—

Chemical Physics 135 (1989) 187-194
North-Holland, Amsterdam

GROUP THEORETICAL STATISTICAL MECHANICS OF NEMATOGENIC

AND CHOLESTERIC LIQUID CRYSTALS

M.W.EVANS '

Department of Chemistry, Bourne Laboratory, Royal Holloway and Bedford New College, University of London,

Egham, Surrey TW20 0EW, UK

Received 28 December 1988

The principles of group theoretical statistical mechanics have been applied to the molecular dynamics of nematogens and cho-
lesterics, with point groups C..v, Deon, Coo and D... The effect of alignment with an external static electric field is discussed in
terms of new ensemble averages that take the symmetry of the applied field and make swarm averages directly visible in the
laboratory frame (X, Y, Z). The symmetry arguments lead to experimentally observable effects and to characteristic ensemble
averages of swarm dynamics which should be reproducible numerically by computer simulation.

1. Introduction

The principles of group theory [ 1-3] have recently
been shown to be applicable [4-8] to thermody-
namic ensemble averages at equilibrium, and in a
steady state subjected to shear. It has been shown that
an ensemble average, {( ), over a physical property
or product of properties such as a time correlation
function exists if it reduces as the totally symmetric
representation (tsr) of the appropriate point group
[1-3]. In the laboratory frame (X, Y, Z), this is the
D{® representation [1-3] of the rotation/reflection
point group Ry, (3). In the frame (x, y, z) of the mol-
ecule fixed point group it is the tsr of the point group
itself. In the presence of fields, such as the static elec-
tric field, E, extra ensemble averages are allowed de-
pending on the field symmetry itself { 5]. The electric
field allows, to first order, averages of D{'’> symmetry
in frame (X, Y, Z). To second order, the field £2 al-
lows averages of symmetry

D{® +D{*.
In a shearing field which causes a shear strain of the

' Also at IBM, Data Systems Division, Neighborhood Road,
Kingston, NY 12401, USA and Honorary Research Fellow,
Department of Physics, University of Lancaster, Lancaster LA1
4YB, UK.

type dvy/0Z for example, where vy is the strain veloc-
ity, new time asymmetric cross correlation functions
are observed [4] with the (traceless) D symmetry

D{Y + D,

The shearing field makes visible directly in the labo-
ratory frame (X, Y, Z) time antisymmetric ensem-
ble averages of D{'’ symmetry [4] and time sym-
metric ensemble averages of D{*» symmetry.
Examples are [4] the velocity cross correlation
functions

x(0)vz(1)) = = Cvx()v(0)> (D),
ux(0)vz(1) ) = vx()v2(0)> (Dg?).

The new cross correlation function between orthog-
onal atomic velocity components seen in the com-
puter simulation [4] of an atomic ensemble sub-
jected to this type of shear is a weighted sum of the
above, giving the new and unexpected result

Cox(Q)vz(1) > # vx(t)vz(0)).

The effect of this type of shear stress on nematogens
and cholesterics is of widespread interest and is ex-
plored in this paper, which is intended to extend the
application of group theoretical statistical mechanics
(GTSM) to the molecular dynamics in liquid crys-
tals. In the unaligned nematogenic phase, for exam-
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ple, the director axis [9-13] forms a frame of refer-
ence (Xp, Vp, Zp) With two axes of the frame, say xp
and yp mutually perpendicular to the director axis
zp. The swarm axes form a right-handed frame for
consistency of definition when dealing with chiral
molecules. The extra time cross correlations set up by
the presence of molecular alignment along the direc-
tor vector are calculated with symmetry arguments,
both for electrically dipolar and non-dipolar liquid
crystal molecules. Both in dipolar and non-dipolar
nematogens, the number of extra cross-correlations
help to synchronise the molecular dynamics. In the
presence of an aligning field, such as E or E?, the di-
rector frame becomes virtually coincidental with the
laboratory frame (X, Y, Z) and the complete aligned
liquid crystal specimen ceases to have the isotropic
three-dimensional symmetry R, (3), taking on C_,
symmetry for example for dipolar molecules in a field
E. The extra correlation functions and pair distribu-
tion functions that previously existed only in frame
{Xp, Vb, Zp ) but vanished in the overall isotropic, un-
aligned, nematogenic sample now survive ensemble
averaging, and accompany the appearance of macro-
scopic birefringence.

