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Abstract

Point group theory is used in the laboratory and molecule fixed frames
(X, Y, Z)and (x, y, z) respectively to develop three principles upon which to
base the analysis of diffusional processes in N particle atomic and molecular
ensembles. The symmetry signatures of ensemble averages at field free
equilitrium, and in the steady state under applied external fields are given in
the p-int group R,(3) and in thirty-six molecular point groups. Physical
examyles of “group theoretical statistical mechanics™ (g.t.s.m.) are given in
term- of a new interpretation of the Weissenberg effect and of a theoretical
prediction of shear induced depolarized light scattering. New fluctuation—
dissipation theorems are developed from the principles and applications of
g.t.s.m. for an applied electric field of arbitrary strength, and some corrob-
orative computer simulations reported for liquid water and methyl chloride.
Structural applications are discussed finally in the form of angularly resolved
pair radial distribution functions.

Introduction

Developments in the computer simulation of molecular
diffusional processes over the last decade [1-5] have empha-
sised the role of the molecule fixed frame (x, y, z) as well as
that of the laboratory frame (X, Y, Z). Systematic computer
simulation has emphasised a set of non-vanishing time
correlation functions, some of which exist in frame (x, y, z)
but vanish in frame (X, Y, Z) for all 1. Conventional diffusion
theory [6-8] usually focusses on frame (X, Y, Z), and in
consequence may provide only a partially adequate picture of
the molecular dynamical process. An example is the simple
cross correlation function (c.c.f.) <{v(0)w(r)> between a
diffusing molecule’s linear and angular velocities. This
vanishes in frame (X, Y, Z) but exists in frame (x, y, z) for
most molecular symmetries. The theory of rotational dif-
fusion, and off-shoots such as the itinerant librator, neglect
the existence of the c.c.f. in both frames of reference, and are
therefore unable to describe the results of computer simu-
lation {1-5] without fundamental modification.

Recently, the computer simulation results have been
analysed systematically by Whiffen with point group theory
[9] in both frames of reference, and detailed agreement was
found with the computer simulation results on the C,, mol-
ecule dichloromethane. This work has subsequently been
developed into the three principles of group theoretical statis-
tical mechanics (g.t.s.m.) [10-12] and applied to Couette flow
[13-15] in which a strain rate of the type 0v, [0Z is generated
by the applied shear stress [16-18]. The application of g.t.s.m.
in this context anticipated the existence of new c.c.f.’s in
frame (X, Y, Z) which classical rheology leaves unconsidered.
Subsequent computer simulation [16-18] revealed that these
had the remarkable property of being asymmetric in the
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indices X and Z of the strain rate, as typified by the linear
velocity c.c.f.

vx(0)v2(1)) # {vz(0)vx (1)) ey

and this has been explained with g.t.s.m. [19] using a weighted
combination of a shear induced antisymmetric c.c.f. of the
type

wx(0)vz(1)) = —<vz(0)vx(1)> 2
describing shear induced vorticity, and a symmetric
component

ux(0)v2(1)) = <vz(0)vx(1))> 3

describing shear induced deformation.

The result (1), observable in the computer simulation of
atomic ensembles under applied shear [16-18], is a weighted
combination of egs. (2) and (3), which have the D symmetries
(see later) D{" and D{? respectively.

The combined use of g.t.s.m. and non-equilibrium com-
puter simulation [16~18] also showed the existence of new
c.c.f.’s between components of the pressure tensor (or stress
tensor), which provided a fundamental explanation for the
well known Weissenberg effect of rheology [13-15], the pres-
sure observed experimentally perpendicular to the plane of
shear. These new c.c.f.’s have no counterparts in “classical”
or customary rheology, in the same way that customary
diffusion theory has no way of explaining many of the new
c.c.f’s discovered in diffusing molecules by computer simu-
lation [1-5]. In deriving the new c.c.f.’s of type (1), and in
explaining the Weissenberg effect, g.t.s.m. was able to guide
the computer simulation, which in turn has been able to
explain the well known experimental Weissenberg effect in
terms of the dynamics of diffusing atoms.

