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Abstract

Group theory is used in four dipolar point groups to determine the infrared
selection rules and transition symmetries of a molecule whose dynamics are
simultaneously those of the harmonic oscillator and rigid rotor. The motion
is governed by the translational quantum number » of the harmonic oscillator
and the quantum number J of the rigid rotor. The selection rules for the
harmonic oscillator are modified from An = +1to An = 0, 1+ 1. Those for
the rigid rotor are changed from AJ = 0, £ | in the absence of translation
to(1)AJ =0, £1, £3; An = 0,mn0dd; 2) AJ = 0, £1; An = 0, n even;
(3) AJ = 0, £2, An = 1 I; all n. The relative intensities of the rototrans-
lational far infrared spectral lines are given for point groups C,,, C,,, C,,,
and C,. The theory is in partial agreement with the experimental AJ = 1, 2,
3, 4 transitions observed in HD trapped in rare gas crystals at low tempera-
ture and with the selection rules for C_, symmetry obtained by Friedmann
and Kimel.

1. Introduction

In part one of this series [1] a semiclassical theory of rotation
and translation in rigid molecules was introduced which
considered by group theory [2-6] the symmetry of wave-
" functions generated by the simultaneous rotational and
translational motion [7-10] of a molecule. In that work the
rotational motion was assumed to be quantised, and the rigid
rotor wave functions for each J quantum number expressed
in terms of sums of irreducible representations of the mol-
ecular point group. In part one (1] the translational wave
function was expressed through irreducible representations
derived from the symmetry, D{’, of the classical linear
velocity, v. Here, D® D, D®_ | _ are irreducible represen-
tations of the 2-D rotation-reflection group R,(3). It was
found that the symmetry of the wave function of combined
rotation and translation, expressed through the product

Yo = Yot )

of component rotational (y,) and translational (y,) wave
functions, led to the emergence of many more energy levels
than is possible by consideration of “pure” rotation. The
selection rules for pure rotation, i.e. AJ = 0, + 1, are modified
by the product wave function (1) to

AJ = 0, +1, £3.

This result is achieved by assuming that the translational
component ¥, of the product (1) always has the classical
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symmetry D, and closely resembles the experimental results
reported by Ewing [11] in HD trapped in crystal cavities of
rare gases. The experimental observations signal the disrup-
tion of the purely rotational quantum selection rule

AJ = 0, £1

by rotation-translation effects, leading to absorptions in
rotating and translating HD corresponding to AJ = 0,
+1, +2, + 3 and possibly + 4. The last is not allowed, how-
ever, in the theory of part of this series [1], based on generally
valid [2-6] group theoretical considerations. It is clear that
translation-rotation effects are important and present in all
molecular liquids and low temperature matrices, where some
of the finer spectral details may be resolved.

The most important and detailed work on the quantum
theory of combined molecular translation and rotation is still
the series of papers produced in the sixties by Friedman and
Kimel [12-15] for rare gas matrices of small diatomic and
tetrahedral molecules. These papers used advanced second
order perturbation theory to look at the spectral consequences
of a hamiltonian of the type

H = H® + gH, + &H,, = H® + H’, Q)

where H’ is a perturbation term that accounts for rotation-
translation coupling through the distance, a, between the
molecular centre of mass and the centre of interaction. In
qualitative terms the theory based on (2) introduces the
translational quantum number 7 of the harmonic oscillator in
addition to the usual rotational quantum number J. The term
H’ adds zero-point translational energy to the rotational
states, and raises the J energy levels. AJ = 2 transitions are
allowed by the theory. Apart from the usual (2J + 1)
degeneracy of the rotational levels the Friedmann Kimel
theory (FK) introduces the degeneracy 1/2 (n + 1)(n + 2)
of the translational states modelled by a harmonic oscillator.
Rotation-translation coupling lifts the total degeneracy

o+ D + )27 + 1)

of the (J, n) level of a rotor oscillating in a cell.

