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Summary. — The emergence by classical computer simulation of definitive
evidence for statistical correlation between molecular rotation and
translation leads to a new appraisal of the quantum structure of rotational
absorption in the microwave and far infrared. The classical correlation
implies that the accepted theory of «pure rotational» quantum absorption is
only a first approximation. The translation of a molecule in some
environments affects its own quantized absorption due to rotation. The
number of allowed quantum transitions is increased from the accepted
- theoretical AJ =1 to AJ=%1,+2 *3 for all dipolar molecules. These
results are obtained using group theory, which also predicts that translation
rotation effects increase the number of allowed transitions for each J
quantum number and therefore affect the intensity distribution of the
absorption lines. These results modify fundamentally the accepted theory of
quantized rotation. Theoretically, the well-known AJ=1 distribution is
supplemented by further distributions at A/ =2 and AJ =3.

PACS 31.10 — General theory of electronic structure, electronic transitions,
and chemical binding.

1. — Introduction.

A series of recent computer simulations (**) has revealed a set of nonvanishing
time cross-correlation functions in ensembles of interacting molecules. These

() M. W. EvaNsS: Phys. Rev. Lett., 50, 351 (1983).

(*) M. W. EVANS and G. J. EVANS: Advances in Chemical Physics, Vol. 63 (Wiley
Interscience, New York, N.Y., 1985).

¢ M. W. Evans, G. C. L1t and F. CLEMENTL: J. Chem. Phys., 87, 6040 (1987).

(*) M. W. EvaNs, K. REFSON, K. N. SwaMy, G. C. LIE and E. CLEMENTIL: Phys. Rev. A,
36, 3935 (1987).

() M. W. Evans and G. J. Evans: J. Mol. Lig., 36, 293 (1987).
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link statistically the fundamental molecular rotational and translational diffusion
from a classical point of view. Subsequently, the computer simulations have been
verified in detail by a fundamentally new development (°) in statistical mechanics
which is based on the ideas of group theory and on the idea that ensemble
averages in the molecule fixed frame can be treated in terms of point group
theory. This has developed into the subject of «group-theoretical statistical
. mechanics» (g.t.s.m.).

In this paper the quantum-mechanical theory of combined molecular rotation
and translation is developed from the above classical basis, <.e. the existence
from computer simulation of the cross correlation function (o(t)JT(0)) in the
molecule fixed frame (x, ¥, 2). Here v is the centre-of-mass linear velocity and J,
the molecular angular momentum. In sect. 1 the groundwork for the new
treatment is given briefly, sect. 2 deals with selection rules and intensities in the
far infra red and sect. 3 gives results for some representative point groups.
Section 4 is a discussion and survey of spectral implications.

2. — Fundamental concepts and definitions.

We seek the solution of the Schrédinger equation for a rigid, nonvibrating,
molecule which is simultaneously rotating and translating and in which one
motion implicitly influences the other. We assume that the classical time cross
correlation funetion (v(f)J.(0)) exists in frame (z,y,z) in an ensemble of such
molecules. Experimental conditions are assumed to be optimized for the
observation of quantum structure, for example in low-temperature rare-gas
lattices in which the rotating and translating molecules are encaged. The
treatment that follows is based on standard group theory (") applied to this
experimental situation. The rotational motion is treated quantum-mechanically
and the translational motion classically, so that our model is in this sense a semi-
classical approximation. Selection rules and relative absorption intensities are
derived on the grounds of symmetry for each point group. The basic laws of
quantum mechanies apply as usual and the symmetry of three-dimensional space

(® D. H. WHIFFEN: Mol. Phys., 63, 1053 (1988).

(0 P. L. FLURRY jr.: Symmetry Groups, Theory and Chemical Applications (Prentice-
Hall Ine., Englewood Cliffs, N.J., 1980).

() R. M. HOCHSTRASSER: Molecular Aspects of Symmetry (W. A. Benjamin, Inc., New
York, N.Y., 1966).

() F. A. Corron: Chemical Applications of Group Theory (Wiley Interscience, New
York, N.Y., 1963). .