In this paper the methods of g.t.s.m. are applied to mol-
ecular ensembles under the influence of external fields of
various types, with the emphasis on shear. Non-equilibrium
molecular dynamics (n.e.m.d.) has not yet advanced to the
stage where molecular ensembles can be investigated with
SLLOD and PUT algorithms [16-18] with the facility of
atomic ensembles, where the method has rapidly become well
established [20-25]. Molecular ensembles under shear differ
fundamentally from their atomic counterparts, where the
frame (x, y, 2) is not defined, and a complete understanding
of the effects of shear needs both frames. In the context of
g.t.s.m. this leads to the consideration of a molecule fixed
frame (x, y, z) defined conventionally in the literature point
group character tables [26, 27], i.e. the symmetry elements are
defined with respect to the (x, y, z) which appear in the
standard character tables [26, 27] in the right hand side
columns.
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Similarly, computer simulation and g.t.s.m. have shown
the need for both frames when considering the effects of other
types of fields, for example electric [28-30] and magnetic
fields, and both frames are also needed at field-free equi-
librium [1-5]. It is futile to argue in this context that obser-
vations can only be made in frame (X, Y, Z), because these
observations are governed by processes which are visible
statistically only in frame (x, y, z). If these latter are neglected,
the interpretation we put on our observations is fallacious.
The customary view can also overlook important details
[16-18] in frame (X, Y, Z).

A correct understanding of processes in both frames is
provided by g.t.s.m., which is used in this paper as a guide to
future n.e.m.d. computer simulations of sheared molecular
liquids; and to the various effects of applied electric and
magnetic fields. Emphasis is put on the physical conse-
quencies, using new fluctuation-dissipation theorems based
on the new relation derived by Morriss and Evans [31], valid
for arbitrary applied field strength, i.e. for linear and non-
linear response processes. The group theoretical details are
presented mainly in tabular form, suitable for reference in
several different contexts, so as not to overload the paper with
mathematical detail. Familiarity with elementary group
theory, as applied in chemical physics, is assumed from the
outset.

The paper is arranged as follows. In Part 1 the three
principles of g.t.s.m. are stated with reference to both frames.
In Part 2, some basic symmetry concepts lead to Table I, in
which the general symmetry of shear strain is given in frame
(X, Y, Z), and for thirty six of the molecular point groups.
Part 3 provides examples of application with emphasis on
shear, the Weissenberg effect, and suggests in this context a
new form of depolarised light scattering. There is also some
discussion of the effects of electric and magnetic fields in both
frames. Part 4 introduces new fluctuation-dissipation theorems
based on the symmetry arguments of Part 2, and Part 5 finally
deals with aspects of computer simulation, both conventional
and non-equilibrium.

1. The principles of group theoretical statistical mechanics

These have been developed [19] from the Neumann Principle
[32-34] and its extension by Whiffen [9] to the frame (x, y, z).
They can be stated as follows.

Principle 1

The thermodynamic ensemble average (ABCD . . .) over the
product ABCD . . . exists in frame (X, Y, Z) if the product of
representations I'(A)[(B)I'(C) ... contains the totally
symmetric representation (t.s.r.) of the point group R,(3) of
isotropic atomic or molecular ensembles.

Principle 2

This ensemble average exists in the molecule fixed frame
(x, , z) if the product of symmetry representations in the
molecular point group contains that point group’s t.s.r. at
least once [9].
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Principle 3

If an external field of force is applied to an atomic or molecu-
lar ensemble which subsequently reaches a steady state in the
presence of that field, new ensemble averages may be created
whose symmetry is that of the applied field.

In order to illustrate these Principles we provide a descrip-
tion of some symmetry properties of R,(3) in the following
section.