Similar considerations are developed for cholester-
ics, where the relevant point groups are chiral. They
isolate the set of non-vanishing time cross-correla-
tion functions and radial distribution functions [14]
which occur exclusively in cholesterics.

A shearing field makes possible the existence in the
laboratory frame of new time asymmetric ensemble
averages [4]. Shearing would tend to align the direc-
tor, as with electric fields, but this time would also
allow averages of D{'’ type (antisymmetric in the in-
dices X and Z, and related to shear induced vortic-
ity) and D{¥’ (symmetric in the indices X and Z, and
related to shear induced deformation) to exist in
frame (X, Y, Z). Here we make the simple ansatz that
averages equivalent to these D symmetries in the
field-free liquid crystal that exist in the absence of the
field only in frame (xp, yp, zp) become visible in
frame (X, Y, Z) when the liquid crystal is sheared.

2. Basic symmetry arguments, the principles of group
theoretical statistical mechanics

In the unaligned nematogen, or cholesteric phase

[15], group theoretical arguments can be used in the
three frames (X, Y, Z), (xp, Vb, Zp), and (x, y, z),
respectively the laboratory, director, and molecule
fixed frames of reference. In the frame of reference
(X, Y, Z) of the unaligned sample the relevant point
group is Ry, (3) of isotropic three-dimensional space.
The irreducible representations are D{® (scalar),
D{® (pseudoscalar), D{"’ (polar vector) and D{"
(pseudo or axial vector). Higher-order tensors are
designated D{*’, D{*’, and so on. The point group of
the director frame is C., for a dipolar nematogen and
D for a non-dipolar nematogen. The irreducible
representations are those of these point groups,
whichever is appropriate. The director slowly mean-
ders through the laboratory frame but has these point
group symmetries over a well defined region of three-
dimensional space which is large [10] in comparison
with molecular dimensions but small in comparison
with the volume occupied by the macroscopic sam-
ple. In theory, the director point group may have any
symmetry, but in nematogens there is alignment in
one axis only (zp). This feature is absent in isotropic
molecular liquids such as water, and in nematogens
vanishes at the nematic—isotropic transition temper-
ature. Thus, a nematic phase is distinguished by extra
ensemble averages (for example dynamic time cor-
relation functions and static radial pair distribution
functions) in the director frame of reference. This
paper sets out to explore these in some detail. Finally
in the molecule fixed frame (x, y, z) of the point
group character tables, the relevant point group and
irreducible representations are those of the molecu-
lar symmetry itself, and these govern the ensemble
averages in (x, y, z) according to the rules [4-8] of
GTSM.

Principle (1), Neumann'’s principle [16-18]. The
scalar components of the equilibrium thermody-
namic ensemble average ( ABC...> over the general
tensor product ABC... exist in the laboratory frame
(X, Y, Z) if they contain individually the totally
symmetric representation D{® of the three-dimen-
sional rotation reflection group R,(3) of isotropic
space [2].

Principle (2). These scalar components exist in the
molecule fixed frame (x, y, ) if they contain individ-
ually the totally symmetric representation of the mo-
lecular point group.

Principle (3). An applied external force field pro-
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motes the existence of extra ensemble averages whose
symmetry is that of the applied field.

Principle (1) shows that in the unaligned nematic
phase, the sample being overall isotropic despite the
meandering director, the existence of any thermody-
namic ensemble average is governed by the presence
or absence of D{?? in its scalar components. Thus,
the thermodynamic average over a scalar exists be-
cause its representation is simply D{®’ itself, but that
over a polar or axial vector, respectively D{"’ and
D{" will vanish. Time autocorrelation functions of
the general type (A(t)-4(0)) will always exist be-
cause if 4 is polar or axial the product of symmetry
representations [ 1-3]

[(4)[(4)=D{® +D{" +D{» ()

contains D{® once. This represents the trace
{A(0)-A(?)>.On the other hand, the time cross cor-
relation function {A(¢)-B(0)) between a polar vec-
tor 4 and axial vector B vanishes in the unaligned
nematic in frame (X, Y, Z) because

['(4)(B)=D® +D{" +D{» (2

does not contain D{%’. For this reason the time cross
correlation function (ccf ) (w(t) @ (0)> vanishes for
all ¢ in frame (X, Y, Z) of the unaligned nematic.
However, the time ccf between a polar vector 4 and
a different polar vector C exists in frame (X, Y, Z)
because

C(A)T(C)=D{® +D{" +D{>. (3)

Thus the time ccf (v(?)-u(0))> for example exists
[19] in frame (X, Y, Z), where v is the molecular
centre of mass linear velocity, # is the molecular di-
pole moment, and w is the molecular angular veloc-
ity, Similar considerations apply to pair distribution
functions [ 14,20] and the newer type of angularly re-
solved pair distribution function [14]. The molecu-
lar structure and dynamics of the unaligned nemato-
gen are determined by principle (1) in combination
with computer simulation and the theory of diffusion.

