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Appendix 2A.
Physical Examples of the
Equations of Mechanics

1. From d’Alembert to Lagrangian Equations

The Lagrangian equations do not closely resemble the Newton equation, [Eq.
(1)]. Therefore we shall follow Goldstein! to explain the differences. We shall
derive Eq. (7) for a non-conservative system. In terms of the ¢;’s we can write

vV, = ___qari +E'_ (A1)
! 7 6q, jl dt
or;
or; = Z ———éaqu 4 (42)
J

With these definitions, the virtual work of the F;, i.e. 3 F;dr;, can be written
{
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where the quantity
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are called generalized forces. With some algebra, we can start from Eq. (A3) and
write a relation between the generalized forces and the kinetic energy T

ZQJ%=Z(3; 4 aT) (49
j
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or

d {(’J’T) 01 4
— = Q; 19¢;=0 (45)
Z dt\aqj 0q;

This set of equations is valid only if the coefficients of the dg; vanish, (since the
latter are independent of g, ) and we can therefore write

Tsz(a—'T) 9L _g (46)

which are the Lagrangian equations for a non-conservative system. For a conserv-

ative system, F; = — V¥, and using Eq. (A3) Q; becomes
v

= A7
9 n (47)
and Eq. (A6) becomes
afor) -7 o (48)
dt dq; 5(]j

Because the potential V is not a function of time, and therefore independent of
the g; it follows that

oV _

ag;

0 (49)

and therefore we can add this to the first term in Eq. (AS8), obtaining the
Lagrangian expression for a conservative system

d{ oT-v)y oT-V)
—_ — =0 Al10
dt< 5q'j 5qj ) ( )

2. The Lagrange Equations
A concise and clear account of the meaning of the Lagrange equations has been
provided by many authors, including Landau and Lifshitz. In the simple case of

a particle moving in an externai field, the Lagrangian L is

~ %mvz — Ut 1) (411)

and the equation of motion is
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my =22 (412)
which i1s Newton’s equation.

In molecular dynamics simulation, and in other problems, it is often necessary to
deal with interactions between different bodies which take the form of constraints,
which are restrictions on their relative positions. To determine the motion of this
system, the Lagrangian is used with a set of independent generalized coordinates
equal in number to the actual degrees of freedom. This is illustrated later in this
appendix with reference to small oscillations, important in the theory of normal
modes of vibration in molecules and proteins.

3. Hamilton’s Equations
The equations of Hamilton, the canonical equations, are first order, and therefore
can be solved if we know the generalized coordinates and generalized momenta
for t = 0. Taking the simple example of a particle moving in a plane with poten-
tial energy V(x, y), the Lagrangian is
1 22, 72
L=—§-m(x +y9) — Vix, y) (413)

and the generalized momenta are

0 : .
_px:_l.lzmx py:i{‘_:my (Al4)
Ox oy

from the above we can easily derive the Hamiltonian and canonical equations of
motion:

H=T+ V=—;_—m(322 + ) + V(x, y) (415)
and
. 0H 1 . H v
= ap, mPx Px dx  ox (416)

with the same equations in y.
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4. Vibrational Motion and the Harmonic Oscillator

Chapter 5 of Landau and Lifshitz’s* well known text on mechanics is a clear
introduction to the theory of oscillations and normal modes of vibration in mole-
cules. This section is based on the treatment by Landau and Lifshitz.

The theory of harmonic oscillation is based on retaining only the first term in the
expansion of the difference U(q) - U(qo) where the potential energy U is expressed
as a function of the coordinat ¢, whose equilibrium value is qo. Using x = q - qq
the first term is usually

Ux) = %kxz (A417)

where k is a positive coefficient, known as the force constant. If the mass of the
particle is m the Lagrangian is

L= -é—m;cz _ %—kx2 (418)
and Newton’s equation becomes
X+wx=0; o= (—,kn—> (419)
whose solution is
x = a cos{wt + ) (A20)

The system executes harmonic oscillations near equilibrium, and so to a first
approximation do the bonds vibrating in a molecule. The coefficient a is the
amplitude and o the phase of the vibration. The quantity w is the angular fre-
quency. The latter can be simulated and this is discussed further in Chapter 8. The
energy of the system is proportional to the square of the amplitude.