() H. WEYL (translation by H. P. ROBERTSON): The Theory of Groups and Quantum
Mechanics (Dover, New York, N.Y., 1931). _
(") J. A. SALTHOUSE and M. J. WARE: Point Group Character Tables (Cambridge
University Press, Cambridge, 1972), p. 55.
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is designated by the rotation reflection (") point group R;(3) whose irreducible
representations are denoted by the D representations

DY,DP, Dy,  DO,DP, D
Products of D representations are given by the Clebsch-Gordan theorem
(1) DY D® = DUk ¢ DU+-D L DUi-kD

The translational motion of the molecular centre of mass is assumed to reduce
in R;(8) as the polar vector representation DY’ of classical mechanics, so that the
quantum states are infinitely close together from — « to . (Later work will
improve on this by considering fully quantized translational harmonic oscillation
superposed on quantized rotation.) The molecular angular momentum is as-
sumed to be fully quantized and the rotational quantum states are defined in
terms of the irreducible representation of the molecular point group, which is
determined by the Hamiltonian of the system.

The irreducible representation of the rototranslational wave function for a
molecular point group is the product of those for rotation and translation:

2 r)=r(vJ))=r(v)r(s),
and a transition from state ¢ to state f is allowed if I'(y)I'(¢p) contains the

irreducible representation I'(M) of the molecular dipole moment M within the
point group of the molecule.

3. — Selection rules and intensities.

We first note that «pure rotation» implies the classical result
6] . (U(t)JcT (0)> @y =0,
for all ¢, which is possible only when the Hamiltonian is purely kinetic, as in the

«infinitely» dilute gas. A nonvanishing potential energy term in the Hamiltonian
leads immediately to (*%)

(4) <v(t)‘-rcr(0)>(x,y,z):'&0; O<t< & H

for all dipolar molecules.

Selection rules in the limit of «pure» quantized rotation. These are derived
from the Clebsch-Gordan formula. If the initial rotational quantum number is J
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and the final is J’, then the symmetry restrictions on radiation-induced
transitions between purely rotational energy levels are obtained from the
requirement that I'(y,) I'y;) contain D). This implies

(5) DY DY) = DY+ + ...+ DI

must contain D&, This is because the symmetry of the molecular dipole moment
is DO, Requirement (5) can only be met if

(6) AJ==1,

which implies transitions from g to u or from w to g.

Selection rules for quantized rototranslation. In this case the product
(7) (DP DYDY DY)
must contain DY, the symmetry of the molecular dipole moment. We have
(8) (DL DYDY DY) = (DY + DY + DYDY+ ... + D7y,

This product contains the terms Dy~ DIV-712 and DIFP~71-2 as part of its
- expansion using the Clebsch-Gordan formula. These contain DY’ if and only if

9 AJ=%1,+2 %3.
The infra-red selection rules for rototranslation are, therefore,
(10) An =0 (translation), AJ=+1, %2 +3 (rotation),

i.e., as soon as the «infinitely» dilute gas is compressed infinitesimally, the
absorption spectrum of combined and quantized rotation and translation contains
absorptions corresponding to AJ =1,2,3 for all dipolar molecules.

A similar result has been obtained by Friedmann and Kimel (*¥) in the special
case of HD translating and rotating in a harmonic translational potential.
Experimental evidence for the extra allowed AJ lines has been presented by
Ewing (*).

There seems to be no other study of quantized absorption due to simultaneous
molecular rotation and translation. It is clear from (10) however that in quantum
mechanics the influence of one type of motion on the other is fundamental,

(*) H. FRiIEDMANN and S, KiMEL: J. Chem. Phys., 47, 35893 (1967).
() G. EWING: Acc. Chem. Res., 2, 168 (1969).
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adding observable quantized features in the microwave and far infra red. These
correspond to AJ=2,3 in the present semi-clagsical model. The traditional
AJ = 1 of pure rotation is also affected and the extra absorptions predicted in this
paper may have been observed (*) in the far-infra-red spectrum of compressed
gaseous chlorotrifluoromethane. These were originally attributed (*) to induced
absorption (*), but may well have come from a combination of rotation and
translation in the compressed gas.

