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A symmetry analysis of non-equilibrium time correlation functions is intro-
duced using the principles of group theoretical statistical mechanics and the
new fluctuation dissipation theorem of Morriss and D. J. Evans. This approach
permits a generalization of the customary Neumann or Curie theorem, provid-
ing a new microscopic approach to symmetry rules valid outside the linear
regime.

1. Introduction

In this paper, two recent developments are used to give a new generally valid
symmetry analysis of equilibrium and non-equilibrium time correlation functions,
permitting a generalization of the customary Neumann or Curie theorem, and
providing a new microscopic approach to symmetry rules valid outside the linear
regime. The first development is the new fluctuation-dissipation theorem [1] of
Morriss and Evans, which is valid both for linear and non-linear time correlation
functions, and the second is the emergence [2-6] of the three principles of group
theoretical statistical mechanics. In § 1 of this paper the three principles are given to
introduce the fundamentals of symmetry in this context, and in §3 a brief descrip-
tion is given of the Morriss—Evans theorem with examples of its application. Section
4 merges the two developments to give a new appreciation of non-linear
fluctuation—dissipation processes.

2. The principles of group theoretical
statistical mechanics

In considering fluctuation processes at thermodynamic equilibrium [7-15] and
dissipation after the removal [16-20] of an applied external field of arbitrary
strength it is possible to utilise the symmetry rules of group theory [21~23] in the
laboratory frame (X, Y, Z) and in the molecule fixed frame (x, y, z). These rules
provide [2~6] a set of three generally valid principles, the first of which is the
Neumann or Curie principle [24-26] stated in terms of contemporary group theory.
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2.1. Principle (1)

The thermodynamic ensemble average {ABC ...» over the product of quantities
ABC ... exists at equilibrium if the product of symmetry representations of 4, B, C,
.. contains at least once the totally symmetric representation, DI, of the Ry(3)
rotation—reflection point group in the laboratory frame (X, Y, Z).

2.2. Principle (2)

This thermodynamic average exists at equilibrium in the molecule fixed frame (x,
y, z) of the point group character tables if the product of symmetry representations
in the molecular point group contains the point group’s totally symmetric represen-
tation at least once [24].

2.3. Principle (3)

If an ensemble of atoms or molecules is brought to a steady state out of true
thermodynamic equilibrium by an externally applied field of arbitrary strength and
given symmetry, extra ensemble averages may appear in the ensemble with the
symmetry of the applied field.

In the laboratory frame (X, Y, Z) the irreducible representations of R,(3) are the
D representations DS, ..., DI and D{”, ..., D{. The superscripts denote the order
of the spherical harmonics and the subscripts g and u denote respectively even and
odd to parity reversal symmetry. In this notation a scalar has the totally symmetric
representation D{”); a pseudoscalar such as optical rotation angle is denoted D?; a
polar vector such as linear velocity is D{"; an axial or pseudovector such as angular
velocity is DiV; a traceless symmetric tensor such as molecular quadrupole moment
is D{?; and an odd parity traceless second rank tensor is D&

With these definitions it is possible to proceed to the symmetry description of
the time correlation function, which in general is (A(0)B(t)), where A and B are
vector quantities representing molecular dynamical variables. In representing this
product use is made of the Clebsch—Gordan theorem to expand the product of D
representations into a sum of individual D components

D@Dt — pttm 4 4 pln—m) (1)

If A and B have the same parity symmetry the Clebsch-Gordan product is gerade,
and it is ungerade if A and B have opposite parity reversal symmetries. Assuming
the latter to be the case, with, for example, A representing molecular linear velocity,
v () and B molecular angular velocity, w(g), we have

COTw) = DutD{? = DI + D + D o

providing scalar, vector, and tensor components of the time correlation function

(W (0)).

2.4. The scalar component, D©
This represents the dot product, the trace of the matrix

MO) - (1)) = {x(Q)ox(t)) + (oy(O)wy(t) + (A0 A1) 3)
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2.5. The vector component, DV
This is the cross product
(0) x w(t)) = (vy(O)wz(t)) — {vz0)wy (D))
+ KoQ)wx(1)) — {vx(0)w(t)))
+ (Cox(0)wy(8)y — {vp(O)x(t)P)k, (4)

where i, j, and k are respectively unit vectors in the X, Y, and Z axes of the
laboratory frame (X, Y, Z). These off-diagonals are asymmetric in the relevant axis
subscripts, i.e.

ox(0)w(6)> = —<v20)cx(1)> )

and so on.

2.6. The tensor component, D
This is the traceless part of the generic tensor product

0 oxOwyHT  (ox(0)w(t)>ik"
Cor(Q)oox(t))ji" 0 {oy(O)a)iK" |, (6)
(oO)ox(DkiT  {vz(0)ey(t)>kj" 0
with off-diagonal components symmetric in the axis subscripts
Cux(0)wz(t)) = {vz(0)ox(t)> 7

in contrast to equation (95).

2.1. Application of principles (1) and (3)

With these definitions we may exemplify the application of Principles (1) and (3)
to an atomic or molecular ensemble in the laboratory frame (X, Y, Z). (Principle (2)
deals with frame (x, y, z) in molecular ensembles.)

