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Abstract 

By assuming that the ensemble average of statistical mechanics reduces according to group theory several new 

results are obtained concerning the nature of time cross correlation functions (c.c.f.‘s) in the isotropic liquid 

state of matter. In the laboratory frame (X, Y, Z) group theory allows the possibility for several time c.c.fs 

between transport processes of appropriate symmetry. These provide new Green Kubo coefficients that can 

be investigated in principle by computer simulation and observed experimentally. The rule governing time 

cross correlation between translational, rotational, and vibrational dynamical variables of a diffusing mole- 

cule are deduced both in frame (X, Y, Z) and in the molecule fixed frame (x, y. z) of the point group char- 

acter tables. The rules are valid for all molecular point groups. The group theoretical considerations are 

extended to cross correlations between physical properties of different molecules, on preparation for consid- 

ering by group theory the symmetry of a chemical reaction in solution. 

Introduction 

The well developed axioms of group theory have recently been applied’-s to the molecular liquid state with 

the important additional principle that the ensemble average ( c > ) reduce according to the rules of point 

group theory. The existence of elements of ensemble averages such as time correlation functions has been 

determined using products of irreducible representations of the individual molecular dynamical components 

making up the time correlation function. This allowed an independent check on numerous computer simu- 

!ations by the present author and co-workers 6-15 and by the Brussels Schoolrs. The results of group theory 

and simulation were in detailed agreement, both in the presence and absence of fields applied to the sample at 

equilibrium. 

In this paper the methods of group theoretical statistical mechanics are applied to produce new results in 

several different areas. Firstly, scalars, vectors, and tensors representing physical quantities are labelled with 

the appropriate irreducible representation (i.r.) in the three dimensional rotation - reflection group Rh(3) of 

isotropic three dimensional space. The existence of a set of non-vanishing time cross correlation functions 

(c.c.f.‘s) in the laboratory frame (X, Y, Z) is then deduced using the products of irreducible representations ( 

Ds(n) and D,(n)) of the point group R,,(3). In this way several new cross transport coefftcients are shown to 

exist on the basis of symmetry, using the fundamental new axiom, i.e. that < > behaves according to point 

group theory. 

Secondly, tables are given for the symmetry of some simple time c.c.fs in several molecular point groups, 

referring to the molcculae tixed frame (x, y. z). Several general results emerge from these-tables concerning 

the nature of time c.c.f.‘s in frame (x, y. z) between the molecular centre of mass velocity (v) and angular 

velocity (o) and normal modes of vibration (Q) in the liquid state of molecular matter. 

Thirdly the scope of group theoretical statistical mechanics (g.t.s.m.). is extended to include the symmetry of 

chemical reactions in the liquid state, with a view to explaining by symmetry some of the phasing mechanisms 
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in molecular reactions, a subject of great contemporary interest to computer simulationsr7-2s of liquid state 

chemical reactions. 

Laboratory Frame (X, Y, 2). New C.c.f.‘s and Cross Transport Effects 

Referring to Table 9.1, p. 82. of ref. (26) it is possible to associate with any physical property of a diffusing 

molecule, or ensemble of molecules, a D label. The symmetry of a scalar quantity in this context i+sa the 

totally symmetric representation (t.s.r.) D,(s). Molecular linear velocity is an odd parity (u) polar (or true) 

vector quantity and molecular angular velocity an even parity (g) axial (or pseudo) vector. If we examine the 

symmetry of a vector quantity A and of another one B a time t later the existence of their time cross- corre- 

lation function _ 

C&f) = c A(t)BT(0) > (I) 

is determined by the product of symmetry representations 

37AP-V) (2) 

The product (2) must contain as one of its irreducible representations the t.s.r. D,CO) for CAB to exist on the 

interval 0 < t C CO. On the basis of this simple rule, (principle (1) of g.t.s.m.t-3, we may reach immediately 

the following deductions. 