2. Some symmetry concepts

The point group R,(3) is the symmetry group of isotropic
three dimensional space. Its irreducible representations are
DY, ..., D and DY, ..., DY respectively. These are
even (g) and odd (u) to the parity reversal (X, Y, Z) —»
(— X, — Y, — Z). A scalar in this notation has symmetry D{*,
a pseudo-scalar is D”, a polar vector such as v the centre of
mass velocity, is D" and an axial vector such as angular
velocity (w) is D{". The principles of Section 1 imply that in
isotropic environments such as those of atomic or molecular
ensembles, the symmetry of the ensemble average (4> over
the physical property 4 will be that of A itself, either in the
laboratory or molecule fixed frames. The symmetry of the
ensemble average (AB) is given by the product of represen-
tations I'(4)"(B), where I' denotes the symmetry represen-
tation in the point group of interest. The latter is R,(3) in
frame (X, Y, Z) and the molecular point group in frame
(x, y, z). Thus, the average (AB) over the product of mol-
ecular physical properties AB exists in an isotropic molecular
ensemble if I'(4)I'(B) contains the totally symmetric repre-
sentation (t.s.r.) at least once.

In R,(3) the ts.r. is D", and ensemble averages over
scalars exist in chiral media, and have opposite sign for each
enantiomorph. Ensemble averages over both polar and axial
vectors vanish at isotropic equilibrium because the symmetry
representations of these quantities do not contain the t.s.r.
These considerations can be extended to higher order tensors
and also to products, such as time correlation functions.
Thus, the generic auto correlation function {(A(0) - A(r))
exists in frame (X, Y, Z) because the product of representations

T (4) = D + D + D @

contains the t.s.r. once, representing the trace of the matrix
product (A4(0)A4(1)>. In eq. (4) we have used the Clebsch-
Gordan Theorem

DWpm  —  ptm + -+ Pple—mi (5)

to expand the product the product of symmetry represen-
tations on the left-hand side. The expansion on the right hand
side of this equation contains three terms, the scalar, vector
and tensor products, respectively D, D", and D¥. The
vector product of two vectors is another vector, and can be
denoted

Vector product part of (A(1)4(0)> = (A1) x A(0))
i J k
= Ax() Ay() Az (D)
Ax(0) A,0) A,0)

The overal symmetry of this vector is D;”‘ Here {, j, and k are
unit vectors in the axes X, Y, and Z respectively. If we

(6)
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examine an individual component of the determinant on the
right hand side of eq. (6), for example the j component, we
find

{{A) x A0)}; = {K4z(04x(0)> — {Ax(DAZ(0))}]

)

with similar results for the other components.

The overall symmetry is however D;,", and does not con-
tain the t.s.r. By Principle 1 these averages all vanish,
therefore, at field-free (isotropic) equilibrium, but by Princi-
ple 3, may exist in frame (X, Y, Z) in the presence of an
external field of the correct symmetry.

Similarly, the tensor product of two vectors is a tensor, a
three by three matrix, the dyadic product

tensor part of {A(r)A(0))
A

Ax (A, (0)ii”

™
A (A, O)ki”
Ay(D 4,00k ]
A (1) Ay Ok
(8)

_ Ax(’)Ar(O)ﬁT
= [AYU)Ax(owT Ay (DA, O
Az(DAO)KT A5(1)A,(0)k"

where

A A
010

i" =0 0 0
00 0

and so on. The overall symmetry in eq. (8) is the symmetric
second rank D¢ and does not contain the t.s.r. so that these
ensemble averages all vanish at field-free equilibrium. The
matrix is symmetric (D rank 2) so that there is index sym-
metry in the ofi-diagonal elements, giving results such as
eq. (3).

2.1. The effect of fields, Principle 3

An applied field of force has its own symmetry signature in
a given point group, and in frame (X, Y, Z) this is a D
representation. By Principle 3 ensemble averages with the
same representation may appear in the N particle ensemble at
the field-on steady state. An electric field, E, for example, is
a polar vector of D! symmetry; a magnetic field B is an axial
vector of D" symmetry, and a shearing rate of the type
0vy/06Z has the symmetry [16-18] D\ + D{" + D{.