When the system has more than one degree of freedom, say i, then the potential
energy is a function of q; with a minimum at q;,. Defining x; = q; - g;; we have

]
U= Ezlc:kikx[xk (A21)
i

and the Lagrangian of this system, for example a molecule with i degrees of
freedom, can be written as

1 LI
L =7Z(m,-kx,-xk — ki) (422)
{

Taking the total differential of the Lagrangian provides the Lagrange equations
for the system
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Yo+ Y k=0 =120 (423)
k k

a set of s linear differential equations with constant coefficients.

The s unknown functions are sought in the assumed form
X, = Ay explio?) (A24)
Substituting Eq. (A24) in Eq. (A23) gives

D~ olmy + kg dy =0 (425)
k

and for non zero solutions the determinant of the coefficients vanishes:
2
lky — @"my | =0 (A26)

This is known as the characteristic equation with s different real positive roots in
general:

e =1.2,....,5) (A427)

The w’s are the characteristic, or eigen-frequencies of the system.

The roots of Eq. (A26) must be real and positive, otherwise the Hamiltonian is
not constant. The general solution of the characteristic equation takes the form

®, = Re(C, exp(iw,t)) (A28)

and the time variation of each coordinate of the system is a superposition of s
simple periodic oscillations ®, ©,,.. and so on, with arbitrary amplitudes and
phases but well defined frequencies.

Normal coordinates are generalized coordinates chosen such that each one of
them executes only one simple oscillation. In the same way we arrive at the
normal vibrational modes of a diffusing molecule in a simulation. The normal
coordinates ©, satisfy the equation

O + w20, =0 (429)

so that there are s independent equations of motion in the normal coordinates,
and the normal oscillations of the system are also independent.

The Lagrangian expressed in terms of normal coordinates is a sum of expressions
each of which corresponds to oscillation in one dimension, and is of the form:
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L= Lmel-ole) (430)
24

where the kinetic and potential energies are both in diagonal form,

The use of normal coordinates, defining normal vibrational modes in diffusing
molecules, makes possible the reduction of a problem of forced oscillations of a
system with more than one degree of freedom to a series of problems of forced
oscillations in one dimension. The Lagrangian includes the vanable external force:

L=1I4+ ZKk(t)xk (431)
k

where L, is the Lagrangian for free oscillations. In normal coordinates the
equations of motion contain only one unknown.

These normal mode techniques are the basis for the treatment of molecular
vibration and its simulation.

5. Classical Anharmonic Oscillation

When dealing with the vibration of polyatomic molecules the change introduced
by the consideration of anharmonicity is fundamental. The potential energy, Eq.
(A17), is no longer purely quadratic in displacement, and the resolution just
described into normal modes of vibration is no longer possible. Lack of symmetry
in the governing potential energy leads to very complicated motions as soon as we
depart from harmonicity. If the anharmonicity is small, the vibration will at first
be approximately harmonic but will gradually evolve into motion of great com-
plexity, there is a transition from deterministic to chaotic motion. The smaller the
amplitude and anharmonicity, the greater the time during which the motion is
approximately a simple vibration of the type already described.

In anharmonic motion we replace Eq. (All) with

2= kgt > YD Lkt DD Y B0+ (432)
i i Jj ok i ki

which introduces cubic and higher cross terms into the normal coordinates and
the total enrergy is no longer the sum of independent oscillators. In the case of
slightly anharmonic vibrations, the normal coordinates may be expressed as a gen-
eralized Fourier series.

In spectral terms anharmonicity introduces extra frequencies in the infrared and
Raman which can be observed experimentally. These often show that the har-
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monic approximation to bond vibration is poor, even in proteins. Anharmonicity
splits degenerate vibrational levels and shifts the energies (frequencies) of other
vibrational modes of motion. However this is the domain of quantum mechanics,
where the Hamiltonian of anharmonic oscillation is used in the Schrodinger
equation (Chapter 3).

