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In group theoretical statistical mechanics (gtsm) the ensemble average is treated with the rules of group theory in the laboratory
frame (X, Y, Z) and the molecule-fixed frame (x, y, z) of the point group character tables. This allows the determination of non-
vanishing averages, such as time correlation functions, at the field-on equilibrium. The effect of couette flow is evaluated on a
range of ensemble averages by establishing the symmetry of the strain rate tensor in terms of the irreducible representations of the
R, (3) rotation-reflection group in frame (X, Y, Z). This symmetry, which is also that of the pressure tensor, is D{'+D{" +
D{*’, consisting of an antisymmetric vorticity of symmetry D{'’ and a symmetric strain rate component of general symmetry
D! +D§?. Thus, in addition to ensemble averages of symmetry D{*’ in frame (X, Y, Z), the applied strain rate tensor allows
new ensemble averages of D}'’ symmetry and of D{?’ + D}{*’ symmetry. Depending on the number of off-diagonal elements in
the strain rate tensor, up to six new elements of time correlation functions of the general type (A4(1)47(0) > may appear by gtsm
in frame (X, Y, Z), together with new bulk properties whose symmetry is included in D{®’ +D{"’ 4+ D{*’. The latter include
thermal conductivity, thermal expansion and electric polarisability. The treatment is extended to the molecule-fixed frame (x, y,
z) using the mapping rules of group theory.

1. Introduction

Over one hundred years ago, Neumann [ 1] realised that the symmetry of every physical property of an ensem-
ble of molecules is determined by the point group of each molecular component. Neumann’s principle was later
re-stated by Curie [2]: “C’est la dissymétrie qui crée la phénoméne™, and has recently been put in the context
of chirality and molecular symmetry by Barron [3]: “any type of symmetry exhibited by the point group of a
system is possessed by every physical property of that system”. Whiffen [4] has developed the Neumann prin-
ciple to include thermodynamic ensemble averages, either in field-free thermodynamic equilibrium or in the
presence of fields, by assuming that the ensemble average can be treated with the methods of group theory, both
in frames- (X, Y, Z) and (x, y, z). Various recent applications of Whiffen’s methods, which we denote ‘““‘group
theoretical statistical mechanics”, have been described by the present author, and these include the survey of
rotation—translation cross correlation functions for most of the point groups of interest [5,6], the survey of
rotation vibration coupling [7], and field effects [8]. Group theoretical statistical mechanics has also been
applied to higher-order time correlation functions [8,9], and to show that the statistics of molecular diffusion
processess are in general non-Gaussian [10]. A particularly interesting consequence has been the discovery
{11,12] of the molecular dynamical origin of magneto and spin chiral dichroism [13-16], effects which have
been predicted theoretically to exist at frequencies from the microwave to the ultraviolet.

In this paper we make the first application of group theoretical statistical mechanics to hy_drodyhardm and
rheology, beginning with simple couette flow [17]. The group theoretical symmetry representation of the strain
rate tensor in couette flow in an incompressible liquid is obtained in terms of the set of irreducible re ddenta-
tions [ 18-20] of the three-dimensional rotation-reflection group, R, (3), of frame (X, Y, Z).-Group-theeretical
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statistical mechanics then implies that in a steady state in the presence of a strain rate, ensemble averages with
the same symmetry as the strain rate tensor may exist in frame (X, Y, Z), and in the molecule-fixed frame (x,
. o). A justification of the application of group theoretical statistical mechanics in the steady state out of true
thermrodymamic equilibrium is given in terms of the thermodynamics of systems under shear given by H.J.M.
HaWy and D.J. Evans [21,22]. Predictions are then made on the grounds of symmetry of new non-vanishing
time cross correlations, new bulk ensemble averages, and of possible new effécts in the molecule-fixed frame (x,
Y, §), observable by computer simulation.

2. Symmetry of the strain rate tensor

The irreducible representations of the rotation—reflection point group R,{3) are denoted in frame (X, Y, Z)
by D{?, ..., D{™ and D{?, ..., D{" respectively, where the subscript g (gerade) denotes *“‘even to parity reversal
symmetry”, and u (ungerade), denotes “odd to parity reversal symmetry”. In this context, parity reversal is the
operation (X, Y, Z)—-(—X, =Y, —Z), carried out on each atom of each molecule of the system. The super-
scripts denote the order of the spherical harmonics [ 18]. In this notation, a simple scalar such as mass or energy
is the totally symmetric representation D{®’. A pseudoscalar such as Raman circular intensity difference [3] is
D2, a polar vector such as the position vector, r, or the velocity, », is D{"’, and an axial (or pseudo) vector
such as molecular angular velocity, m, is D{"’.

