla defined by

ExE* Eq Iy
= - =RBRk="k=
Ep 2E,c1 o c k=A €,c?

Yk ~ 1071, (5)

Here E, is the scalar electric field strength amplitude of the electromagnetic plane wave, and

k is a unit axial vector.
The novel vector B, is the classical equivalent of the boson operator By , whose

existence has been inferred theoretically using the relation {5} between the classical B, and

the classical third Stokes parameter S, in the context of contemporary quantum field theory,

in which S; becomes the third Stokes operator SS defined recently by Tana$ and Kielich {15}

in terms of creation and annihilation photon operators. Clearly, By is a property of light, and
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interacts with matter to produce observable effects, such as magnetisation by circularly
polarised light - the "inverse Faraday* effect {16-20}; and the recently demonstrated
phenomenon of laser enhanced NMR {21}, in which circularly polarised light acts
magnetically to shift NMR resonances in unexpected ways far from optical resonance. Also
recently demonstrated {22} is the optical Faraday effect, in which circularly polarised light
rotates the plane of polarization of a probe {23-26}. The existence of magneto-optic effects

such as these was first proposed by Piekara, Kielich, and co-workers {23-30} and it is now

A

possible to show §{1-7} that they are all dependent on the existence of the novel operator By .

The latter is therefore fundamental in physical optics, and it has been shown recently {31-33}

that ubiquitous phenomena such circular dichroism, ellipticity, and antisymmetric

Rayleigh/Raman scattering can also be expressed directly in terms of By or in the classical

approximation, B;. Thus By is fundamental in linear as well as nonlinear optics.

In this communication, we prove in Section 2 that the classical B, does not obey the
well known Faraday law of induction, essentially because the photon always propagates at the
speed of light in any frame of reference. It follows that if a circularly polarised laser beam is
modulated and passed through free space in an induction coil, no voltage wiil be observed on
the grounds of Faraday induction due to B;, however intense the laser, and whatever the
magnitude of the term -5B,/5t produced by chopping the laser beam, A voltage will only be
observed if the laser is also made to pass through material in the coil, producing the well

known magnetization pulse of the inverse Faraday effect {17}.
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Section 3 is a short discussion on the correct interpretation of the classical B, and the

quantum By operator of the photon.

2. THE ABSENCE OF FARADAY INDUCTION DUE TO By IN FREE SPACE

Consider electromagnetic plane waves from a static source in frame (X, Y, Z)
[ r
propagating in Z in free space. Let there be a frame (X , Y,’ Z ) which moves at a velocity
v with respect to (X, Y, Z). Lorentz transformation {34} produces the well known relations

of classical relativistic ficld theory:

Hnr/’—cz 27 Byt + — Eqyt
Hyz=Hpzi Hyy= ¢ Hyx= =
vy, ve
(1-—)* (1-—)?2
c? c?
(6)
Vz Vv,
Enrf+—can’ Eﬂxl‘?Bmf/
EIIz":EIIz” Enl’_ Vz s ; EEX= Vz R ’
-z 42 -J3y2
(1 cz) 2 (1 CZI
We also note that classical angular momentum transforms as
Jys Jyr
Jzsz/; '-Ty= Yz F] JX= xz (7)
(1‘-—) ? (1*—'—5)
c? c
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It is clear that for an object travelling at the speed of light, so that v, = c, the components

Bry, By, Eny and Epy all become infinite in frame (X, Y, Z) unless

Hyyr = Enys = Hyyr = Egyr = 0 (8)

It is well known that the photon is massless, and travels at the speed of light in all frames of
reference. In consequence, it cannot be described by non-relativistic mechanics. Its rigorous
description requires relativistic quantum field theory, which shows {34-38} that its angular

momentum has no eigenvalues orthogonal to its propagation direction Z. From eqn. (1), the
same conclusion is reached about the novel magnetostatic flux quantum ﬁ“. In the classical

relativistic approximation, it also becomes clear that the magnetic field By can have no
components in frame (X, Y, Z) perpendicular to the propagation direction Z. It follows from

the Lorentz transformation equations (6a) and (6b) that

Byz = Bnz/i Bpy = Byy = 0 {s)
and

Byt = By = By = Egyr = 0 (1)
from which

Enz = Eggri Epy = Egy = 0. (11)