In addition to the ensemble averages that may exist at
field-free equilibrium, applied fields set up new ensemble
averages in frame (X, Y, Z) whose symmetry, by Principle 3,
is that of the field. For example, an electric field sets up
averages of the type {ex(r) x ©(0)) similar to those of eq. (6),
but whose symmetry is D!". These have been detected by
computer simulation [20-25] in the form of component
ensemble averages which have the property

Ey induces (wx(Nvz(0)>) = —<@(Nvy(0)) (10)

and similarly for the X and Z components of the applied field.
These are antisymmetric time c.c.f.’s which vanish at field free
equilibrium, and have overall symmetry D!”. They were
found by computer simulation and are not consndered in the
conventional theory of diffusion.

Similarly, the response of an ensemble of atoms to shear is

€))
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described by a combination of D{" (vector) symmetry of Type
6 or 7, and a tensor symmetry D of Type 8. For a strain rate
Ovy[0Z, which is traceless (i.e. in which the D{” component is
zero) the induced ensemble average is a weighted combi-
nation of Types 2 and 3, giving the computer simulated result
[16-18] described in eq. (1).

2.2. The molecule fixed frame (x, y, z)

The D symmetry of any quantity in the laboratory frame
(X, Y, Z) may be expressed in the molecule fixed frame
(x, y, z) by mapping irreducible representations [26, 27) from
the R,(3) point group on to the molecular point group.
Table I gives a selection of symmetry mappings on to thirty
six of the molecular point groups, ranging from lowest sym-
metry (C,) to the high symmetry molecular point groups such
as O,. The significance of such mappings has been described
by Whiffen [9} and is summarised in Principle 2.

Table I describes the symmetry of a scalar, pseudo-scalar,
polar and axial vector, and the product A4 of two vectors in
each molecular point group. The latter may be a product
either of two polar or of two axial vectors, and includes the
scalar, vector and tensor components as described in the
heading to column six of the table. Column 2 of the table
gives the t.s.r. of each point group, and the other columns
record the number of times the t.s.r. occurs in the quantity
being described in each column. Using Principle 2 we can see,
for example, that the existence or otherwise of ensemble
averages in frame (x, y, z) of each point group is also
determined® by the number of occurrences of the t.s.r.

Taking the C,, point group of water as an example the
table, used with Principle 2, shows that the ensemble average
{¥>r.,.» May exist in frame (x, y, z) because the molecular
linear acceleration is a polar vector whose symmetry repre-
sentation in the point group C,, is given in column 5. This
includes the t.s.r. once, and by Principle 2, one scalar com-
ponent of the ensemble average of linear acceleration may
exist in frame (x, y, z). To find which component, we refer to
the character table [26, 27] for C,,, and find that 4, refers to
the z axis. We conclude that the ensemble average {v.) may
exist by Principle 2 in frame (x, y, z). This finding is over-
looked by conventional diffusion theory, and it is important
to note that the same average vanishes in frame (X, Y, Z) by
Principle 1. For a complete picture of statistical processes we
need both frames of reference. This can be achieved with
combined and systematic use of computer simulation and
g.t.s.m.

In other molecular symmetries more than one scalar com-
ponent of this type may exist in frame (x, y, z), depending on
the number of occurrences of the t.s.r. In the chiral group C,
for example there are three occurrences of the t.s.r. both for
axial and polar vectors (columns 4 and 5 respectively) and
this means that the x, y, and z scalar ensemble averages over
both types of vector may exist in frame (x, y, z). In each case
average is independent, and each has a different magnitude.
By Principle 1 they all vanish, however, in frame (X, Y, Z).
In a high symmetry point group such as 7, for example that
of methane, there are no occurrences of the t.s.r. in columns
4 and 5, and in consequence there can be no surviving scalar
components of ensemble averages over vector quantities in
frame (x, y, 2). In C,, the point group’s t.s.r. appears once
in column four, but not in column five, signifying one



30882 M. W. Evans and D. M. Heyes

component ensemble average over an axial vector such as the
angular acceleration in frame (x, y, z). Note that in the chiral
point groups C, and D, there are always occurrences of the
t.s.r. in both columns 4 and 5.