In this paper we employ group theory to investigate the
existence of energies corresponding to a hamiltonian of type
(2) and a perturbed rototranslational wave function of the
type

¥ = ¥ + ¢ 3

for molecules whose motion is simultaneously described
by the rigid rotor quantum number J and the harmonic
oscillator quantum number 7. There are therefore energy
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integrals of the type:

E® = QPIHOWO) )
E® = GPIH Y s)
E® = Uil HOW) ©
EP = Wi H'I ™

and so on, whose existence is determined [2] by the products
of the group theoretical representations:

T x TH®) x T @®
and so on. These energy levels are infrared active if the
product of representations

T x Tw) x T4 ©)

includes the totally symmetric representation of the molecular
point group at least once [2). Here g, is the transition dipole.
The number of occurrences of the totally symmetric represen-
tation in the product (9) gives the number of times the
theoretically allowed far infrared absorption line occurs due
to a transition between the rototranslational wave functions
¥: and y; for each of two (J, n) states i and j.

In the approximation (1) the symmetry of the rototrans-
lational wavefunction is that of the product

W, = T'W) x T'(y,) (10)
so that substitution of (10) in (9) leads to the result
I = TWE) x TW) x T@) x TWy) x TW,). (1D

If T contains the totally symmetric representation of the
point group at least once, then infrared absorption will occur,
due to the influence of molecular rotation on translation. The
number of totally symmetric representations in the product
(11) gives the number of possible infrared absorption lines
due to t/r coupling for a transition from quantum state i to
quantum state j. The intensity of the transition from i =
[n, J> to j = |n’, J*)> is proportional to the degeneracy
in(n + 1)(2J + 1) and also to the number of totally sym-
metric representations in the product of group theoretical
representations (11).

In this paper we are interested in the general symmetry of
the problem, and use group theory to explore the harmonic
oscillator/rotation spectrum for slected dipole point groups
on the assumption that the symmetry of ¥, is determined by
the harmonic oscillator approximation, and that of ¥, by the
rigid rotor approximation.

2. Symmetry of translational wavefunctions from the
harmonic oscillator

It is well known that the eigenfunctions of the translational
harmonic oscillator have the symmetry of the Hermite poly-
nomials of order n, whose orthogonality produces the selec-
tion rule An = 1. The frequency separation between
successive terms of the oscillator are the same, so all tran-
sitions occur at the same wavenumber when unaffected by
rotation. For even n the representation I'(y,) for all mol-
ecules is the totally symmetric representation. For odd » it is
that of DY, the translational coordinate itself.
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3. Symmetry of rototranslational wavefunctions and
selection rules

3.1. Evenn

It follows that the symmetry of (10) of the rototranslational
wavefunction for even n (including the ground state, n = 0)
is the product of the totally symmetric representation of its
translational component with the symmetry of the rotational
component for a given J. The total symmetry is therefore
identical with that of the rotational wavefunction itself.

The selection rules for the rigid rotor are derived from the
Clebsch-Gordan formula

DY x DY) = DV*) 4 .. 4 DV, (12)

For infrared allowed rigid rotor absorptions this product
must contain DY, the symmetry of the transition dipole. This
is possible from the right hand side of eq. (12) if and only if

AJ = 0, £1. (13)

For even n the symmetry of i, is always the totally symmetric
representation, so that

W =I"xT = DI x DY = (14)

Therefore if the molecule is in the quantum state described by
even n the J selection rules remain unchanged, i.e., are given
by eq. (13).

3.2. Oddn

In this case the symmetry of ¥, from the harmonic oscillator
is D{", which reduces as different irreducible representations
for different molecules. In this case the Clebsch-Gordon
expansion

DP x DY) x (DY x DY)

DY

(15)

must contain the symmetry of the transition dipole, and this
relaxes the selection rules of the rigid rotor to

AJ = 0, +1, +3 (16)

as observed in HD/rare gas matrices and reported by Ewing
[11]. For odd n therefore one immediate consequence of
rotation-translation coupling is that the rigid rotor far
infrared spectrum is supplemented by extra lines correspond-
ing to AJ = 3. As shown in part 1, the intensity distributions
for each envelope is strikingly different from that of the rigid
rotor, and were given for most of the dipolar point groups.