In couette flow in an incompressible liquid (atomic or molecular), we are concerned with the relation [17],
first derived by Newton, between the strain rate tensor, ¥, whose components are velocity gradients, and the
shear stress tensor, denoted /7. Newton’s relation is

. ,
iy==n55 . | (1)

In a molecular dynamics computer simulation, the stress tensor is defined as the negative of the pressure tensor,

N Nel N o -
M=ot (§ mous, -3 3 rudl)) @)
AN\iS =11 T dr

Here 7 is the velocity in excess of the streaming flow velocity, ry;; is the X component of r;, the interparticle
separation between particles i and j (atoms or centres of mass of molecules) and A4 is the area of the molecular
dynamics cell. The quantity ¢ is the (scalar) potential energy between particles / and ;. In eq. (1), 7 is the
viscosity, which relates scalar elements of the shear stress tensor to counterparts in the strain rate tensor. New-

ton’s relation (1) is a limit of the more general case, where the vicosity becomes dependent on the strain rate
itself:

M=—-2n(y)y. (3)

We can apply the symmetry arguments of group theoretical statistical mechanics in both cases in the steady
state in the presence of shear, where the isotropic R, (3) symmetry is distorted by the shear. In general, the
symmetry of the strain rate tensor is

y=o(r=')7, (4)

which is a 3X 3 tensor, with nine elements of the velocity gradient. This product is negative to time reversal
symmetry, and has the D symmetry:

C(@)T(r~')=D{"D{ =D + DL + D, (5)

where we have used the Clebsch~Gordan theorem:
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D(")D(m)=D("+m)+...+D“”'ml) . (6)

From eq. (2). we see that the pressure tensor, and thus the shear tensor, is also in gencral a 3 3 tensor with the
D symmetry,

F(#)T(#) =T (r)T(r) =D +D{" + D} - (7)

the same as that of the strain rate tensor. It follows thai the proportionality constant denoted by 7ineq. (1), L.e.
the viscosity, is a scalar component of D" symmetry. However, since this links different components of the
stress and strain it may take on different magnitudes in general.

The representation D{®* + D{" +D{?’ of the strain rate tensor, the stress tensor and the pressure tensor re-
flects the fact that in general there is a symmetry component of symmetry D{®’ + D{*’ and an antisymmetric
component, generated by a vector product, of symmetry D{'’. In the strain rate tensor, this reflects the fact [17]
that the response to shear has an antisymmetric component of vorticity, of symmetry D}'’, and a symmetric
component of general symmetry D{” +D{*’, which is a deformation. The mathematical treatment of these
effects in a molecular liquid 1s formidably complicated, there are four conservation cquations and eight consti-
tutive equations, as derived by D.J. Evans [23]. The techniques of non-equilibrium computer simulation have
been developed to deal with shearing in molecular liquids, mainly by D.J. Evans and co-workers {17.21-28].
The thermodynamics of systems under shear, sometimes far from equilibrium, have been developed by H.J.M.
Hanley and D.J. Evans {21,22] and appear to be consistent with the results of nonequilibrium computer simu-
lation. A system under shear is a steady state where R, (3) symmetry of true thermodynamic cquilibrium is
broken by the stress tensor, and the resulting strain rate tensor, both of symmetry D{® +D{"’ +D{*’. Group
theoretical statistical mechanics applied to this steady state reveals a great deal about the molecular dynamics
which could otherwise be obscured by the dynamical complexity of the problem.

3. The laboratory frame (X, Y, Z)

The effect of a shearing field of symmetry D{”’ + D{"’ + D{* in this frame is to makc possible the existence
of different ensemble averages with this symmetry, or of included symmetries such as D{"’ or D{” + D/}*.
Examples of bulk properties with the latter symmetry are: electric polarisability, thermal and electric conductiv-
ity, thermoelectricity, thermal expansion, and magnetic susceptibility. Thus, we can say that shear has the effect
of making the observed (field-free) polarisability in a given molecular liquid anisotropic, there are different
components in different laboratory axes. Group theoretical statistical mechanics allows this conclusion to be
drawn without the need for complicated calculations or computations. A liquid under shear should therefore
exhibits dielectric loss and permittivity and other spectral features due to the appearance in frame (X, Y, Z) of
electric polarisability of symmetry D{”? + D{*’ due to shear.

