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Abstract

"The observation by computer simulation of shear-induced asymmetric cross correlation functions is analysed
with linked Langevin equations in the linear, Markovian approximation. ‘The diffcrence between the analyt-
ical results and computer simulation is interpreted in terms of the {act that the simulated cross correlation
functions are non-linear and non-Markovian, and also scem to be non-stationary, i.e. asymmetric to time
displacement or index reversal. In this condition, the Onsager reciprocal relations, which pertain to equilib-
rium, reversible linear, and stationary processes, no longer hold, and the simple Langevin equation is no

longer able to describe the results of computer simulation.
Introduction

Recent computer simulations {1-5} have demonstrated the existence of ncw, asymmetric time cross corre-
lation functions (c.c.f.’s) of the type

< wx(lwz(0) > # < v Hvx(0) > 1))

. . m

in the steady state under a shear strain of type —57i The cc.f. of type (1) cross correlates the orthogonal vy
and vz components of lincar atomic velocity in an N particle ensemble. ‘This has been explained {1-5} on the
grounds that a strain rate of this type produces a weighted combination of symtmetric c.cf.’s of type D2

< vg(Ovz(0) > = < v (1)vy(0) > o))
and antisymmetric c.cf.'s of type DB
< vx(vz(0) > = — < v(ry(0) > 3)

lere the D symmetries are irreducible representations (6-8} of the rotation-reflection point group R, (3).

In this letter we make the first analytical attempt to understand the result (1) in terms of linked Langevin
equations, developed from the Dolls tensor cquations of . J. livans and Morriss {9). These Langevin
equations are wrilten in the linear, Markovian, approximation for an cnscmble of atoms under shear. To
reproduce type (2), use is made of cross friction cocfficicnts which arc symmetric in the indices X and Z of
the laboratory frame (X, Y, Z), and for type (3) the friction cocfficicnts arc asyminctric. A comparison of
these exact analytical results is then made with the asymmctric c.c.f.’$ of the computer simulation. The latter
is in gencral non-lincar and non-Markovian, and asyminetric to timc displaccment and in the indices X and
Z. The analytical treatment is on the other hand lincar and Markovian, and produces results which are dis-
tinctly different, in the sense that the simulated c.c.f.’s arc finitc at t = 0, but the analytical counterparts
vamsh att = Q.

Dcrivation and Solution of the Langevin Equations

The starting point of the derivation of the Langevin equations is cqn (3.48) of ref. (9)
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mv=F—Vu. nv 4

where I is the force and v is the vclocity of a particle cxternally subjected to shear. The latter is represented
by the tensor Vu with nine components in general. It is assumed that the shear causes a strain rate response
in the N particle ensemble consisting of D) type vorticity, and Dy type deformation {1-5}. The former is
represented from eqn (4) as

. allx

Fy= g 40, 50
] duz

FZ=4 mvz—m——aX vy (5b)

r
and the latter by the same equations but with a positive sign on the right hand side of eqn (5b). We assume
that these equations can be written with

. _ allx s _ allz
Yxz= oz » Yzx = ax

The deterministic equations (5) are developed now into langevin equations which are solved in the linear
Markovian approximation for the asymmetric cross correlation function of type (1), whose components are
types (2) and (3). The Langevin equations corresponding to (5) arc

Fy stochasue = mix + mBvy + mfxzvy (6a)

F7 stochastie = Mz + mpvz — mPzyvy (6b)

These equations have been written for Dy(1) type vorticity. For Dy type deformation the minus sign on the
r.h.s. of eqn. (6b) is replaced by a plus sign. In eqns (6) the beta’s arc friction cocfficients in the linear,
Markovian approximation. It has been assumed that

allx allz
ﬂxz—a—z- ; ﬂzx—‘a,— )]

i.c. that the components of the strain rate response can be identificd with cross-friction coefficients in the
linear, Markovian approximation. More generally, the friction cocfficients arc non-Markovian memory func-
tions {10}, and the Langevin equation is non-linear {11}. However, in the linear, Markovian approximation
(6) the Langevin equations may be solved for the cross corrclation functions of interest