The number of occurrences of the t.s.r. of column 2 in
column 6 signifies the number of independent scalar elements
that may exist in frame (x, y, z) of the ensemble average
(AA},.- In the molecular point group of lowest symmetry,
C,, nine scalar components of this ensemble average
may exist in frame (x, y, z). For the correlation function
CA()A(0)> ., each may have a different time dependence,
even at field free equilibrium. In frame (X, Y, Z) in contrast,
Principle 1 implies that only the auto correlation function
may exist, with one independent time dependence. There is
oniv one occurrence of the t.s.r. in frame (X, Y, Z), but no less
thar nine in frame (x, y, z) for the same diffusion process.
These are the three diagonal and six off diagonal elements, all
wit:; different time dependencies. All may change sign from
onc enantiomorph to the other.

in point groups of higher symmetry, such as C,,, there are
fewer occurrences of the t.s.r. in column six, indicating the
existence of fewer independent elements of the ensemble
average. In C,, there are three occurrences of the group’s t.s.r.
in column 6, and a little group theory is needed to interpret
their meaning. The result in column 6 for this point group, as
for all point groups, is obtained using products of irreducible
representations for two polar vectors, for example, is

(4, + B, + B)(A, + B+ By)
= AA + AB, + A4/B, + BlA| + BB,

+ BB, + B,A, + B,B, + B,B, aan
from which
AA, = A; BB = A; BB, = A4, (12)

using the rules [26, 27] for products of irreducible represen-
tations. The character table for C,, finally shows that the
products in eq. (12) represent the three ensemble averages

{A4.(NA4,0)>; <A4,(NA4,00)>; <{A4.(D4.(0)) (13)

each with a different time dependence in frame (x, y, z). This
is verified precisely by computer simulation [1-5]. In the
laboratory frame there is only one ensemble average, the auto
correlation function with the symmetry of the t.s.r. D{*.
Similarly we may interpret the significance of the t.s.r.
occurrences in the other point groups of Table I as they

appear in column 6. In some high symmetry groups such as .

T,there is only one occurrence, signifying the one independent
element

4,040 = (A4,(N4,00)> = <A4.(04.(0)). (14)
In other point groups such as C,, there are two occurrences,
signifying

{4.(04.(0)) # (A,(NA,0)) = <{A.()A.(0)), (15)

i.e. two independent elements. In some of the low symmetry
point groups off-diagonal elements may also exist in addition.

2.3. The effect of external fields

The effect of external fields on averages such as these is to
change their individual time dependencies. The overall
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symmetry, in contrast to frame (X, Y, Z). remains the same,
and is given by Table 1. It is essential therefore to investigate
the overall N particle ensemble dynamics in both frames for
a complete understanding of the diffusional process.

At field-on equilibrium in the presence of shear, for
example, we have asymmetric averages induced in frame
(X, Y, Z) of type (1) which are part of the overall ensemble
average {vv). The latter’s symmetry in frame (x, y, z), how-
ever, remains the same, and is given in column six of Table I.
For each molecular symmetry, therefore, the signature of
shear in frame (x, y, z) is different. In frame (X, Y, Z) its
symmetry signature is always the same, and is the sum of D
symmetries at the head of column six. We conclude that there
is a rich variety of behaviour in molecular liquids subjected to
Couette flow. As usual, symmetry patterns should be inves-
tigated in both frames of reference.

Similar considerations apply in frame (x, y, z) for molecu-
lar liquids under the effect of an electric or magnetic field. The
external field changes the time dependencies of the individual
ensemble averages in frame (x, y, z) but leaves the symmetry
patterns of Table I unchanged. In frame (X, Y, Z), how-
ever, the fields induce new ensemble averages according to
Principle 3.

3. Two physical examples of the application of G.T.S.M.

In this section we provide two applications of g.t.s.m. in an
experimental context. The first is its use to provide an
explanation for the Weissenberg effect [13-15] and the second
is the theoretical prediction of a new form of depolarised light
scattering from sheared atomic and molecular N particle
ensembles. In both cases cross correlation functions are
observed experimentally.