Chaotic Motion — The development of chaotic motion can be discerned from the
complexity of the finite oscillation of a simple circular pendulum. In this case the
peniod always depends on the amplitude of the oscillation, because we are essen-
tially solving a non-linear equation of the type

0() + < sin 0(9) = 0 (433)

where a is the radius of the described arc and g the acceleration due to gravity.
Transition to chaotic motion occurs when considering two or more linked
pendula, when the bob trajectories become extremely complicated, and very sensi-
tive to minute changes in the inmtial conditions. This “transition to chaos” has
recently given rise to a whole new science of dynamics.

6. Lagrangian Multipliers
The variation process involved in Hamilton’s principle is one in which the time,

for each point on the path, is held constant. The virtual displacements occurring
in the variation must satisfy equations of constraint of the form

Z ay ogp =90 (434)
3

The index [ indicates there may be more than one such equation.
We now use Eq. (A34) to reduce the number of virtual displacements to inde-
pendent ones. The procedure for eliminating these extra virtual displacements is

the method of Lagrange undetermined multipliers.

If Eq. (A34) are true, then so are:

/I{ Z Qi 5qk =0 (A35)
X .

where 4, are, in general, unknown functions of time.

Using Hamilton’s Principle, as described in Goldstein, it may be shown that
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i.._aé_. _.ilLsz llalk; k= 1, 2, sy n (A36)
i

which are the complete set of Lagrange equations for non-holonomic systems. The
r.h.s. of Eq. (A36) can be identified with Q,, generalized forces of constraint.

The Lagrange multiplier method can therefore be used to obtain the forces of
constraint and when it is inconvenient to reduce all the q’s to independent coordi-
nates.

7. Statistical Mechanics, the Boltzmann and Kramers Equations

The Boltzmann equation represents one of the most elegant attempts made to
understand the subtleties of statistical mechanics, and its detailed interface with
classical mechanics. A clear account has recently been given by Coffey. The
Boltzmann equation is derived from the rate of change of the probability distrib-
ution due to collisions, when only two body interactions are important, such as in
a dilute gas. The Kramers equation is derived n the limit of small collisions in
liquids, and deals with Brownian motion in a potential well. In this limit the posi-
tions are unchanged but the velocities are altered infinitesimally by collisions.
Between these two limits, numerical methods and computational techniques must
be used for solution of the basic equations of statistical mechanics.

The Boltzmann equation is derived on the assumption that collisions that result in
uncorrelated changes in molecular velocity are balanced by reverse collisions so
that the probability distribution functions are balanced at equilibrium

15 =14 (37)

This implies a detailed balancing of the collisions specified by the velocity
exchanges from which the Maxwell distribution follows from Boltzmann’s H
Theorem, Eq. (A37).

In general the Boltzmann equation is a non-linear integro-differential equation
derived {rom the Hamilton equations and Liouville’s equation by assuming that
there is collisionless motion (“streaming”) and that there are collisions. The latter

mean that the D operator of the Liouville equation is no longer zero. It may be
written as

0}5 I * &
A A ZnZ f j (if = ffbegbdbdy, (438)

where

2afi(x, v; Dg;bdbdt (439)
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is the probable number of i molecules in a cylindrical shell of radius b. The
equation deals with collisions of molecules of type i with molecules of type j. A
molecule of type j is located at r and the velocities of each type are denoted v.
The probability distribution functions are denoted fin each case. Finally Xj
denotes an external force.

The Kramers equation is useful for the description of Brownian motion in a
potential well, and in its simplest form is equivalent to the Langevin (i.e. Newton
type) equation:

x(t)  dx oV
11 = A
n e + ¢ o T oy F(1) (A440)

for one dimensional Brownian motion in a potential ¥. Here m is the mass of the
Brownian particle and F the stochastic force. The equivalent Kramers equation is
for the phase space distribution function:

flx, v, t] x(0), v(0), 0) = fx, v, ) (A41)

which measures the probability of finding the particle at x with velocity v at time ¢
given its position and velocity at the initial t = 0. It 1s:

of o _ 10V o L oo (vf+ kT 5f)

2t Tox M 8x oy M By m gy

(442)

It is also known as the Klein and Kolmogorov equation.