However, considerations {1-7} of Pand T symmetry in the vector cross products E x E’,

B x B and E x B’ of the usual oscillating plane wave electric and magnetic field vectors E

and B, solutions of Maxwell’s equations, show that products such as these cannot generate an
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electrostatic field in the propagation direction of an electromagnetic plane wave. This

conclusion follows from the fact that E x E” and B x B’ both have positive P and negative T

symmetries; and E x B" has negative © 2d T symmetries, whereas the electric field Ey

LY

would have to be positive to T and negative to b Thus, from this source

Eyy = Eggr = 0 (12)

and we are left only with the relativistically invariant classical magnetic flux density

component

Buz = Buy * O (13)
which is the classical approximation to the operator By,

Note also that in classical relativistic theory, By can only be proportional to angulér
momentum J; in frame (X, Y, Z), as implied by eqn. (1) if Z1¥' ¥ Emvt e igentically

zero, thus reinforcing our earlier conclusion. This follows from the structure of eqns (62) and
™.
If, now, we attempt to assert that the nineteenth century, classical, non-relativistic and

phenomenological Faraday Law of induction applies to By:

Vaky = - (14)




178 The Photon’s Magnetic Field

having assumed that the uniform, intrinsically time independent, B, can be made time
dependent by some device such as chopping a circularly polarised laser in free space inside an
induction coil, we must obtain the results Ex ¢ 0; E;y ¢ 0 from the integration of eqn (14);
results which contradict the requirement (11) derived in turn from the fundamental, quantum
relativistic, recquirement that the photon have no component of angular momentum
perpendicular to its direction of propagation.

We conclude therefore that there cannot be a phenomenological Faraday Law of
induction (14) for B, of the photon, because this would violate the quantum and classical
relativistic theory of fields. There cannot be a non-zero Ey associated with the photon in the

axes X and Y orthogonal to Z, only a B, in its direction of propagation.

3. DISCUSSION : THE INTERPRETATION OF 21 OR B,

Clearly, the B, field is neither a plane wave nor an ordinary magnetostatic flux density
B; such as that produced by a magnet. It is not a plane wave because it is not a solution of
the {non-relativistic) Maxwell equations, but, rather, constructed from the cross product
E x E in an analogous way to the Poynting vector’s definition in terms of the cross product
E x B". Significantly, the Poynting vector is a flux of energy density, and the vector B, is a
flux of magnetic density. As discussed for example by Landau and Lifshitz (ref {34}, p.47)
the Poynting vector is directly proportional to the linear momentum per unit volume of the

electromagnetic field, whereas the B, vector is proportional to the angular momentum per
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unit volume of the electromagnetic field from eqn. (1). The relation between the energy and

linear momentum of the electromagnetic plane wave is the same as for that of a particle (the

photon) moving at the speed of light {34}. It follows that N is relativistic in nature, as is By,

the former is related to the scalar part of the wave intensity, and the latter to its vector part.
The vector B; is not an ordinary uniform magnetostatic flux density because the

photon travels at the speed of light and B, travels with it. Therefore, By is a concept that
can be described only by classical relativistic field theory and relativistic mechanics, and By

can be described only by relativistic quantum field theory. The deduction that B, does not
obey Faraday’s law of induction has recently been verified experimentally {39} by
modulating a circularly polarised laser travelling in free space through an induction coil. No
induced voltage was observed for any laser intensity.

Finally, we note that plane waves must be solutions of Maxwell’s phenomenological
equations in the classical, non-relativistic, approximation. Clearly, neither N nor B; can be
solutions of the non-relativistic Maxwell equations because both vectors are phase

independent cross products and both are relativistic in nature.
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