1) All time auto-correlation functions (a.c.f.‘s) exist in frame (X, Y, Z) because the product 

UA)UA) (3) 

always contains the t.s.r. by the Clebsch Gordan Theorem 

D(n)D(m) = @+m) + ,......... + D I (n-m) I (4) 

2) All time c.c.f.‘s in frame (x, Y, Z) between an odd parity (ungerade) property and an even parity (gerade) 

property will vanish for all t at isotropic equilibrium, because (2) can never contain the t.s.r. 

3) Similarly, the c.c.f. between a property purely of rank n and a property purely of rank m ( n # m) disap- 

pears for all t in frame (X, Y, Z) from eqn (4). 

4) Thus we arrive at the general rule that time c.c.f.‘s between a property A and a property B can exist if and 

only if 

a) A and B have the same parity ( g or u); 

b) the D representations of A and B separately contain terms of the same rank; 

c) the existence of the c.c.f. is not precluded by a gross symmetry law independent of group theory, such as 

time reversal symmetry. 
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Examples 

1) The time c.c.f. c v(t)otr(O) > vanishes for all t in (X, Y, Z) for all molecular point groups in an isotropic 

environment because the linear velocity is ungerade and the angular velocity is gerade. 

2) The c.c.f.‘s < v(t)rr(O) > and < v(t)jrr(O) > exist for 0 < t c 00. Here p is the molecular dipole moment 

and jr its time derivative, the molecular rotational velocity st. These three vectors all have the same ( 

ungerade) symmetry in the laboratory frame. 

3) Electric polarisability, thermal and electric conductivity, thermal expansion, thermoelectricity and magnetic 

susceptibility are all bulk physical properties which are symmetric second rank tensors with D signature 

I-(A) = D”) + D(‘) 
X 8 (5) 

Elasticity is a bulk property which is a symmetric fourth rank tensor represented by 

l-( B ) = 2D”) + 2DC2) + DC4) &? s s (6) 

Let us assume that the bulk property is a sum over the equivalent individual molecular properties in the 

isotropic liquid state. It follows that the symmetry representations or product thereof must contain the t.s.r. 

in frame (X, Y, Z) if they are to survive thermodynamic averaging. The symmetry rules apply to bulk proper- 

ties as well as single molecule properties. 

For example, the product 

r(A)T(B) = (OF’ + 0/))(20:’ + 2Df) + 0:)) (7) 

contains Dste) four times. It follows that four independent time c.c.f.‘s can exist in the isotropic liquid 

between the liquid’s elasticity tensor and 1) the tensor of electric polarisability; 2) of thermal conductivity; 3) 

electric conductivity; 4) thermoelectricity; 5) thermal expansion; 6) magnetic susceptibility. 

Two are diagonal elements and two are off-diagonal. Integrals over these time c.c.f.‘s result in new kinetic 

(diffusion) coefticients which can always be computer simulated and sometimes be measured experimentally. 

The equivalent molecular properties (c.c.fs between single molecule equivalents of the bulk properties) are 

also cross-correlated in the isotropic liquid. The application of tields breaks Rt,(3) symmetry and makes pos- 

sible the existence of many new c.c.f.‘s. 
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4) If we examine the product 

I-(A)I-(A) = (do) + D’2))2 g g 

the t.s.r. is included twice, which means that two independent c.c.f.‘s may exist between any two bulk or 

molecular physical properties with the symmetry DsWDsW, e.g. between thermal conductivity and magnetic 

susceptibility; or electric polarisability and thermal expansion; or electric conductivity and magnetic suscepti- 

bility and so forth. One component of this set is always diagonal and the other always Off-diagOm\. 

5) Two diagonal and one off-diagonal c.c.f. elements exist between the first electric hyperpolarisability (D,(r) 

+ D,(s)) of an isotropic liquid and 1) its pieuoelectricity tensor and 2) its electroopric Kerr effect tensor 

(both 2D,(‘?D,W + D,cs)). 

6) Similarly, one off diagonal time c.c.f. element exists between the molecular or bulk gyration tensor of 

optical activity (D,(s) + D,(z)) and 1) the piezzoelectricity tensor and 2) the electro-optic Kerr effect tensor of a 

chiral liquid. 