3.1. The Weissenberg effect

The Weissenberg effect is observed experimentally as the flow
imparted to a sheared liquid in an axis perpendicular to that
of the applied shear plane. 1t is important in industrial con-
texts, because the perpendicular flow is caused by a pressure
great enough to cause damage, for example to rollers in the
print industry.

The first explanation for the effect has been reported fully
elsewhere [16], and is due to new cross correlation functions
between elements of the pressure tensor (or stress tensor) in
a sheared N particle ensemble. These can have asymmetry
properties analogous to those in eq. (1) of this paper, as
illustrated in Ref. [16], Fig. 11. The existence of these new
elements was anticipated by g.t.s.m. and confirmed by
n.e.m.d. [16-18]. They are apparently unknown to conven-
tional rheology and were first characterised by computer
simulation. Their description in conventional terms probably
requires new constitutive equations and phenomenological
parameters. However, it is clear that the underlying cross
correlation functions can be observed experimentally by
using computer simulation to match experimental data on
Weissenberg flow.

3.2. Depolarised light scattering from a sheared ensemble

In this section we argue for the existence of a hitherto
unmeasured component of depolarised light scattered from
an N particle ensemble subjected to shear strain. For ensem-
bles of atoms and molecules of symmetry higher than T,
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Fig. 1. Light scattering geometry for depolarised light scattering from a
sheared N particle ensemble.

where the anisotropy of polarisability vanishes in the absence
of collision induced effects [35], this is the only component,
and is related by Fourier transform to the new c.c.f. of type
(1). The latter is known from computer simulation [16-18] to
be directly related to the non-Newtonian nature of the
sheared N particle fluid, and in consequence, depolarised
light scattering from the sheared fluid is a direct spectral
method of probing non-Newtonian dynamics.

The third principle of g.t.s.m. allows the existence of the
new current correlation function [36, 37]

Crz = <vx(0)vz()exp(ig - (r(0) — r(1)))> (16)

in an N particle ensemble subjected to the shear strain
dvy[0Z . This has the same asymmetry properties as type (1).
Here ¢ is the scattering vector and

r) — r0) = Ar(f) = jo o(r) dt, a7

where v is the centre of mass velocity of the diffusing particle
(atom or molecule).
We have

Br@y = [ [ Corn)os(t)y dry dr,
= 2 [0 — D<usOpz()) dt

The current c.c.f. (16) is related to a self dynamic structure
factor by

(18a)

(18b)

F(q. 1) = <exp(ig(r(0) — r(0))> (19)
which upon double differentiation provides
d2 5) 2
ac ¥2(q. 1) = —q Cyz(7). (20)
Equation (20) gives the result

(02
T2, ©) = 7 (g, ©) @

where J is the temporal Fourier transform of Cy, and S that
of eq. (19). The latter is the intermediate scattering function
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in the ideal self-dynamic limit for the sheared N particle
ensemble. Equation (21) shows that this is related to the new
current c.c.f. defined by eq. (16).

3.3. Light scattering geometry
Integrating eq. (20) gives the result

i (5 B2 0) = =7 [T 0O &, @
where 7, is the correlation time. This shows that the inter-
mediate scattering function § is related to the cross corre-
lation function of Type 1 generated by shear. The function S
is observable by light scattering where the initial polarisation
vector is in the X axis of the laboratory frame (X, Y, Z) and
where the scattered polarisation vector is in the Z axis of this
frame. The plane XZ is that of the shear strain dv,/0Z.

The existence of shear induced c.c.f.’s of Types 1 and 16
means that there will be depolarised light scattered from a
sheared /V particle ensemble with intensity S. This spectrum is
related to the temporal Fourier transform of eq. (16) by
eq. (21).

In atomic ensembles, or in ensembles of molecules of
symmetry greater than T, this will be the sole contribution to
the new type of shear induced light scattering apart from
small contributions from collision induced polarisation
anisotropies. At equilibrium in the absence of shear, this
spectrum will disappear, because the c.c.f.’s of Types 1 and 16
both disappear.