Intensity of quantum absorptions: pure rotation. The intensity distribution
of the purely rotational AJ =1 absorptions in the microwave/far infra red is
determined partly by the equilibrium distribution of «purely» rotational
guantum states, and partly by the number of times the totally symmetric
representation occurs in the product

(11) Iig) DI W) .

For example, if we take the low-symmetry group C;, one of whose members is
CHBrCIF, the symmetry is as follows:

I'My=A, TIlyd=A, I=)=34,...

The product of representations (11) is, therefore,
1) 84 for J=0—-J=1,
2) 15A for J=1—>J=2

and so on.

The number of totally symmetric representations, A4, in (11) rapidly increases
with J in the transition J/— J + 1. There are (2J + 1) (2J — 1) totally symmetric
representations for the transition (J — 1)— J. The intensity of each J line of the
C, «pure» rotational spectrum is given by the product multiplied by the Maxwell-
Boltzmann distribution in the absence of other factors such as J degeneracy and
nuclear spin coupling.

Intensity distribution in combined rotation and tramslation. The product
(11) of irreducible representations is now modified to

(12) (v NI (v Jy)

with selection rules given by (10).

(*)y M. W. EVANS and G. J. DAVIES: J. Chem. Soc. Faraday Trans. 2, T1, 1275 (1975).
(™) M. W. Evans, G. J. Evans, W. T. CorFEY and P. GRIGOLINI: Molecular Dynamics
(Wiley Interscience, New York, N.Y., 1982).



1278 M. W. EVANS

In the point group C; we now have
r=A, T(vJ=0))=34, I(v/=n))=32n+1)A.

Product (12) for AJ=1. 1) 27A for J=0—-J=1,2) 135A for J=1-J=2,
8) 3154 for J=2—J =3, etc.

Product (12) for AJ=2. 1) 46A for J=0—J =2, 2) 189A for J = 1—>J=3,'
ete.

The occurrences of the totally symmetric representation, A, are increased by
a factor of nine for AJ =1, and are 27:135:315,..., 9(2J + 1)(2J — 1). The series
for AJ =3 is 63.... These are weighted by other factors () such as the Maxwell-
Boltzmann equilibrium distribution of both molecular rotational and translational
states and their degeneracies.

The observable effect of molecular translation on rotation in quantum
mechanics is to promote a finite number of new AJ allowed transitions, each with
an increased number of allowed totally symmetric representations in the product
(12) as compared with (11), the equivalent of «pure» rotation.

4. — Examples for the C, and C,, point groups.

These are the point groups of the class of chiral molecules (C,) and dipolar
molecules (C,,). Examples() are CHFCIBr (C;), diphenylfluoroboron (C,),
triphenylarsenic (Cs), tetraphenylcyclobutadiene (C,), hexaphenylbenzene (Cs).
Of these only the first two are dipolar, but there may be examples of other C,
point groups which are dipolar.

The first stage in our treatment is to deseribe D®, DY ..., D™ in terms of the
irreducible representations of each point group. This is carried out in appendix
A. The second stage finds the symmetry of the rototranslational wave functions
lvJ =0), |[vJ=1), |[vJ =2), and evaluates the product (12) for each point group.
This involves the use of the multiplication properties of irreducible represen-
tations given in appendix B. For each point group is listed the symmetry of the
rototranslational wavefunctions up to [vJ =3), and the number of occurrences
from (12) of the totally symmetric representation for the point group for AJ =1,
AJ =2 and AJ =3.

The C, point group (I'(M) = A).

1) The irreducible representations of the first few rototranslational wave
functions are

MpJ=0))=A, I(vJ=1))=94,
I(wJ=2))=15A, I(vJ=3))=214.



THE QUANTUM MECHANICS OF ROTATING AND TRANSLATING ETC. 1279

2) The product of representations (12) is given in sect. 2.

The C, point group (I(M)=A4)

[ r(vJ=0))= A+ 2B,
I(vJ=1))= 5A+ 4B,
I(lvJ=2))= TA+ 8B,
jvJ=8))=11A+10B.

1) }

2) The product of representations (12).