Summary of selection rules for An = 0.

(I) For An = 0andnodd; AJ =0, +1, £3.
(II) For An = O and n even; AJ = 0, £ 1.

3.3. Selection rules for An = +1

For all n, the selection rule An = +1 for the translational
harmonic oscillator is derived from the orthogonality rules of
the Hermite polynomials. For combined molecular rotation
and translation the transition An = + 1 may be combined
with a AJ and the rigid rotor selection rule AJ = 0, + 1 may
be relaxed by the simultaneous An = £ 1. In this case the
product

(Dg"’ x DY) x (DY x DY) a7
or the alternative
DY x DY) x (D(!“’ x DY) (18)
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Table I. Occurrences of A, in product (11) for C,, symmetry
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J transition

J=0-> J=1- J=2- J=0-> J=1- J=0-> J=0-> J=12

Selection rule J=1 J=2 J=3 J=2 J=3 J=3 J=0 J =1
(20), (odd n) 5 23 53 8 32 11 2 11
(21), (even n) 1 3 6 - - - 1 2
(22), even n

to odd n - - - 3 11 - 1 5
(22), odd n

to even n - - - 3 11 - 1 5

must contain the symmetry of the transition dipole, D{". Pro-
duct (17) arises from a An = 1 from a state i = (j, even n)
to a state j = (J', odd n); and (18) from i = (J, odd n) to
Jj = (J’, even n). In either case the product of representations
contains terms such as DW-/1-1 pV-/1 DV-+1 " which
contains D" if and only if:

AT =0, £1, +2;

(i) the rotational part of (16) and (17), i.e., D*> x DY
is g.

The second argument means that rotational transitions
AJ = + 1 between adjacent g and u rotational wavefunction
symmetries cannot be allowed. This leaves the simultaneous
selection rules as

An 1, AJ = 0, 2. 19)

It is interesting to note that Friedmann and Kimel {12-15]
also found the rule AJ = 0, +2 using second order pertur-
bation theory. This result was also reviewed by Ewing [11].
However, the FK result was found for the special case of
simmple diatomics in rare gas matrices. The selection rules
given in this paper are derived purely from symmetry, and are
applicable to all molecular point groups in any environment
that supports interaction between molecular rotation and
harmonic oscillation.

4. Occurrences of the totally symmetric representation in
the product of representations (11)

This number can now be examined by group theory for each
of the above sets of selection rules for the various dipolar
molecular point groups. In this section it is calculated for the
cases:

for the dipolar point groups C,, (symmetric top); C,, (asym-
metric top); C,, (planar asymmetric top) and C, (lowest
symmetry, chiral). I'(y,) reduces within each point group as
the totally symmetric representation of the group. In each
case rules (20) to (22) allow a rich spectrum of absorptions
even in the relatively simple harmonic oscillator approxi-
mation. It may be expected that rotation-translation coupling
also produces anharmonicity in the oscillation of the centre of
mass, but that is not pursued here.

4.1. The C;, point group

In part 1 of this series, the occurrences of the totally sym-
metric representation (A, ) of this group were calculated from
group theory applied to the product (11). In that work the
symmetry of the molecular translational velocity, v, was
taken as the classical D{”. In this work we use the methods of
part | to investigate the number of occurrences in product
(11) of the totally symmetric representation A, for the selec-
tion rules (20), (21) and (22). The absorptions corresponding
to (20), (21), and (22) are best resolved in rare gas matrices at
low temperatures, entrapping dipolar molecules which are
simultaneously rotating and translating. At low temperatures
only the first few J lines are of interest. The occurrences of A,
in the product (11) are summarized in Table I in this case for
each of the selection rules (20) to (22).