The director defines a region of three-dimensional
space which is described by the point groups C,, and
D .. respectively, depending on whether the individ-
ual molecules are dipolar or non-dipolar. This region
is referred to conveniently as the “swarm”, Thérmo-
dynamic ensemble averages may be constructed in-

side the swarm, bringing principle (2) into opera-
tion, but in frame (xp, Yp, Zp).

2.1. The C_,, swarm

This applies to electrically dipolar nematogen mol-
ecules, the vast majority. Mapping [1,2] the irreduc-
ible representations of a scalar, vector, and so on from
R,(3) to C_, gives

D X%, D -Z-,

D{"’ »Z-+I1, D{"—-Z*+I1,
D{»-Z++11+A, D& -X-+11+A4,
D{» -2~ +I1+A+D,

D - +I1+A+ .

The totally symmetric irreducible representation [ 1-
31inthe C_,, swarmis £*. Using principle (2) it can
be shown that extra cross correlation functions exist
inside the swarm that vanish in (X, Y, Z). For ex-
ample, one independent element of (w(f)-w(0)>
exists because the product of representations inside
the C_,, point group

F(0)[(@)=(Z*+M)(Z-+1)
=St 425 +201+A (4)

contains the tsr X* once. Using this point group’s
character table [ 1-3] shows that this is

<v,m(t)wy[>(t)>=_<v_vt>(t)wxn(0)>- (5)

This type of ccf vanishes in frame (X, Y, Z). This is
one member of the set of non-vanishing ccfs inside
the swarm whose members all vanish in (X, Y, Z).
Thus any attempt to describe molecular dynamics in-
side a swarm with computer simulation must pro-
duce the result (5). The swarm volume is bigger than
the molecular dynamics “cube” itself, and sponta-
neous swarm formation under the right conditions
can be measured through the spontaneous appear-
ance of the result (5). This ccf element will vanish
for all ¢ if the swarm disappears for some reason, for
example at the nematic (or cholesteric) to isotropic
phase change. This gives a simple test for the occur-
rence of a liquid crystal in computer simulation.
There are many other differences between swarm
dynamics and those in (X, Y, Z). For example, time
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autocorrelation functions (acfs) become anisotropic

Cpap () Uzp(0) > # iy () 1 (0) D

=<#yo(t)/‘y1)(0)>v (6)
(0(1)05(0)) # {wp(Hwg(0))
=<w,vo(t)wyo(0)>- (7)

Under some circumstances, thermodynamic aver-
ages may exist in the swarm over polar vectors such
as v or i which have positive time reversal symmetry.
This again can be picked up by computer simulation,
and signifies that the swarm can have a net linear ac-
celeration inside the macroscopic unaligned nema-
togen, measured with respect to the frame (xp, yp,
zp). These net accelerations vanish in frame
(X, 7Y, 2).

2.2. The D, swarm

This refers to electrically non-dipolar molecules
which form a nematic phase. An example is hexa-
phenyl (linear end to end arrangement of phenyl
groups). In this case the irreducible representations
of R,(3) map onto D, as follows:

D{» -3y, D -ZX;,

D{V 2, +I1,, DV -Zf +11,,
D{P-Zf +11,+4,, D X5 +I1,+A,,
DV »X; +11,+ A, + D,

D SXF +I1, +A, +D,.

There are fewer new ensemble averages specific to the
D..» swarm. For example, there can be no ccfs be-
tween v and @ because the product of symmetry
representations

M)l (w)=(Z7 +I1,)(ZF +11,)
=25 +2Z7 +2I0, +A, (8)

does not contain the group tsr £} . It is more difficult
Fherefore for the molecular dynamics to be synchron-
1sed in a D, swarm, which helps to explain why there
are far fewer observed to date. However, the results
of type (6) and (7) are retained in this type of swarm,
Ithe relevant products of representations containing
1p each case two occurrences of the tsr. Computer
simulation must be able to pick up this result when

attempting to describe the molecular dynamics within
a non-dipolar swarm, e.g. one made up of long rods.
In the D, swarm the mean molecular angular accel-
eration vanishes, but the mean molecular linear centre
of mass acceleration exists. In general, the set of non-
vanishing ensemble averages in frame (xp, yp, zp) of
this swarm contains fewer members than in the C,,,
swarm.