On the molecular scale, the strain rate tensor in response to the shearing effect of couette flow makes possible
the existence of time correlation functions of overall symmetry D{® + D{"’ + D{*’. The tensor symmetry of all
time autocorrelation functions of the type (4(1)4T(0) >, where A4 is a polar or axial vector, is given by this sum
of D representations. Thus, group theoretical statistical mechanics tells us immediately that all nine elements of
such correlation functions may exist in frame (X, Y, Z), depending on the number of components of The fluid
velocity and the number of independent space variables in the couette flow. Where there is only one component
of the velocity gradient in the couette flow, e.g., dvy/9Z, then the shear-induced time correlation fun®ions are
of the type

{2x(Duz(0) > =—<Cvx(0)v,()), (8)

which is “time antisymmetric” and of D{'’ symmetry, and
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oa(vz(0) ) =<{vx(0)vz(8) ), (9
which is “time symmetric” and of traceless D{»’ symmetry. (Very recent computer simulations {29-31] have
~ corroborated these symmetry based arguments with the actual time dependence of the new cross correlations in
atamic (Lennard-Jones) fluids.) The observed time dependence of the sheaf-induced cross correlation function
is therefore “time asymmetric”, being a weighted sum of (8) and (9). (This new symmetry predicted phenome-
non has also just been observed in computer simulation [30].) The time antisymmetric component of the shear-
induced cross correlation function {#(¢)r" (0) ) of atomic velocity, », for example, takes its antisymmetry from
the fact that D"’ denotes “vector part of , i.e. {#(2) X2(0) ). This vanishes at t=0, but is finite at finite ¢ <co.

For an applled shear resulting in a strain rate of type dv,/dZ this cross correlatlon function reduces to (see
appendix):

DL (w(1)X(0)) = (wx(£)v(0) dj~ {v(1)v(0) ] . (10)

With a strain rate of type dv,/9Z there is no diagonal component, and the trace (D{®) of the complete matrix
vanishes. The symmetric deformation induced by shear is therefore of D{** symmetry, representing the time
-symmetric cross correlation function:

D{: (w(1)eT(0)) = (ual1)v2(0) T+ (vz(t)vx(0) )i . (1)

Thus, group theoretical statistical mechanics (and recent corroborative computer simulations) has revealed
new cross correlation functions {29-31] which appear in response to shear produced by couette flow. These
appear 1o be unknown in conveniionai rheology. By extending our arguments 10 the pressure tensor and its
various time correlation functions, we can argue by symmetry alone that shear produces the Weissenberg effect
H"! the pressure generated perpendicular l() the nlape of shear. We conclude that the Weissenbere effect is

wz!h Wf--seq org ef"f-c' appar’atus [3”]
In this context, we note that non-zero strain rates of “diagonal” type do not appear in sxrﬂple couette flow of
spr (}l/ ,’Cz‘, 54

= offt PO NP
12-UIdgo Cnal strain rate cor miponents
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0 dimensions, for example, the

5 be shown [rom [irsi principles ihai both diagonaiand o
exist in flows 1 iwo or three dimensions past objecis. In flow past a disk in
Ifotiowing four strain rates are generated:

90y/0Z = [ZvoX/(X?+Z7)] sin [2tan-(Z/X)] , “l2)
B /8X=—[20,Z/(X*+Z%)1sin [2tan~"(Z/X) ], (13)
0,/ dX=12v,Z/(X*+Z*)}cos [2tan~'(Z/X)], (14)
Q[ 0= — {200 X/ (X*+Z7)jcos [2tan " (Z/X)]. (15)

Here, —u, is the mean flow velocity before reaching the disk. In this case, we clearly bave a finite trace, of
symmeiry D", of the strain rate tensor:

{0/ 0X  Bvy/0Z)

\dv,/0X w,/0Z/)"

Clearly, thPrP are no ctrain ratec in an atomic or molecular linuid at field-free equilibrinm and in that case all
In ontext, the effect of shear on quantiﬁies cf Do
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bulk propertics such as the electric polarisability, whose ensemble average is generally non-zero in field-free
equilibrium. are affected by the shear and sirain rate response in such a way that the D™ component is changed

in value and in such a way that the D{"} and D{”’ components make them measurably anisotropic in the labo-
ratory frame (X, Y, 7).