7) Two off-diagonal c.c.f. elements exist between the bulk or molecular quadrupole moment (D,(s)) and the 

elasticity. 

8) One offfdiagonal c.c.f. element exists between the bulk or molecular quadrupole moment and all tensors of 

rank DsW D,(s) mentioned already. 

There are many other cross-transport properties of this nature that may exist because their respective pro- 

ducts of symmetry representations contain the t.s.r. in (X, Y, 2). These can be bulk or single molecule prop- 

erties or mixtures of both types. 

The Molecule-Fixed Frame (x, y, z) 

It was first realised by computer simulation that many fundamental time c.c.f.‘s exist in frame (x, y. z) that 

disappear in frame (X, Y, Z). Molecular point group theory is relevant in frame (x, y, z), fixed in the mole- 

cule itself and defined for all the molecular point groups in the literature character tables. Group theory can 

deduce whether or not a c.c.f. exists in frame (x, y. z). The following are examples of simple c.c.f.‘s in frame 

(x. y, z) which link the rotational, translational and vibrational dynamics of a diffusing molecule for several 

point groups. 

Molecular Translation and Rotation 

The simplest type of c.c.f. linking these two types of diffusional motion is < v(t)or(O) > . This exists in frame 

(x. y, z) if the product of symmetry representations 

(WU~)l(,,y.*) (9) 
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contains the t.s.r. of the molecular point group at least once. If it occurs more than once, more than one 

independent element of the c.c.f. exists in frame (x, y. z). The symmetry of any physical quantity is found by 

mappings@J that in R,(3) on to its equivalent in the molecular point group. The product (9) for example is 

obtained from this procedure applied to the linear and angular velocities and then using the literature rules 

for products of representation+M. 

This procedure is summarked for some molecular point groups in the Appendix, which also deduces from 

character tables the symmetry of the c.c.f. matrix between molecular linear and angular velocity in each point 

group. The results in the Appendix can be summarised in the second principlet-* of group theoretical statis- 

tical mechanics. 

Principle 2 

Ensemble averages in frame (x, y, z) exist at isotropic thermodynamic equilibrium if their symmetry represen- 

tation contains the t.s.r. of the molecular point group at least once. 

1) In C,, (linear dipolar) and C,, (symmetric top) molecules the non-vanishing elements are 

c v*(r)wy(0) > = - c vy(r)w,(0) > # 0 

i.e. the time dependence is equal and opposite for 0 c t c 00. 

2) In Clv asymmetric tops such as water or dichloromethane there are two occurrences of the t.s.r. At in the 

product (9), meaning 

c v,(r)o,(O) > # - < v,(r)o,(O) > # 0 

for 0 c t c 03. The time dependence is opposite in sign and unequal. 

3) In Cl,, asymmetric tops such as meta bromochlorobenzene there are four occurences of the t.s.r. A’, 

meaning 

< V,(f)O;(O) > # c v,(r)w,(O) > # c v,(f)o:(O) > # < v,(r)o,.(O) 5 

for 0 < t < 00. 

In the C, chiral groups there are diagonal as well as off diagonal elements allowed by principle (2). These 

elements change sign from one enantiomer to its enantiomorph, and vanish in the racemic mixture. In the 

point group of lowest symmetry, Ct, all nine elements may exist by symmetry. An example of a molecule of 

this type is bromochlorofluoromethane. 
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These examples provide a rich field of potential investigation of the individual time dependencies (frequency 

spectrum) of each independent element allowed by symmetry. They also prove a fundamental defect in the 

theory of rotational diffusionJ*, which assumes that all these elements vanish. Contemporary computer simu- 

lation provides detailed support for principle (2). 

The Appendix summarises the symmetry of < v(t)or(O) >tX, y, z) for a number of dipolar and non-dipolar 

point groups. This table shows, for example, that 

1) this c.c.f. vanishes for all t in non-dipolar achiral molecules; 

2) elements may exist for 0 < t < M in the non-dipolar chiral point groups D,. In D, for example 

< V,(f)O,(O) > = - < v$)o,(O) > 

< v,(r)o,(O) > f 0 

for 0 < t < CO. In general, these elements all switch sign from one enantiomorph to the other. 

