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Group theory is used to investigate the selection rules and quantum line intensity of Raman scattering from a molecule
that is simultaneously a harmonic oscillator and a rigid rotor. The rigid rotor Raman scattering selection rules are modified

to

AJ=0.%2 +4 (nodd), AJ=0, %2,

An=0 (neven).

Al==*3 An=1,

where n is the quantum number of the linear harmonic oscillator. The latter’s selection rules are modified from An = +} to
An =0, =1. The intensity distribution of the envelopes of the first few rototranslational Raman lines are established as the
appropriate number of totally symmetric representations in each transition matrix. The theory is checked against what little
data are available, specifically on lattice isolated HD, and found to be in close agreement with observed transitions in this

case.

1. Introduction

The quantised rotation and translation of small
molecules [1,2} under controlled conditions,
using matrix isolation, are no longer mutually
independent [3-8]. Evidence for this is available
from the experimental work of Ewing [9}, and
the theoretical analysis of Friedman and Kimel
[10-13]. These authors looked at an example of
rotation translation coupling involving a simple
diatomic, hydrogen deuteride, HD, whose mo-
tion is clearly quantised. The rototranslational
spectrum was found to be radically different
from either a pure rotational spectrum, or a
rattling mode spectrum describable with the sim-
_ple harmonic oscillator. A/ =0,1,2, and 3 ab-
sorptions were observable in the far infrared
from the simultaneously rotating and translating
HD molecule trapped in a rare gas crystal.

The analysis of mutually influential rotation
and translation is clearly a useful complement to
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conventional infrared and Raman spectroscopy,
but the spectral analysis depends on having avail-
able a relatively simple and straightforward
method of obtaining selection rules and intensity
distributions both in the infrared and Raman.
This short communication is intended as a guide
to analysis of such data as they become available
for molecules of various point group symmetries
trapped in a matrix isolated condition and simul-
taneously rotating and oscillating within the mat-
rix cavity. This not only emphasises the inter-
dependence of quantised rotation and oscillation
in the matrix trapped molecule, but anticipates
the availability of suitable infrared and Raman
data with which to explore these complicated
and revealing phenomena. The method is Nlus-
trated with reference to Raman scattering from a
molecule whose wave functions are dﬁri;gg

rom
the harmonic oscillator and. rigid rotor the
oscillator quantum number » the new Raman
selection rules are derived for An = 0 and-m = 1

from the Clebsch—Gordan theorem [3- f, and
estimates of relative intensities are made Using
group theory.
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- "Theory

The solution of Schrodinger’s equation [3-8]
for a rigid molecule, that is simultaneously a
rigid .rotor and a harmonic oscillator, is found
,fﬁ),m -the assumption that the wave function of
the- -combined motions is a simple product of
those of pure rotation and pure harmonic oscil-
lation, -

b T 4 (1)

in analogy with the Van Vleck theory of vibronic
coupling {3-8]. If a transition between two roto-
translational eigenstates ¥ and ¥'?, con-

nected by an operator P, is to have finite prob-
ability, at least one matrix element of the type,

(D vl w) @

must differ from zero.

For infrared absorption, P is the transition
dipole moment, whose symmetry is D". For
Raman scattering P is the polarisability tensor e,
whose symmetry is D;O) + D, where the D-
representations are irreducible representations of
the R, (3) rotation reflection point group [3-8].
Matrix elements of (2) exist in group theory if
the product of symmetry representations

ryrrOYrPyrw)r(rd) (3)

contains at least once the totally symmetric ir-
reducible representation, Dg’).

We obtain the selection rules by a considera-
tion of the Clebsch-Gordan theorem [3-8] for
the transition between two wavefunctions of type
(1) via the operator P,

For the case An =0, n even, the symmetry of
lp:‘f iS

I(E)=%¥=DPD) =DV, (4)

where J is the rotational quantum number. This
result is obtained from the symmetry D' of the
translational harmonic oscillator ¥, for all even
n. For a transition of the type An =0, n even, to
be allowed in Raman scattering. the product

D’ DY’ D"DY? = D'D” (5)

must = contain the symmetry D(gz) of the
polarisability operator a. The Clebsch—Gordan
theorem gives

DYDY =pU*II 4 ... 4 pH-YI (6)

and the right hand side can contain D{* if and
only if (1) both DY’ and DY” are gerade or
both are ungerade; (2) AJ =0, +2.