2.3. The C_, swarm

This is found in an unaligned cholesteric phase
(9,151 made up of chiral dipolar molecules. The D
representations map onto the following in the point
group C..:

D{® and D{®’ - X,

D and D{" > Z +11,

D¢?) and D{? »Z+T11+A,
D{*'and D »Z+T1+ A+ ®.

These mappings show that the cholesteric C,, swarm
has more intrinsic non-vanishing ensemble averages
in the frame (xp, yp, zp) than the nematic C,,
swarm. For example, the product of representations

T (w)=(S+T1)(Z+)=32+2[T+A  (9)

shows that there are three independent elements in
the swarm frame of a ccf such as (v(¢) @ (0) ). Ref-
erence to the C_, point group character table [1-3]
shows these to be

(p(0) (1) ) # (v (0) ) (1) >
= <U.\D(O)wxo(t)>;
W (0)yp (1) ) = = (04 (0) o, (8) ). (10)

This cholesteric swarm also allows the existence of
off-diagonal elements of time acfs, the overall sym-
metry being the same pattern as (10), two indepen-
dent diagonal elements and one independent off-di-
agonal. All ccf elements change sign from one
enantiomorph to the other. A computer simulation
of a cholesteric swarm would be expected to repro-
duce these results. At the cholesteric to isotropic phase
transition the set of ccf elements of type (10) all dis-

—
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appear with the director and the swarm frame, and
this is another test for computer simulation.

2.4. The D_, swarm

This is a cholesteric swarm with overall ndn-dipo—
lar symmetry. The relevant mappings are as follows:

D{” and D{» - X+,

D{" and D{" - X~ +TI,

D{? and D{» »Z* +I1+A4,
D{¥ and D 5 X~ +T1+A+®,

again providing the opportunity for several new time
ccf patterns to develop in the swarm.

3. The molecule fixed frame (x, y, 2)

Extra time cross correlations are set up in frame
(x, ¥, z) which are governed by principle (2) and the
point group symmetry of the molecule itself. The
molecules making up nematogens and cholesterics
[9] are often of quite low symmetry, thus allowing
many more thermodynamic ensemble averages to
become visible at the molecular level which are dif-
ferent from those at the intermediate swarm level and
which vanish at the macroscopic level. A computer
simulation must be able to produce numerical results
which reproduce self-consistently all the symmetry
predicted thermodynamic averages in all three
frames. Thermodynamically and statistically there-
fore, the existence of unaligned nematogens and cho-
lesterics is accompanied by the appearance of extra
time cross correlations at the swarm and molecular
level. Properties specific to such liquid crystals can
be traced to these cross correlations, which can there-
fore be related to these observable properties with
computer simulation.

4. The electrically aligned nematogen

In the aligned nematogen, the director axis no
longer meanders in three dimensions, but is locked
in one axis, say Z, of the laboratory frame (X, Y, Z)
by the torque generated between the molecular di-
pole moment, 4, and the electric field, E,. On the ba-

sis of principle (3) the first-order applied electric field
of symmetry D{"’ sets up new ensemble averages of
the same symmetry at field-on equilibrium. One ex-
ample is the time ccf

ox(Dwy(0) ) == (vy()wx(0)) , (11)

which becomes directly visible in the laboratory. This
was first demonstrated [21-24] for molecular lig-
uids using computer simulation, but has yet to be ex-
plored in aligned nematogens and other liquid crys-
tals. The ccf (11) represents the D{"’ part of the
tensor {v(t)-®(0)> which has

D +D{" + D

symmetry. The D{" is the vector part {(v(1)Xx
©(0)>.