For AJ=1
J=0—J=1: 134+ 14B )
J=1—-J=2: 6TA+ 68B | 13:67:157:... .
J=2—->J=38:15TA + 158B
For AJ=2
J=0—->J=2: 23A +22B
23:95:... .
J=1-J=3: 95A+ 948
For AJ=3

- J=6—->J=3: 31A+32 B; 3l:....

The Cs point group (M) = A)

[r(vJ=0))= A+ E,
I(lvJ=1))=8A+3E,
M(vJ=2))=5A+5E,
| I(vJ =3))=TA+TE.

85 — Il Nuovo Cimento D
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2) The product of representations (12).

For AJ=1
J=0-J=1: 9A+ 9E |
J=1-J=2: 45A+ 45E | 13:67:105:... .
J=2-J=3:1054 + 105E |
For AJ=2
J=0->J=2: 154 +15E }
15:63:...
J=1->J=3: 63A+63E
For AJ=3

J=0-J=3: 21A+21E ; 21:....

The C, point group (I'(M)= A).

[ r(pJ=0)= A+ E,

I'lvJ=1))=3A+2B +2E,
|lvJ=2)=8A+4B +4E,
lvJ=8)=4A+5B +6E.

D

2) The product of representations (12).
For AJ=1

J=0-J=1: TA+ 6B+ TE
J=1-J=2: 33A+34B+34E ; 7:33:80:....
J=2-J=3: 80A+T79B + 9 E

For AT =2

J=0J=2: 114 +12B +11E s
J=1->J=3: 34A+35B+48E|
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For AJ=3

J=0->J=3: 16A+17TB+15E; 16:....

The Cs point group (TM) = A).

(wJ=0)= A+E,,

I =1) =34 +2E, + Es,

| wI=2)=34+2B+2E, +2E,,
UvJ=3)=3A+4B+3E1+4E2.

1y

2) The product of representations (12).

For Ad=1

J=0—-J=1: TA+ 2B+ 6E;+ 3K,
J=1->J=2: 2bA +20B +24E, +21E,  7:25:67:....
J=2—J=3: 67A +38B + 66K, + 39K,

For AJ=2
J=0-J=2: 9A+ 6B+ TE,+ TE, }9 "
J=1-J=3: 33A +30B +34E, +29E, |
For AJ=3

J=0—J=3: 13A+7B+10E, + 11E,; 13:....

The Cy, group (I'M)=A,).

[ M(juJ=0))= A+ B:+ B,
T(wJ=1)) =24, + 34, + 2B, + 2B,

| F(wT=2)) =34, + 44, + 4B, + 4B,

| I(jvJ =3))=54,+64;+ 5B, + 5B,.

1)
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2) The product of representations (12).
AJ=1

J=0-J=1: 7A1+ 6A2+ 7Bl+ 7B2
J=1-J=2: 344, +33A,+34B,+34B,  7:34:79:..
J=2-—>J=3: 194, + 784, +T9B, + 798,

AT =2
J=1-J=38: 484, +4TA, +47B, +41B, |
AT =3

J=0-J=3: 16A,+15A4,+16B,+16B,; 16:..
The Cs, point group (M) = A,); simmetric top.

(T(vJ=0)= A+ E,

vJ=1))= A,;+24,+3E,
| r(vJ =2)) =24, + 34, +5E,
T(lvJ=38))=8A4,+44,+1E .

1)

2) The product of representations (12).
AJ =1

J=0>J=1: bA,+ 44,+ 9F
J=1->J=2:23A,+22A,+ 45F } 5:23:53:... .
J=2—J=3:53A,+524,+ 105F

AJ =2

8:32:... .
J=1->J=38:32A,+314,+ 63F

AJ =3
J=0-J=3:114,+104,+ 21FE; 11:.
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The dipolar point group Cy, (I(m)=A").
([wJ=0)= A+ 24"
pJ=1)= 4A’+ 5A",
| fpr=2)= 74"+ 84",
| [vJ=3) =104’ +114".