8. The Equations of Motion of a Compressible Viscous Fluid
In the general case of three dimensional flow in a compressible, viscous,
Newtonian fluid the flow field is given by

w=1iu+jv+ kw (A443)

which is the velocity vector, the pressure, and the density, all as functions of the
coordinates X, y, z and of the time t. For the determination of these five quantities
there exist five equations, the continuity equation (conservation of mass), the
three equations of motion, and the thermodynamic equation of state.

The continuity equation is:

Dp . )
Br + pdivw =0 (444)

where p is the density. The symbol D represents the hydrodynamic derivative,
made up of a local and convective contributions.

These equations are derived from Newton’s equation [Eq. (1)], but in fluid
motion it is necessary to consider gravitational forces, acting throughout the mass
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of the body, and forces acting on the boundary, pressure and friction. The surface
forces depend on the rate at which the fluid is strained by the velocity field
present in it. The system of forces determines a state of stress, and the relation
between stress and strain in Newtonian hydrodynamics is linear.

There is considerable practical utility in being able to merge computational tech-
niques with the Newton equation of motion {Eq. (1)] and his linear relation
between stress and strain in a fluid environment. After three hundred years the
former can be used to investigate the validity of the latter with sufficiently pow-
erful computer systems. If we are able to understand the rheology of simple
liquids we are also able to forecast what will happen in situations of interest to
engineers in an every day environment. It 1s possible to extrapolate from
picosecond and angstrom scales to those of the laboratory and the industrial engi-
neer. The investigation by Newtonian computer simulation of atomic liquids will
lead to results of use with the structurally more complex liquids using master
curves and the methods of extrapolative interpolation.

Newton’s linear relation between stress and strain is a limiting behavior, and more
generally, sheared liquids are “non-Newtonian™ showing shear thinning and
thickening, structural and convective turbulence and other phenomena character-
ized by dimensionless numbers, such as the Deborah, Reynolds, and Mach
numbers.

9. The Deborah Number

The numerical challenge is to reproduce these phenomena with computer simu-
lation, and Clementi and co-workers have shown how this can be achieved with
about a quarter of a million particles. There are several distinct phases in the
development of non Newtonian behavior, and these can be classified conveniently
by the Deborah number

D=1 (445)

where 7, is the structural relaxation time and y the shear rate, so that the product
is dimensioniess. Newtonian behavior occurs when D is small and the viscosity is
a constant, but a variety of other behaviors occurs when D increases.

10. The Reynolds Number
The condition under which flows of different fluids about two geometrically

similar bodies display geometrically similar streamlines is given by the Reynolds
number

R=— (A46)
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where p is the density, v the streaming velocity, v a characteristic dimension of the
body, such as a diameter of a spherical body, and u is the frictional force. Thus
two flows are similar when the Reynolds number is similar for both, which is
Reynolds’s principle of similarity. The Reynolds number is dimensionless because
p has the dimensions of 1bf sec? / ft4; v of ft / sec; v of ft.; and p of 1bf sec [ ft2.

11. The Mach Number

This is the ratio of the velocity of flow to the velocity of sound. It is therefore the
ratio of two velocities and dimensionless. The velocity of sound is defined as

v = \/@ (447)

where E is the modulus of elasticity and p the density.

References

et

H. Goldstein, “Classical Mechanics,” Addison-Wesley, London (1959).

2. L.D. Landau and E.M. Lifshitz, Volume 3 of “Courses of Theoretical
Physics,” Pergamon Press, Oxford (1960).

3. H. Margenau and G.M. Murphy, “The Mathematics of Physics and
Chemistry,” van Nostrand, New York (1962).

4. M.E. Rose, “Elementary Theory of Angular Momentum,” Wiley, New York
(1957). -

5. H. Jeffreys, “Cartesian Tensors,” Cambridge Univ. Press (1961).

6. L.D. Landau and E.M. Lifshitz, Volume 5 of “Courses of Theoretical
Physics,” Pergamon Press, Oxford (1960).

7. LR. McDonald and J.-P. Hansen, “Theory of Simple Liquids,” Academic,
New York (1976).

8. B.J. Berne and R. Pecora, “Dynamical Light Scattering with Applications in
Physics, Chemistry and Biology,” Wiley Interscience, New York (1982).