The effect of the static electric field £, on a nema-
togen made up of molecules each with the electric di-
pole moment # is to make the frames (xp, yp, Zp)
and (X, Y, Z) indistinguishable as reference frames
for molecular dynamics. This is because the director
axis zp, is the laboratory axis Z. The extra ensemble
averages that have been shown to exist in, for exam-
ple, a C_,. swarm now exist in (X, Y, Z) itself. If the
nematogen is only partially aligned the ensemble av-
erages lose some amplitude but are still visible in
(X, Y, Z). Similar conclusions are valid for a sec-
ond-order field E2, but in this case the field interacts
with the polarisability tensor of the molecule, pro-
ducing orientation, but not alignment. This means
that half the aligned molecules have dipoles in one
direction, on average, and half in the other. This is
described in D language as a sum of D{® and D{?
type ensemble averages in frame (X, Y, Z). Map-
pings of both these D representations on to the C_,
point group contain the latter’s tsr, as is also the case
for the other swarm point groups. Thus a field E?
makes D{>’ averages of the swarms directly observa-
ble in frame (X, Y, Z). (The D{® represents scalars
which are frame invariant, i.e. their thermodynamic
averages exist in any_frame of reference.) In the
aligned or oriented sta¥e we denote, for convenience,
“Csv nematogens”, constructed from swarms of the
same symmetry, and so on.
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4.1. The C_,, nematogen

The mappings given already for this swarm can be
utilised directly to find the non-vanishing ensemble
averages in frame (X, Y, Z) in the C_,, nematic. For
example, whenever a D representation of group R, (3)
maps onto a C_, representation of the aligned ne-
matic that contains the latter group’s tsr, extra en-
semble averages will appear in frame (X, Y, Z) itself.
Thus for example, the averages previously confined
to the swarm and described in egs. (5)-(7) now ex-
ist directly in (X, Y, Z),

Cox()wy(0) ) = —Cvy()wx(0)), (12)
Cuz(t) pz(0) > # (uy () ux(0) )
= pur()uy(0)), - (13)
(wz()wz(0) ) # (wx(Hwx(0))
=<wy(Dwy(0)). (14)

Eq. (12) signals the existence of direct rotation-
translation coupling in the aligned nematic which has
a considerable effect on the molecular dynamics be-
cause of the considerable degree of alignment possi-
ble experimentally, even with a weak electric field, of
equivalent energy uE, much smaller than the ther-
mal energy kT So far in computer simulations, align-
ment has been achieved, and ccfs such as (12) ob-
served [21-24], but only through the use of field
energies uFE, about the same as k7. This is because
the simulations deal with isotropic molecular liquids
such as water. No complete computer simulation of
an aligned nematogen is yet available.

Eqgs. (13) and (14) show that the sample is aniso-
tropic in the laboratory frame under the influence of
an aligning first-order electric field E. It is therefore
birefringent [9]. Our symmetry arguments have
therefore consistently reproduced a well-known fea-
ture of nematogenic behaviour, especially noticeable
[9,11] in dielectric loss and dispersion. The dielec-
tric complex permittivity is essentially (9] the Four-
ier transform of eq. (13) and is by symmetry and
GTSM measurably different in Z, being identical in
X and Y. The complex permittivity is the square of
the complex refractive index, implying birefringence
as observed experimentally [9]. We have shown that
this is describable in terms of the point group C_.,
and its irreducible representation.

One interesting implication of symmetry is that the
ensemble averages over time - even polar vectors,
such as {#) or {#) which include the tsr of C_,, must
have the possibility of existence in the aligned ne-
matogen of this symmetry. In this case the D{!’ rep-
resentation implies a non-vanishing £*, i.e. a non-
vanishing linear acceleration or force in the Z axis of
the aligned nematogen. The applied E, cannot gen-
erate the mean acceleration directly, but only through
a torque —u X E on each dipolar molecule. The net
linear acceleration must come from correlation be-
tween molecular rotation and translation, and is an
experimental measure of this phenomenon. The net
linear acceleration of the aligned sample would result
in such effects as a meniscus at the surface of the ne-
matogen as the sample is forced against the electric
field generating apparatus, normally an electrode.
This meniscus should be measurable with a micro-
scope. Similarly, GTSM predicts the possibility of
non-vanishing rotational acceleration, the second
time derivative of the dipole moment, implying

Cliz()fiz(0) Y > fiz)?, t—ooo, (15)
Cuz(Duz(0)d> > uz )2, t-oo. (16)

Eq. (16) implies the existence of a zero frequency
(infinite time) component of the dielectric spec-
trum, as observed [9] experimentally in the Z axis of
the aligned nematogen. This is the static permittivity
component in axis Z, which becomes different from
those in X and Y. A similar effect is expected on the
fourth spectral moment [9], which is the Fourier
transform, essentially speaking, of eq. (15).