Principle (1) means that no component of the tensor cross correlation function
(c.cf) <v(0)w'(t)) exists at field free thermodynamic equilibrium because the right-
hand side of equation (2) does not contain the totally symmetric representation Df;o).
This is what is found by computer simulation [27-30]. For the generic auto correla-
tion function, however, the u subscript in equation (2) is replaced by a g subscript,
and consequently the trace of (A(Q)AT(t)> exists at thermodynamic equilibrium,
being the time auto correlation function (a.c.f) (A(0). A(f)> whose symmetry is the
totally symmetric representation D'” of R,(3).

In the presence of a Z axis static electric field, computer simulations [27-30]
have shown the existence of

(xOwy(t)) = — op0)wx(), (8)

whose symmetry signature is D{". Principle (3) links this result to the symmetry of
the electric field E, a D{? polar vector: the induced thermodynamic average in the
field-on steady state has the symmetry (D) of the inducing field itself, and this is
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true irrespective of the field strength. The D{"’ symmetry average (8) vanishes only
when £ = 0.

In the presence of shear, inducing a strain rate dvy/0Z of symmetry D{¥ + D{V
+ DY [31-33], Principle (3) means that ensemble average such as time correlation
functions will appear with the same overall symmetry. These are exemplified by the
time asymmetric velocity c.cf’s [31-33]

Cux(QoL(t)y # {oz(0)vx(6)7, ()

which comprised a weighted sum of time antisymmetric D{" components and time
symmetric D{? components:

D (oxOpzt)) = —(vzO)vx(1)), (10)
DE: {ox0)vAt)) = vZOx(t)) (11)

A third example of Principle (3) is the illustration of the expected symmetry
effect of a chiral influence, recently defined by Barron [34] as an external influence
which is odd to parity reversal and even to time reversal symmetry. In magneto-
chiral dichroism [35-37] for example, the chiral influence is a combination of the
magnetic field B(D{") and the propagation vector k(D{") of unpolarised or linearly
polarized electromagnetic radiation. The symmetry signature of this chiral field is
given by the product of symmetry representations

r®)rk) = D + DIV + DY, (12)

being again a sum of scalar, vector and tensor components, all odd to parity
reversal and even to time reversal. In principle, therefore, a chiral influence allows
the existence of ungerade time c.c.f.’s of the types (3), (4), and (6). If the applied chiral
influence is made up of two co-linear vectors, only the trace of the field induced
c.cf, equation (3), will be expected, otherwise, vector and tensor types (4) and (6) will
also be mmduced by principle (3).

3. New fluctuation dissipation theorems

The set of field induced time cross-correlation functions just exemplified will be
accompanied by a set of new fluctuation-dissipation theorems which are new gener-
alized Green—Kubo relations. This is a direct consequence of the Morriss—Evans
theorem {1}, recently derived by Morriss and Evans in the context of non-
equilibrium molecular dynamics computer simulation. It was derived by these
authors from first principles, and can be stated through the equation

<O = CBO) — f (BT ds, (13)

where B(t) is an arbitrary time dependent phase variable of the ensemble and where
F, and J are respectively the applied force field and dissipative flux, defined by

dH,

—— = —JF

de ¢

The theorem, equation (13), generalizes the traditional Green-Kubo relations to

arbitrary applied field strength, and therefore takes them outside the area of linear-

response theory. They link the non-equilibrium value of the phase variable, (the

(14)
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left-hand side of equation (13)) to the integral over a time correlation function
between the dissipative flux J(0) in the equilibrium state and B at a time s after the
external field F, has been turned on.

In response to an external influence, the molecular dynamics ensemble is
governed by a new set of fluctuation dissipation theorems of the Morriss—Evans
type. For example, if the external influence is a Z component of a static electric field,
there is a torque —p x E, between this and the molecular dipole moment p. This is
accompanied by an energy p . E;. The Morriss—Evans theorem then reads

<B0> = CBOD ~ £ [ <00 o, (13

where ji, is the Z component of the molecular rotational velocity [38]. The quantity
B(r) is in general any time dependent variable of relevance, for example, the molecu-
lar dipole moment itself or the molecular rotational velocity, its time derivative. In
each case we recover generalizations of the traditional fluctuation dissipation theo-
rems of dielectric relaxation

el = — 2 [ udoiaO s (16

Gty = — 2 J s} 0) ds (17)

relating the transients on the left-hand sides to the non-equilibrium time correlation
functions on the right-hand sides.

Furthermore, any cross correlation function which exists by principle (3) will be
related through the Morriss—Evans theorem to its own field induced transient. This
is a key result which generalizes the traditional Neumann or Curie principle (1) and
provides new fluctuation dissipation relations valid outside the area covered by the
traditional Green—Kubo approach. It also breaks new ground (§ 3) not covered by
the Onsager-Casimir reciprocal principles, which are derived from considerations of
time correlation functions.