4.2. The C,, point group

The occurrences of the totally symmetric representation, A,,
of this group from product (11) for some J translations
are shown in Table II. It can be seen from a comparison
of Tables I and II that there are more occurrences for
each transition for C,, symmetry (asymmetric top) than

(1) An = 0;AJ = 0, +1, +3;nodd (20) for C,, symmetry (the symmetric top). This means that
’ T the allowed rototranslational intensities for the asymmetric
2 An = 0;AJ = 0, £1;neven; (21) top are greater than their equivalents for the symmetric
3) An = 1,AJ = 0, +2;alln (22) top.
Table II. Occurrences of A, in product (11) for C,, symmetry
J transition
J=0-> J=1-> J=2- J=0- J=1-> J=0~—~ J=0- J=1-
Selection rule J=1 J=2 J=3 J=2 J=3 J=3 J=0 J =1
(20), (odd n) 7 34 79 12 48 16 2]
(21), (even n) 1 4 9 - - -
(22), even n
~ odd n - - - 4 16 - 1 7
(22), odd n
— even n - - - 4 16 - L 7
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Table III. Occurrences of A’ in product (11) for C, symmetry

J transition

J=0—- J=1= J=m 2 J=0—~+ =1 J=0- J=0—> J=1>
Selection rule J=1 J=2 J =3 J=2 J = J =3 J=0 J=1
(20), (odd m) 14 68 158 23 95 32 5 4
(21), (even n) 2 8 18 - - - 1 5
(22), (even n
to odd n) - - - 8 11 - 2 14
(22), (odd n
to even n) - - - 8 11 - 2 14
Table IV. Occurrences of A in product (11) for C, symmetry
J transition
J=0- Je=1- J=2 J=0- J=1> J=0- J=0- J=1-
Selection rule J=1 J =2 J=3 J=2 J = J=13 J=0 J =1
(20), (odd n) 27 135 315 45 189 63 9
(21), (even m) 3 15 35 - ~ ~ 1
(22), (even n
to odd n) - - - 15 63 - 3
(22), (odd n
to even n) - - - 15 63 - 3

4.3, The C,, and C, point groups

The C,, is a lower symmetry than the C,, and both describe
asymmetric top molecules. The C, point group is that of
lowest molecular symmetry, and describes chiral molecules
such as ChCIBrF. It can be seen across Tables I to IV that the

9 @)
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Fig. 1. (a) The quantum absorptions, AJ = 1, of the rigid rotor. (b) The
An = 0, AJ = 3 distribution allowed by combined rotation and translation.
(c) The An = 1, AJ = +2 distribution from combined rolation and trans-
lation. The complete rototranslational spectrum is a combination of (a)
to (c).
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occurrences of the relevant totally symmetric representations,
A, A,, A, and A respectively, increase as the molecular
symmetry decreases.

§. Discussion

The result of the symmetry arguments of this paper may be
summarized graphically in Fig. 1. The basic assumption (1)
results in a relaxation of both the harmonic oscillator and
rigid rotor selection rules, and results in new rototranslational
selection rules in agreement with the observations described
by Ewing [11], and with the theoretical work of Friedmann
and Kimel [12-15] on linear dipolar molecules. The occur-
rences of the totally symmetric representations of the four
point groups studied in this paper provide an approximation
to the intensity distribution of each set of lines. The intensity
is expected to be relatively greater for the least symmetric
point group than for the most symmetric. The effect of
assumption (1) on the selection rules can be summarized as
follows.

(1) The translational selection rules of the harmonic
oscillator are changed from An +1toAn =0, +1.

(2) The rules for the rigid rotor are modified considerably
as described in the text.

Therefore, the spectrum expected from rototranslation as
opposed to pure rotation (or harmonic oscillation) is that of
Fig. 1, where many new infrared active transitions become
possible. The complete spectrum is a superposition of those
of Figs. 1(a), (b) and (c).

A great deal of further investigation is required on small
molecules trapped at low temperatures in clathrate type
lattices to verify experimentally the theoretical spectrum of
Fig. 1. Some exploratory work of this nature has been com-
pleted by Davies {16] and the absorptions have been described
as rattling modes [17]. A clear experimental description of
rototranslation is available in a review paper by Ewing [11],
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referring to the far infrared spectrum of HD in rare gas
crystals at low temperature.
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