4.2. The D_,;, nematogen

In this case the molecules of the swarm are non-
dipolar, but if they are polarisable new thermody-
namic averages of total symmetry['(£?) appear in
frame (X, Y, Z) by principle (3). The sample is ori-
ented along the axis of the applied field, for example
the Z axis. In D language

[(E*)=D{® +D{. (17)
More generally

T(EE)=D{ +D{" +D{’, (18)
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but the notation E? implies E parallel to itself, so that
E X E vanishes and by principle (3) no D{'’ averages
appear in (X, Y, Z). This leaves the other two D
terms on the rhs of eq. (17), representing averages of
the second-Legendre-polynomial type

1(3[4(1)-B(0)]*) 1 (19)

and even-order Langevin functions [9]. In (19) 4
and B must have the same parity reversal symmetry.

Averages of this kind that had previously been vis-
ible only in the swarm frame become visible under
the effect of the field in the laboratory frame. In this
case they must all be even to parity reversal symme-
try. This time there is no net linear acceleration,
therefore, and no net dipole { u;>.

Note that the sum (17) maps onto

25 +T1, +A,

of D__... This implies two independent occurrences of
this point group’s tsr, and two independent types of
thermodynamic average in the sample oriented by E2.
This means that the time dependence of the Z, Z
component of averages such as (19) is different from
those of the Y, Y and X, X components, which are the
same. In other words the sample is anisotropic and
birefringent, and supports even-order Langevin
functions.

5. The electrically aligned cholesteric
5.1. The C., cholesteric

In this cholesteric symmetry, alignment with a first-
order electric field produces a unidirectional spiral
symmetry along the axis of the applied field, say Z.
Ensemble averages that map onto symmetry repre-
sentations in the C_, point group that contain the
group’s tsr at least once now survive in the frame
(X, Y, Z). In this point group the tsr appears in the
symmetry representations both of polar and axial
vectors. If a vector quantity is also even to time re-
versal symmetry, its thermodynamic ensemble aver-
age might not vanish. The average switches sign from
one enantiomer to the other, and must vanish by
symmetry only in the racemic mixture [25]. This
produces the possibility of observing in the electri-
cally aligned cholesteric net molecular linear accel-

eration, molecular angular acceleration, and a net
molecular rotational acceleration which vanish in the
racemic mixture.

5.2. The D__ cholesteric

In this case similar considerations apply to orien-
tation by an E” field as in the case of D_,. The sec-
ond-order field induces averages of type (19), but this
time the vectors 4 and B can have different parity
reversal symmetry.

6. The effect of a shearing field

The symmetry of a shearing field has been shown
in section | and elsewhere [4-8] to consist of a vec-
tor component D'’ and a tensor component D{*’. A
shear of the type ov,/dZ produces by computer sim-
ulation [6-8] velocity ccfs between orthogonal mo-
lecular Cartesian components X and Z (see section
1).

These D symmetries of the laboratory frame map
differently on to the four swarm point groups consid-
ered in this paper,

D{V+D{? SZT+X-+2[1+A (C.,),

SEF 4+Z; 4200, +4, (Do),

L2T42T+A  (Cl),
SEY+E-+2M1+A (D),

and there are two independent occurrences in the C_.
group, one in each of the others. This distinguishes
the symmetry effect of shear on a dipolar cholesteric
from the other types considered here. Only in the di-
polar cholesteric is the shear induced vorticity trans-
ferred to the point group of the swarm. In the other
point groups the tsr does not occur in the relevant
representation of D{'’. This will help decide whether
shearing an isotropic phase of a liquid crystal induces
a phase transition into the nematic or cholesteric
phase.

7. Computer simulation, a specific application

One specific application of the symmetry theory is
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to test for the appearance of predicted averages in a
computer simulation of long rods, or ellipsoids, of
D_., or C.., symmetry. The predicted averages will
be immediately useful in deciding whether a transi-
tion from an isotropic to a liquid crystal phase has
indeed occurred. Long rods are of D_.;, symmetry but
the addition of a dipolar term in the potential, with
charges and asymmetric mass distribution produces
C.. symmetry. Liquid crystals and long rod poly-
mers are known to be highly non-Newtonian in re-
sponse to shear and work is in progress to simulate
linear molecules with applied shearing fields with
SLLOD and PUT [4,7,19] algorithms and arbitrary
applied field strength. This will be a stringent test of
the symmetry expectations put forward in this paper.
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