The combined selection ruie is therefore

An=0,neven, AJ=0,=x2. (7)

For the case An =0, n odd the symmetry of
¥, is

r(‘p;r)=D‘(ll)D(])=DU+l)+DU)"‘D(j_l) ,
' (8)

because ¥, for the harmonic oscillator is D!’ for
all odd n. Thus harmonic oscillation for odd n
splits the rotational symmetry DY into a sum of
three parts, the right hand side of the symmetry
representation (8). The selection rules in this
case are therefore derived from the Clebsch—
Gordan expansion

(D(J+1) +DY) + D(J'—l))
x (DV*D + DY + DUy,
)

which contains Df) if and only if (1) both DY
and DY are gerade or both are ungerade; (2)
AJ =0, £2, 4.

The full selection rule is therefore:

An=0, nodd, AJ=0,=*2, x4,

This rule clearly allows the transition AJ = *4
for An =0, odd n.

For the case An =1, all n, the selection rule
An = *+1 implies the transition from an ungerade
to gerade harmonic oscillator energy level, ac-
companied by simultaneous AJ transitions. The
An =1 transition can correspond to n even— n
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odd or alternatively n odd— n even. In the first
case the appropriate Clebsch—Gordan expansion
of

pf’_D"*D‘u”D*” ' (10)

must contairm D'(gz) for a Raman transition to be

. pbse'rved, and in the second case

D(l)D(J)D(O)D(l') (11)
u g 3 .

In both cases this is possible only if AJ = *3, so
that the full selection rule is

An=1, alln, AJ=+3.

These rules introduce the transitions AJ= *3
and AJ = =4 which enrich the rototranslational
spectrum and are not allowed when rotation
translation coupling is absent. They should, how-
ever, be observable in the spectra of lattice
trapped small molecules such as HD, H,, D,,
H,O, and so on.

3. Occurrences of the totally symmetric
representation in product (3): relative intensities
of Raman transitions.

For the various molecular point groups the
number of occurrences in product (3) of the
group’s totally symmetric representation indi-
cates the relative expected intensities in (2) of

transitions allowed by the selection rules. In
order to calculate this number for each point
group it is necessary to know I'(a) within that
molecular point group. This is given in table I for
several point groups of interest.

The symmetry of ¥, for even and odd n, also
recorded in table I, is derived from the solution
of the Schrddinger equation for the harmonic
oscillator, Dg’) for even n and D{" for odd. The
symmetry of ¥, , the wavefunctions of J for the
rigid rotor are those of the hydrogen atom
wavefunction for each point group, as recorded -
for the first four transitions in table 1. The
rotational degeneracy is (2J + 1). The symmetry
of the combined rotation translation wavefunc-
tions depends on the product of the representa-
tions of the rotational and translational compo-
nents. For even n this is the same as the rotation-
al part of the complete wavefunction, but for
odd » it is more complicated (table II). For odd
n, the degeneracy of the rototranslational
wavefunction is 3(2J +1).

The allowed Raman transitions for each point
group can now be calculated from eq. (3). An
indication of the number of times the totally
symmetric representation appears in the product
of representations (3) is also the number of
possible Raman transitions, degenerate and non-
degenerate combined. Some representative ex-

Table III
Examples of products of representations
Point Transition Symmetry Relative™
group representation intensity
Ty An=0,neven, J=0->J=2 2A, + A, +3E + 3T, +4T, 2
An=0,neven, J=1—J=3 SA, +6A, + 11E + 15T, + 16T, 5
An=0,n0dd, J=0—>J=2 12A, + 11A, + 23E + 33T, + 34T, 12
An=1,alln, J=0—J=3, 6A, +5A, + 11E + 15T, + 16T, 6
even n—odd n
An=1,n0dd, J=0—>J=3, 6A, +5A, + 11E + 15T, + 16T, 6
odd n-—>even n
(& An=0,neven, J=0—>J=2 45 A 45
An=0,neven, J=1-J=3 405 A 405
An=Q0,nodd, J=0->J=2 405 A 405
An=0,n0dd, J=1—J=3 1701A 1701
An=1, J=0—>J=3, 189 A 189
even n—odd n
An=1, J=0—>J=3. 189 A 189

odd n—evenn
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amples are given in table III for T, (spherical top
symmetry) and C, (chiral symmetry).

The transition degeneracy and occurrences of
the totally symmetric representation of the
molecular point group increase steeply for odd n
and increasing J.

A combination of quantised harmonic.oscillation
and rigid rotation produces a Raman spectrum
which is full of new and interesting features,
different for each point group.

These should be observable with high resolution
for molecules trapped in lattices at low tempera-
tures, thus building on the work of Ewing and
co-workers for HD. The number of rototransla-
tional degeneracies increases with decreasing
molecular symmetry.
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