In order to observe the spectrum experimentally, the
incident laser beam, polarised in the X axis, is scattered
conveniently from an arrangement of co-axial cylinders, and
scattered radiation is observed polarised in the axis Z for
given scattering angle, angular frequency and scattering vec-
tor. This is the spectrum S which gives J by eq. (21), and thus
the temporal Fourier transform of eq. (16). The inner cylin-
der (a stirring rod) rotates rapidly and the outer cylinder is
the wall of a round light scattering cuvette. This arrangement
creates a shear on a liquid held between the cylinders. The
geometry is illustrated in Fig. 1.

The high frequency wing of the spectrum S is amplified by
the multiplication by the square of the angular frequency in
eq. (21) to give the second spectral moment J. The latter is
related directly to the new c.c.f. (16) and this c.c.f. is in turn
a direct measure of non-Newtonian effects in a sheared fluid.

The new depolarised spectrum J is therefore a direct
measure of the non-Newtonian nature of sheared /V particle
ensembles.

Depolarised scattering depends solely on the optical ani-
sotropy of the scattering centre, and this may be thought of
as a scattering element of polarisability tensor a. The scat-
tered electric field vector of the electromagnetic radiation is
then

E, = Z a2 exp (ig - r;(r)) (23)
7

where af is the XZ component of the polarisability tensor a

of the jth scattering element, and “*q” the scattering vector.

Let us situate the centre of mass on an atom of our sheared

ensemble. On average, we have, for atomic ensembles

CRxR;z)

i =
Ayxz = 0y
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where the vector R is defined with respect to the centre of
mass of the polarisability element in frame (X, Y, Z), and
where the averaged quantity on the r.h.s. of eq. (24) is propor-
tional to the angularly resolved radial distribution function
introduced by Heyes and Szczepanski [38]. The latter, denoted
by 9y, is dependent on the positions of nearest neighbours,
next nearest neighbours, and so on, around the centre of mass
atom, and is assumed here to be approximately the time
independent equilibrium average. Therefore we have

aifz = %y0yz(R) (25)

where “R” is the argument of the angularly resolved pair
radial distribution function. Without loss of generality, we
can assume that

0xz(R) = 0xz(Ry) (26)

where R, is the position of the first peak of the pair radial
distribution functions. Finally we have

ay, i) = oy (0) = apoxz(Ry) (27)
so that the depolarised light scattering spectrum is given by
S\'?{(q, t) o ngZ(RO)S&%(q’ t)' (28)

In order to provide an idea of the frequency and scattering
vector dependence of the spectrum J a simulation can be
carried out in an ensemble of atoms subjected to shear strain
by PUT computer simulation [16-18]. The new current cor-
relation function of Type 16 can be computed directly and its
temporal Fourier transform gives J.

3.4. Polarimetry

The plane of polarisation of electromagnetic radiation is
expected to be changed a little by shearing on the basis of the
above argument, and this could be detected with a simple
polarimeter, providing a direct method of observing the effect
of shear on polarised electromagnetic radiation.

4. New fluctuation-dissipation theorems

The three principles of Section 1 imply the existence of new
fluctuation—dissipation theorems, an ideal vehicle for the
development of which is the recent theory of Morriss and
Evans [31], valid for arbitrary applied field strength. We refer
to this as Morriss Evans theory. It is an important step
forward in our understanding of n.e.m.d. and provides many

new insights to the way in which molecular and atomic.

ensembles respond to applied force fields of arbitrary
strength. The main result of the theory is the relation
F,

(B(1)y = <B(0)) — ;—T-fo {B(s)J(0)) ds (29)
where B(t) is an arbitrary time dependent phase variable of
the molecular (or atomic) ensemble, and where F, and J are
respectively the applied force field and dissipative flux,
defined by

dr
Here H is the hamiltonian. The integrand on the r.h.s. of

eqn. (29) is a transient time correlation function, which plays
a major role for non-linear, non-equilibrium statistical