The strain rate tensor will also allow the existence in the laboratory frame of cross correlation functions of the
type (A()BT(0)y with DI+ D" +D{* symmetry, an example being that beiween the molecular dipole
moment, g, and the molecular linear velocity 7. or between the molecular rotational velocity. g#, and its own
linear velocity ». These cross correlation funciions are assumed to vanish in most standard textbooks and con-
ventional theory. Any motecular understanding of couette flow should include the computer simulation of these
shear-induced cross correlation functions.

4. The molecule-fixed frame (x, y, 7)

The frame (x, y, z) is that of the point group character tables [ 1§-20], and ensemble averages may exist in
{%, v, 2) which vanish in the laboratory frame. A well known [10-12] exampleis ¢2(1)e»  (0)>. the time cross
correlation function between molecular lincar and 1ar velocity. This vanishes for all 7 at field-free equilib-
rium in frame (X, Y, Z) because r and « have opposite parity reversal symmetric
the presence of couette flow in the stmdy state, because the parity symmeltry of the strain rate tensor is gerade
and that of (e{ijw {0} is ungerade. In frame {x, y, ), however, this is no longer true, and in the C,, point
group of water for example there are two non-vanishing elements of {z(/)@"(0) > which are independent func-
tions of time. This is well known from independent computer simulations by Evans et al. [4-12] and the Brus-
sels School [10], but has recently been corroborated by the application of group theory by Whiffen [4]. The
relevant symmetry representation in the C,, point group of {e()w(0) > is

s. It also vanishes for all ¢ in

r(l’)r(w)=(Al +B| +B2)(A2+B| +B2)
=A;A,+A,B,+A,B,+B,A,+B,B, +B,B,+B,A,+B,B, + B, B, =2A, +3A, + 2B, + 2B, . (16)

This is a product of the irreducible representations of » and @ in the C,, point group, and contains the totally
symmetric representation, A, twice. In group theoretical statistical mechanics this means that two independent
elements of (v(t)wT(0)) exist in frame (X, y, z) out of a possible nine at field-free thermodynamic equilib-
rium. By examining the individual products which give the A, representation in (16), i.e. B;B, and B.B,, we
deduce from the C,, point group character table that the non-vanishing elements are {z.(/)®,.(0)) and
(v (1w, (0)}). This is exactly what is found by computer simulation [4-12] in C,, symmetry environments
such as water and dichloromethane in the liquid state. One element is positive, i.e. starts off with a positive time
dependence, and the other is negative in this sense, with an independent (i.c. different ) time development. Now
we examine the effect of couette flow on functions such as (#(¢)@ " (0)) in the frame (x, y, z).
The first step is to map the symmetry of the strain rate tensor on to the C,, point group:

[(7)=D{"+D{"+D{»=3A, +2A,+2B, +2B, . (17)

In general, the representation in C,, contains three elements of type A,, two of type A,, two each of type B,
and B;. In group theoretical statistical mechanics this implies that ensemble averages in a liquid of C,, metecules
subjected 1o shear will, in the steady state, exist if they have any of the four types of symmetry. In the product of
represeniations (17) there are the nine individual component products,

Ao =(u:(Nw:(0)), (A2); AIB =(w(Dw,(0)>. (B): ABa=(v.()@(0)), (B:);
A= (v()w:(0)), (Bz); BiBi=(v.()w(0)), (A)); BiBi=(v ()@ (0)), (A,);
(v ()w:(0)), (Bi); B:Bi={(n(D)w.(0)>. (A:): B:B.=(u,(Nw(0)), (A)); (18)
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all of which give A, As, B,. or B.. In general, therefore, and without further physical discussion, all nine elements
of (r(1)@™(0) > may existin frame (x, y, z) in the shear-on steady state. The elements (5) and (9}, which also
exist at field-free equilibrium, do exist in the presence of shear, albeit with a changed time dependence in each
case, but the symmetry arguments can only say that the other seven elements may exist in the shear applied
-steady state. Definite proof requires further computer simulation. Couette flow may be characterised, therefore
by complete correlation between molecular # and w, for example in liquid water. This would be an unprece-
dented result arrived at from group theoretical statistical mechanics.