Molecular Rotation and Vibration 

The symmetry representations of normal modes of vibration in a diffushtg molecule are expressed in frame (x. 

y. z) and thus depend on the molecular point group symmetry. Unlike their counterparts for rotation and 

translation they also depend on the number of atoms in the molecule. Having obtained the vibrational repre- 

sentatio+-30 we may apply principle (2) to the evaluation of statistical cross correlation between vibration 

and rotation. The procedure as illustrated here is lirst approximation, because it is assumed that vibration 

does not significantly distort the molecular point group and that Coriolis and centripetal accelerations caused 

by rotational molecular motion do not affect and are not in turn affected by the molecular vibrational 

motion. This approximation can be reftned considerably but is a useful illustrative guide. 

Examples: Dipolar Molecules 

1) Water 

The representation in frame (x, y, z) of proper mode vibrations in water (C,,) is 

r(Q)=W+&z (10) 

There are three proper modes: Qt, Q2, and Qs with symmetry A,, A,, and B, respectively, the symmetric 

stretch, symmetric bend, and asymmetric stretch. The existence of time c.c.f.‘s in frame (x, y, z) such as 

< Qt(r)o’(O) > ; < Qz(t)oT(0) > ; and < Q3(t)or(0) > 

is determined on the basis of principle (2) by the relevant products of representations. Of the three possible, 

only one contains the t.s.r. 
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I-(Q3)r(o) = B2(A2 + B, + B2) = A, + A2 + B, (11) 

In this case A, appears from the product BIB,, which indicates that for 0 < t < 00 the non-vanishing ele- 

ments of < Qs(t)Or(O) > are (x, y) and (y, x) which have unequal and opposite time dependence because the 

overall symmetry of the matrix must be ungerade. In liquid water therefore there are two time c.c.f.‘s between 

the B2 proper mode of vibration and the molecule’s own angular velocity at this first level of approximation. 

2) Ammonia 

The symmetry representation of the normal vibrational modes is 

r(Q) = AI + AI + E(Q3) + W-t) 

from which 

I-(Q3)l-(o) = f-@J-(o) = A, + A2 + 2E 

The A sub 1 t.s.r. in the product (13) is produced by EE, which means that 

c Q3(r)m7(0) > and c Q&)oT(0) > 

(12) 

(13) 

both contain equal and opposite non-vanishing elements (x. y) = - (y, x) for 0 < t < co. There is no time 

cross-correlation between the symmetric modes Qt and Q2 and the molecule’s angular velocity in frame (x, y. 

2). 

Examples, Non-Dipolar Molecules 

1) Carbon Dioxide 

In this case 

r(Q) = $(Qd + G(Q2) + WQ3) (14) 

and no product of representations between Qt. Q2, and Qs contains the point group’s t.s.r. Z,. There is there- 

foreno time c.c.f. between vibration and rotation in liquid carbon dioxide. 

Methane 

Here 

r(Q) = At(Qt) + UQ,) + r,(Q) + T,(a) (15) 

and again there is no time c.c.f. between the diffusing methane molecule’s angular velocity in frame (x, y. z) 

and its normal modes of vibration. 

3) Benzene 
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Here there are no less than thirty possible modes of proper vibration, singly and doubly degenerate. However, 

none of these form non-vanishing c.c.f.‘s with the molecular angular velocity in frame (x, y, z) for the dif- 

fusing benzene molecule. 

From considerations of this hind it can be concluded that in non-dipolar, achiral, molecules, c.c.f.‘s between 

molecular proper modes of vibration and the same molecule’s angular velocity vanish for all t in frame (x. y, 

z). In all dipolar molecules, time c.c.f.‘s in frame (x, y, z) exist for 0 c t < w between at least one proper 

mode of vibration and angular velocity. 