9. M.W. Evans, G.J. Evans, W.T. Coffey and P. Gngolini, “Molecular
Dynamics,” Wiley Interscience, New York (1982); see also M.W. Evans, Ed.,
“Dynamical Processes in Condensed Matter,” Vol. 63 of “Advances in Chem-
ical Physics,” I. Prigogine and S.A. Rice, Series Eds., Wiley Interscience, New
York (1985).

10. D.A. McQuarrie, “Statistical Mechanics,” Harper and Row, New York
(1975).

11. S. Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability,” Dover,
New York (1955).

12. M.W. Evans, P. Grigolini and G. Pastori-Parravicini, Eds., “Memory Func-

tion Approaches to Stochastic Problems in Condensed Matter,” Vol 62 of

“Advances in Chemical Physics,” 1. Prigogine and S.A. Rice, series eds.,

Wiley Interscience, New York (1985).



80

13

14.
15.
16.
17.
18.

19.
20.

21,
22.
23.

24,
25.

26.
27.

28.

29.

30.
31

32.

33.

34

Modern Techniques in Computational Chemistry: MOTECC-89

E. Nelson, “Dynamical Theories of the Brownian Motion,” Princeton Univ.
Press (1967).

N. Wax, Ed., “Selected Papers on Noise and Stochastic Processes,” Dover,
New York (1954).

P. Debye, “Polar Molecules,” Dover, New York (1929).

D. Heyes, Computer Phys. Rep., 8, 73 (1988).

D.J. Evans and G.P. Morriss, ibid., 1, 297 (1984).

W. van Megen and 1. Snook, J. Chem. Soc., Faraday Trans. 1I, 80, 383
(1984).

J.L. Doob, “Stochastic Processes,” Wiley, New York (1963).

M. Kac, “Probability and Related Topics in Physical Sciences,” Interscience,
New York (1959).

G.E. Uhlenbeck and G.W. Ford, “Lectures in Statistical Mechanics,” Amer-
ican Math. Soc., New York (1963).

S. Chandrasekhar in Ref, 14.

H. Mori, Prog. Theor. Phys., 33, 423 (1965)

D.L. Ermak and J.A. McCammon, J. Chem. Phys., 69, 1352 (1978).

D. Fincham and D.M. Heyes, “Dynamical Processes in Condensed Matter,”
Volume 3 of “Courses of Theoretical Physics,” Pergamon Press, Oxford
(1960).

D.M. Heyes and L.V. Woodcock, Mol. Phys., 59, 1369 (1986).

D. Heyes, “Dyoamical Processes in Condensed Matter,” M.W. Evans, Ed.,
Volume 63 of “Advances in Chemical Physics,” 1. Prigogine and S.A. Rice,
Series Eds., Wiley Interscience, New York, 77 (1985).

J.C. Slater, “Quantum Theory of Matter,” McGraw Hill, New York (1951).
D.R. Hartree, “The Calculation of Atomic Structures,” Wiley, New York
(1957).

See Ref. 29 and V. Fock, Z. Phys., 61, 126; 62, 795 (1930).

For example, E.U. Condon and G.H. Shortley, “Theory of Atomic Spectra,”
Cambndge Univ. Press (1935).

P.AM. Dirac, “The Principles of Quantum Mechanics,” Oxford Univ. Press
(1958).

J.C. Slater, “Quantum Theory of Atomic Structure,” McGraw-Hill, New
York (1960).

L.D. Landau and E.M. Lifshitz, Volume 1 of “Courses of Theoretical
Physics,” Pergamon Press, Oxford (1960).