5. Rotation—vibration coupling

The symmetry representation of normal mode vibration [18-20] in frame (x, y, z) depends both on the
molecular point group and on the number of atoms in the molecule. For the water molecule the symmetry
representation of vibrational normal modes is

F2)=A(2)+A(Q,)+B2(Qs) , (19)

50 that there are three fundamentals. The symmetry representations of the three-time correlation functions be-
iween these normal modes and melecular angular velocity, for example, are

N2\ iw)=A,(A,+B,+B,)=A,+B,+B;,
F(Qﬁ -D) A (;‘\2 "'r'B] +B2):A2+Bl +Bg_ 3
(@) (w)=A:(A,+B,+B.)=A,+A,+B,, (20)

s b

0 thai ia field-iree thermodynamic equilibrium only the third can cxist, assuming thai the mean rotational

symmetry remains A»-+ B, + B.. This is a reasonable assumption when vibration is a much faster process than

rotation If thiz assumpiion is not made, then the analysis is complicated considerably by the need to represent

the ratational symmetry in a malecule framewnrl distarted nat of Co hv vibration In the classical picture this

distortion is considerable only when we depart from the ‘wr‘"mmlc vibrator limit. The individual nroduct of
o cr A e A eT T is £ 05,()0,(0)>.

swrodiuces A, s B.B, 50

reniesenialions element
CHILSY VDTS

In the presence of a strain rate tensor the number of non- \-dih)ll:ug clements of the wbaavon 10 rotation €ross

~
COfrclaion H.lhk.lt\l“ may qu [Casc, ux uuL, witit ine ui:ﬂ u:-a;uii b CaU‘ iil;ii,x, ui i (et |

vl \.\Jui/l..aA&

Shearing may produce many hew types of eross correfation, but this cannot be proven absoluiely without com-
puier sitnuialion or experimental data.

7 44 e -1 o oy
6. Conclusions

Uur discussion of group theoretical statistical mechanics applied to shear has been based on three principles,
or axioms, which are reproduced here in conclusion.

Principle (1). The thermodynamic ensemble average (ABC...) over ABC... exists in general if the product of
renresentations T LAY BT (7). contains the totally wmmemc representation DY) of the rotation-reflection
noint group R, (3).

1iC 1({)1-;:;\;:’1&1{10“ al leasi once.
Principle (3). The ensembic average is changed by ihe appiicalian ef an external fick

that the symmeiry of the new steady siaie ensembd ie averages is detcrmuned by that o
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Appendix. Some basic definitions

Some of the D notation used in the text may be unfamiliar to some readers and this appendix provides some
basic definitions.

D{® (scalar) product of two vectors in a time carrelation function. D{®' symmetry refers to the product
£e{1)-0(0) > =< vx()vx(0) ) + (v (D)vy(0) > + (v2()v2(0) ) , (A1)

which produces a scalar. This is the conventional scalar (dot)} product of two vectors contained within the
ensemble average denoted by ( ).
D" (vector) product of two vectors. D{"’ refers to the vector product, conventionaily defined as
i Jj k
() xv(0))> = [vx(t) vy(t) vz()f,
vx(0) vy(0) v2(0)
where i, j, and k are unit vectors in the X, Y, and Z axes of (X, Y, Z). The vector product always has one positive
component in one axis and one negative component. This implies the existence of
Cox()vz(0)> and —(vz(t)vx(0)) etc.,

which are antisymmetric.
D? (tensor) product of two vectors. In general the tensor product is

Cox (Dvx(0) DT (wx(t)vy(0) D57 (v,(t)vZ(O))ikT
(DPT(0)) = | oy (Dvx(0)DJiT (o (0) DT (vy(t)vz(0) )jkT |,
(pz(Dvx(0)>HT (vz()vy(0) YT (vz(t)vz(0) > kk™
whose symmetry is D{?’ + D{?. Excluding the diagonal elements leaves the symmetry D{*’. The notation ¥
means
1I\(010)=/0 1 0
0 000
0 0 00

etc. This in general provides the symmetric result:

{ex(Dvz(0) > =(vz (v (0)) .
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