D

2) The product of representations (12).
A =1

J=0->J=1: 14A'+ 13A"
J=1->J=2: 68A'+ 67A" ¢ 14:68:158:...
J=2->J=38: 1584’ + 1574"

AJ =2
J=0—-J=2: 23A'+224"
3:95
J=1-J=3: 95A"+944"

AJ=38
J=0—J=3: 824'+31A" 32:.

5. — Discussion.

On the basis of the classical result (12) group theory has been used to work out
some of the many expected spectral consequences of solutions of the Schridinger
equation for combined quantized rotation and translation. The results for
selection rules and intensities are given in the preceding section. '

We come to the conclusion that the accepted theory of «pure» rotational
quantum absorption in the microwave and far infrared is only a first
approximation to the results expected for combined rotation and translation.
Specifically, the centre-of-mass translation of a molecule affects its own
quantized rotation in an observable way. The effect of translation is to increase
the number of allowed J transitions from A/ =0, £1to AJ =0, =1, £2, +3 for
all dipolar molecules. Therefore, absorption lines due to A/=2 and AJ=3
become observable and the intensity distribution of AJ=1 is changed.
Furthermore, group theory predicts that translation increases the number of
totally symmetric representations of the product (21) for all allowed AJ
transitions.
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The irreducible representations in the frame (z, ¥, 2) for the time cross corre-

lation functions (v@)JT=000)}; (v@®)JT=10)}; (L@®JT=2(0)) etc. are the
same as those for the rototranslational wave functions |vJ=0), [vJ=1),
luJ =2 ). Here J = n(0) denotes quantized angular momentum in the state J =n
at time ¢t =0. The classical c.c.f. can be seen as the expectation value of the
Liouville operator in the state {vJ=mn) and so there are many expectation
values in quantum mechanics eorresponding to the classical result (12).

APPENDIX A

d kR

The University of Lancaster is thanked for an Honorary Fellowship.

This appendix gives the reductions of D, ..., D{” and D?| ..., D® in terms of

the irreducible representations of most of the dipolar molecular point groups; see
table 1.

TABLE 1. —- Mappings of some of the dipolar point groups onto some R;(3) irreducible representations.

Point group
Cl Cg C3 C4 Cs C2v CSv C]h
DP A A A A A A A A’
DO A A A A A A, Ay A"
DV 8A A+2B A+E A+E A+ E, A+ B, + A+ E A +24"
+ B,
DP 34 A+2B A+E A+E A+ E, A1+ B+ A +E 24’ + A"
+B,
D,E?’ bA 3A+2B A+2F A+E+ A+E+ 2A1+Az+ A; +2F 3A'+24"
+2B + E, +B;+B,
D® 5A 3A+2B  A+4+2E A+E+ A+E+ A +24,+ A+ 2F 24"+ 384"
+2B +E, +B;+B,
D® TA 8A+4B 8A+2E 2A+E+ A+E + A +24,+ A +24,+ 347 +44"
+ 3B +E,+2B +2B,+2B, + 2K
D® TA 3A+4B 3A+2E 2A4+E+ A+E,+ 2A1+ A4+ 24,4+ A4,+ 44’ +3A"
+ 3B +E;+2B +2B,+2B, +2F

APPENDIX B

theory.

This appendix provides the rules for products of Mulliken’s symbols for

irreducible representations for all the usual point groups used in spectroscopic
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General Rules AXA=A, BXB=A; AXB=B; AXE=E; BXE=E,
AXT=T;, BXT=T;, AXE,=F,; AXE;=E;, BXE,=E,; BXE,=E;

Foal o P e Tpalt 0, M 00 !
=" =" =,

Subscripts 1x1=1; 2x2=1; 1X2=2; except for D, and D,,, where
1X2=3;2X3=1;gXg=uXu=g, gXu=uXg="1u.

Doubly degenerate

1) For Cs; Cgy; Cay; Ds; Dayy Dag; Co; Cou; Ds; Desy Se; O; On; T Ty Th;
EIXE1=E2XE2=A1+A2+A2; E1XE2=B1+Bz+E1.

2) For 04; C4v; C4h; ng; D4; S4, K XE=A1 +A2+B1+B2
Triply degenerate

1) For Ty O; Op EXTi=EXTy=Ty+Ty; TyxTy=Tyx Ty=A,+
+E+T1+T2; T1XT2=A2+E+T1+T2.