M—-)—ﬂxze-b' sin{(c — bz)ml) i c>b? (8a)
(c—- YR

< vy(f)vz(0) >

ke (Ul IR O ST S (8%)
®*—o'

< vr()vz(0) >

where

b=4f; c=p—PyzBzx
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with a similar expression for < v,()ve(0) > with #,, replaced by 4. For shear induced vorticity
Bxz=—Pzx (9a)
and for shear induced deformation
Bxz=Bzx (95)
The final asymmetric cross correlation function of type (1) is asumcd to be a weighted sum of both types
<vy(vz(0) > = A4 <vy(1)z(0) >yorcity + B < vx(0)v2(0) > derormaiton (104)
and
<vz(g(0) > == A <v()x(0) >voriicity + B < vz(D)vx(0) > deformarion (105)

where A and B are weighting constants. If A < < B for example, the cross correlation functions from cgns
(10) will be slightly asymmetric, i.e. ncarly of type (2), and ncarly of type (3) for A > > B. There will be
intermediate cases of varying asymmetry. However, despite being able to explain qualitatively the major
feature of the simulation, i.e. that the cross correlation funclions are asymmetric, eqns (10) are not able to

show why the simulated c.c.f.’s {1-5) remain finite at t = 0. Eqns. (10) produce c.c.f.’s which vanish at t = 0.
The simple linear, Markovian approach thus fails qualitatively at short times.

Discussion

The failure of the Langevin equations (6) to describe the results from computer simulation is an important
indication of the fact that non-Newtonian sheared N particle ensembles have several features which are fun-
damentally different from their equilibrium counterparts:

1) the sheared ensemble supports cross correlation functions of type (1) which are asymmetric in time dis-
placement and in the indices X, Z of the shear plane. These c.c.f’s havc the property {1-5)

<vy(Op0) > #0 an

which is not reproduced by the finear Markovian.approximation represented in eqns (6). This is unlikely to
be remedicd by developing the friction coefficients into memory functions, thus making the system non-
Markovian, and we are led to consider

2) that the system is non-linear. In one scnse it is non-lincar because the stress and the strain rate are not
linearly rclated, as in Newton’s law of sheared fluids. In this scnsc the system is non-lincar because it is non-
Newtonian. If we are to attempt an approach to the ncw c.cf.’s (1) with I angevin equations, we are led to
the conclusion from (1) that the friction coefficicnts are no longer simple lincar multiples of velocity, as in
eqn (6), because this approach fails qualitatively at t—0 both for Markovian and non-Markovian approxi-

mations to the rigorous eqn (5). More generally, the Langevin cquation can be non-lincar, containing friction
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coefficients that multiply powers of velocity on the right hand side. In gencral the equation would contain a

sum of such terms, with interesting analytical implications {12}.

3) The new cross correfation functions of type (1) are obscrved by numnerical simulation to be asymmetric in
time displacement (eqn (1)). They are not therefore stationary {13} in thc conventional sense, because they
are neither symmetric in time displacement (eqn (2)), nor antisymmetric (cqn (3)).

4) This lcads directly to the conclusion that in the presence of shcar, the N particle ensemble no longer obeys
the Onsager reciprocal relations {13,14), which are laws applicable to N particle ensembies at thermodynamic
equilibrium, where the system is reversible.

S) The c.cf.’s (1) are therefore indicative of a dynamieal proccss under shear which is irreversible, in the sense
that they are not governed by Onsager’s reciprocal relation.

The overall conclusion is that an N particle cnsemble in the stcady state under shear which is non-Newtonian
produces asymmetric time cross correlation functions which indicate a statistical process which is non-linear,
irreversible, non-Markovian and asymmetric in time displacement, being in this sense non-stationary. In con-
scquence a simple linear Markovian description fails qualitatively as t—0. This leads to an entirely new
appreciation of non-Newtonian N particle dynamics.
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