For example, principle (1) allows the time cross-correlation function {v(f)j1,(0))
to exist at field free equilibrium because the relevant product of representations
contains D{® once (the trace). In the presence of a Z axis static electric field this
trace is supplemented by D{ averages according to principle (3). The Morriss—
Evans theorem (13) then allows the relations

M = — EE:IZ: L t(-V(S)itz(O))-dSs (18).

<o = 22 [ <t @, 19)

for example for arbitrary electric field strengths, the integrands being, as usual,
non-equilibrium time correlation functions. In the first example, equation (18), the
symmetry signature of the non-equilibrium time c.c.f. {v(s)jt,(0)) is

TN (0) = DD = DO + D 4 piB| (20)

which contains D{” once. Consequently this c.c.f. exists: (1) at field free equilibrium;
(2) at the field on steady state. Its transient (or non-equilibrium) counterpart also
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exists, with the same symmetry signature. In the second example, equation (19), the
symmetry signature of the non-equilibrium time c.c.f. is

T(w(s)(i2z(0) = DVDY = DY + DY + D2, (21)

which does not contain D but contains D{"’ once. By principle (1) the c.c.f. van-
ishes at field free equilibrium and by principle (3) its D (vector) component exists
in the presence of the DY electric field in the field on steady state. The Morriss—
Evans relation (13) then follows for arbitrary electric field strength. In both exam-
ples (18) and (19) new transients appear on the left-hand sides which are not
considered in traditional fluctuation dissipation and linear response theory, but
which are symmetry allowed by principles (1) and (3) of group theoretical statistical
mechanics. Further examples of this type, induced by a Z axis electric field, are

0 ) = ~ % L<v(s) - W(S)A0) ds, )

o) x B = ~ 2 J CH(s)  Bil0)) ds 23)

and it is clear that there are many more. Each of these could be characterized by
computer simulation and each contribute to the overall transient process. This
shows that no molecular diffusion process is independent, as in the traditional
approach: rotational, orientational, centre of mass translational, and vibrational
diffusion processes are linked ineluctably at the fundamental molecular or atomic
level through a well defined set of time cross-correlation functions and fluctuation-
dissipation theorems which are generalized Green—Kubo relations.

4, Discussion

The combination of symmetry and fluctuation dissipation theory discussed in
§§1 and 2 is valid in the non-linear regime, and the theory is not restricted to linear
response. This has consequences for the Onsager—Casimir reciprocal relations [39-
41], which require symmetry in the exchange of indices of quantities such as diffu-
sion coefficients which are integrals over time correlation functions. Well known
examples are provided in textbooks such as Landau and Lifshitz [42] which state
that kinetic coefficients (y) satisfy the Onsager—Casimir symmetry principle

Yij = V- (24)

Traditional examples of these kinetic coefficients are the thermal conductivity and
viscosity. However, these relations are valid only for a situation close to equilibrium,
where a linear phenomenological relation exists between flux and force [43]. The
master equation governing the fluctuation is a simple Fokker Planck equation,
whose solution is governed by a gaussian distribution function. Onsager discussed
[44, 457 the reciprocity of kinetic coefficients on the basis of microscopic reversi-
bility, i.e. detailed balance as used in the derivation of the Boltzmann equation. For
arbitrary applied field strengths, however, the Onsager—Casimir relations conflict
with the results of this paper, as in the following example, because the Onsager
coefficient has a non-vanishing antisymmetric part out of thermodynamic equi-
librium, discussed by Tomita and Tomita [43]. These authors have provided a
formal discussion of the breakdown of the Onsager—Casimir reciprocal relations in
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terms of ‘a circulation of fluctuation’, called ‘the mean angular momentum of the
probability fluid’® which depends directly on the absence of microscopic reversibility
as assumed by Onsager in an ensemble near to equilibrium. As pointed out by
Tomita and Tomita [43], Onsager assumed the symmetry of his phenomenological
coefficient by first considering time correlation functions. Our example, taken from
the recent non-equilibrium computer simulation of M. W. Evans and Heyes [31-
33], shows directly that in the presence of a strain rate of the type dvy/0Z, time
asymmetric cross-correlation functions appear in frame (X, Y, Z) in the field on
steady-state, equations (9) to (11). Integration provides kinetic coefficients (i.e. cross-
diffusion coefficients) that clearly are neither symmetric nor antisymmetric in the
exchange of indices X and Z, in this case orthogonal cartesian components of the
laboratory frame (X, Y, Z)

J‘w<vx(0)vz(t)> dt # Jm(vZ(O)vx(tD dt. (25)
0 0

Furthermore, the result (25) is independent of the strength of the applied force field,
in this case a shear in couette flow. This unexpectedly leads to the result that the
Onsager—Casimir reciprocal relations are never exactly valid in this case, even in the
limit of linear response, when the strain rate is small and the response to shear is
Newtonian. On the other hand, the results of this paper, i.e. a fusion of the Morriss—
Evans theorem with principles (1) to (3), deals with the computer simulation results
adequately for arbitrary applied field strength.

In conclusion, this paper has developed a new symmetry based method of gener-
alizing the Neumann or Curie theorem for arbitrary applied field strength, allowing
new insights to Green~Kubo and Onsager—Casimir theory of molecular and atomic
ensembles. ;
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