For T and T, drop subscripts 1 and 2 from A and T.

® RIASSUNTO (%)

11 fatto che sia emessa una prova definitiva con simulazione al computer classica per la
correlazione statistica tra la rotazione molecolare e la traslazione porta ad una nuova
valutazione della struttura quantistica dell’absorbimento rotazionale nelle microonde e nel
lontano infrarosso. La correlazione classica implica che la teoria accettata di un
absorbimento quantistico «rotazionale puro» sia solo una prima approssimazione, La
traslazione di una moleccla in alcuni ambienti influenza il proprio absorbimento
quantizzato a causa della rotazione. Il numero di transizioni quantistiche permesse &
aumentato dal valore teorico accettato AJ =+ 1a AJ = =1, =2, + 3 per tutte le molecole
dipolari. Questi risultati sono ottenuti usando la teoria di gruppo che prevede anche che
gli effetti della rotazione di traslazione aumentino il numero di transizioni permesse per
ciaseun numero gquantico J e che quindi influenzino la distribuzione d’intensita delle linee
di absorbimento, Questi risultati modificano fondamentalmente la teoria accettata della
rotazione quantizzata. Tecricamente la distribuzione ben nota a AJ =1 & integrata da altre
distribuzioni a AJ =2 e AJ =3.

(*) Traduzione o cura del‘la, Redazione.

KBaHTOBas MeXaHAKA BpPAAIONEXCH @ TPAHCISHHOHHBIX MOIEKYI.
Yacrs I. - Ilonyknaccageckoe paccMoTpenne.

Pesrome (*). — C nomMonisio KIACCHIECKOro KOMIBIOTEPHOTO MOAEUPOBaHMA OBHAPYKEHO
NONTBEPXKHCHAC CTATHCTHYECKOH KOPPEISIMM MeXNY MOIEKY/SIPHBIMH BpalleHHeM M
TpaHCIIIHER. JTOT pPe3yNLTAT NPHBONHT K HOBOW ONEHKE KBAHTOBOM CTPYKTYphI
POTaMOHHOIO NOIMOIMEHHS B MMKPOBONHOBOM M JajlleKOH wHMbpakpacHo# obiacrsx.
Knaccrgeckass KoppensEs —NORpasyMeBaeT, dTO, JIPHHATEY ~ TEOPHS  «YHCTOro
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POTAILMORHOIO» KBAHTOBOTO NOIJIOMIEHMA MPENCTABIACT TOJBKO NEPBOE NPHOIIDKEHME,
Tpascisgmus MOJNEKYJBI B HEKOTOPOH OKpyKalomed cpele H3MEHSET KBAHTOBAaHHOE
NOLNMOMEHAE, BCJIE/ICTBAE BPAlleHus. UHCHO paspemieHHbIX KBAHTOBBIX IEPEXONOB
YBEIWUMBAETCS OT TEOPeTHIecKOW Bemwywmasl AJ=*1 mo AJ==1, 2, +3 musa Bcex __
JMIIOIBHBIX MONIEKYJI. JTH pPEe3ylbTaThl HOXYIeHBI, HCIONb3ysd TEOPHIO IPYIN, KOTOpas
TaKXe MpPEelCKa3bIBACT, YTO 3(P(HEKTH TPAHCIALUMHA H BPAICHUS YBEJAMUUBAIOT HUCIIO
pa3pemennbX I8PeXONOB U1 KAKIOro KBAHTOBOrO YKucHa J H, CHENOBATENHHO, H3IMEHSIOT
pacupenesieHde MHTEHCHBHOCTH I JIMHEA noriomenns. IlomydeHHBIE pe3yisTaThI
CYIUECTBEHHO  BHIOM3MECHSIOT MNPUBSITYIO  TEOPMIO  KBAaHTOBAHHOIO  BpAaliCHHUS.
TeopeTtnuecku xopomo u3BecTHOe AJ =1 pacnpenenesEne RONOISAETCH paclpeneneHusIMU
AJ=2n AJ=3.

(*) Ilepesederno pedaxyueti.