Molecular Vibration and Centre of Mass Translation 

Using methods closely analogous to those of the preceding section it is possible to investigate in frame (x, y, 

z) the properties of time c.c.f.‘s between molecular centre of mass translational velocity and proper modes of 

vibration as the molecule diffuses in an isotropic liquid. Time c.c.f.‘s between at least one proper molecular 

mode of vibration and centre of mass translation exist in frame (x. y, z) for all point groups. The non- 

vanishing elements are diagonals of the relevant c.c.f. tensor. 

C.c.f.‘s between Different Molecules : Molecular Mixtures 

Before going on to consider the group theory of liquid state chemical reactions, it is necessary to extend 

consideration to ensemble averages over physical properties of two different molecules, of types (1) and (2). 

diffusing in a molecular mixture of these types. 

In the laboratory frame (X, Y, 2) the ensemble average over property A of type (1) and B of type (2) exists if 

the product of representations 

contains D,(a). 

In the molecule fixed frame (x, y, z) there is no clear way of defining the combined point group symmetry of 

the two diffusing molecules of types A and B respectively. 

Liquid State Chemical Reactions 

Contemporary computer simulations 3s of chemical reactions in an isotropic liquid environment include details 

of the representative .S,2 scheme 

A-+BC=AB+C- 

in which there is clearly a symmetry change (molecular or atomic) between reactants (1.h.s.) and products 

(r.h.s). A recent review of computer simulations 3s of chemical reactions in solution has highlighted the 

progress made in understanding diatomic photodissociation in various solvents, together with aimulations of 
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the A + BC (SN2) reaction with weak and strong solvent interaction. Of importance in determining the course 

of the chemical reaction are interactions between individual reactants and solvent molecules, and the ts-like 

process of molecular line-shape theory, including phasing and dephasing of the molecular dynamics. For a 

reaction to take place, ordering must be achieved as well as energy flow. Both translational and rotational 

molecular motions must become properly phased for reaction to occur. Wilson points out33 that these phasing 

processes can be studied in terms of cross correlation functions, both static (pair distribution functions) and 

dynamic (time correlation functions). The developments in this paper can be used to predict which of the time 

c.c.f. elements exist in frame (X, Y, 2) on the basis of a simple ansatz such that the c.c.Ts between reactant 

and solvent molecules are maximised in magnitude if the initial instant, t = 0 , of the running time average is 

taken at the top of the energy barrier for the reaction. In this situation the reacting molecules cab either react 

to form products or fall back again into separate reactant molecules. In either case there is loss of energy, 

accompanied by loss of time correlation. Reactants are presumably formed if the statistical cross correlation 

is more favourable on that side of the energy barrier. Some cross correlations which are allowed by symmetry 

on the reactant side may be disallowed on the product side, both frames (X, Y, Z) and (x, y. z) being brought 

into consideration wherever feasible. In general the chemical reaction changes the number, time dependence, 

magnitude, and symmetry of the numerous possible time c.c.f.‘s in the overall process. It can be imagined 

that there exist group theoretical ptinciples which guide chemical reactions in the liquid state analogous to 

the well known principles of conservation of orbital symmetry in intramolecular contexts. A combination of 

computer simulation and group theory would be needed to establish this code and to find the key to chemical 

reactions in terms of statistical time cross correlations between reactants. 
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Appendix: Symmetry of the Cross Correlation Function between Molecular Rotation and Translation in Some 

Molecular Point Groups 

9‘4 (Cl) 

5A + 48 (cj) 

3A + 3E (C,) 

3A + 28 + 2E (C,) 

3A +?Ft :,Fz (C,) 

4A f 5A (C,,) 

r(v)l-(o) = 
2A, + 3A2 + 24 + 24 (C,,) 

A, + 2A2 + 3E (C,,) 

Z+ f 2X- + 217 + A (C,,) 

2,4 IU + A,, + 3% (&,/r) 

r: + 2X; + 2I-I” + AU (Dooh) 

A2 + E + T, + T2 (T,) 

AI, + Eu + TI, + r,, (4) 

2A, + A, + 3E (4) 