—JF,. (30)
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mechanics analogous to the partion function in thermo-
dynamics and equilibrium statistical mechanics. Equation
(29) generalises the Green-Kubo relations {39, 40] and links
the non-equilibrium value of a phase variable (the l.h.s.) to
the integral over a time correlation function between the
dissipative flux J(0) in the equilibrium state and B at a time
s after the external field F, has been turned on. One example
of the theorem at work is the relation [39]

Py _ V1
~ S = [ (P ()P,(0)) ds

n() = (31
for the viscosity, which reduces to the well known Green—
Kubo relation in the limit y — 0. Here 7y is the strain rate and
P, is the off-diagonal component of the pressure tensor.
Equation (31) involves a time correlation function between
P.(0) from the equilibrium system and P, (s) from the
perturbed system, and is valid for arbitrary strain rate y. The
Morriss—-Evans Theorem thus deals indiscriminately and con-
sistently with linear and non-linear response, thus removing
the need for linear response approximation.

4.1. Application of the theorem to dielectric relaxation and
the dynamic Kerr effect

We consider a static electric force field E, applied to a dipolar
molecular ensemble. It is well known that the field interacts
with each molecule through the latter’s multipole moments,
i.e. the dipole, quadrupole, octopole, and so on. Without loss
of generality we can consider that part of the interaction
between field and molecular dipole moment. This is charac-
terised by the torue — g x E where g is the molecular dipole
moment. The energy u - E supplements the system hamil-
tonian. Thus, eq. (29) reads
E, n .

(B(r)y = <B(0)> — T fo {B(s)pz(0)) ds, (32)
where i, is the time derivative of u,, and is known as the
“rotational velocity”. Equation (29) thus reads, for example
Ul = ~ T2 J! a0 . (33)
In Eq. (32), B(s) is in general any phase variable of the N
molecule ensemble, and this equation allows us to make
account of the set of non-vanishing c.c.f.’s induced by E. of
arbitrary strength, E. # 0. The following are examples of the
new fluctuation—dissipation theorems governing dielectric
relaxation and the dynamic Kerr effect.

Setting B(r) to u., we recover a generalisation of the fluc-
tuation dissipation theorem of linear response theory as
customarily applied to dielectric relaxation
el = = T2 J! <o ) ds (4
relating the orientational transient {u,(f)> to the non-
equilibrium time correlation function which is the integrand
on the right hand side. Traditional experimental methods use
HE, < kt, but eq. (34) shows clearly that for any applied
electric field strength the orientational fall transient is depen-
dent on the field strength. Linear response theory equates the
time dependence of the fall transient and the equilibrium
orientational autocorrelation function.

The traditional approach also has no method of explaining
why time c.c.f.’s such as those of eq. (10) exist for E # 0 and
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vanish if and only if E = 0. However, this is easily accom-
modated by the new Theorem using, for example, B({) =
v(?) or w(?), giving the relations

Ez ! .
W@y = = 2] <ols) - a0)> ds (35)
and

Ez
(1)) Z Jy () - () ds. (36)

The fluctuation~dissipation theorem of type (35) shows the
presence of a non-vanishing velocity transient due to the fact
that the time c.c.f. {v(?) - a(0)) exists in frame (X, Y, Z), both
for E # 0and E = 0 from the first principle of group theore-
tical statistical mechanics. The fluctuation dissipation theo-
rem of type (36) shows the existence of a non-vanishing
angular velocity transient due to the fact that the time c.c.f.
{a(t) * (0)> exists in frame (X, Y, Z) for E # 0 (third
principle of group theoretical statistical mechanics) but
vanishes in this frame when E = 0 (first principle). The
transient c.c.f.’s exist for 0 < s < ¢ in both cases. We can
obtain a third expression merely by multipying egs. (35) and
(36), i.e.

<oy = (2] [[ o+ ko)

x ds fo <o(s) * @(0)> ds

which involves the product of translational and rotational
transients.

(37)

4.2. Experimental observations

The new fluctuation—dissipation theorems can be investigated
by computer simulation for all E,, but also provide an
opportunity for the experimental observation of transient
averages caused by cross correlation functions. An interesting
example is (v(?)). This vanishes both at field-off thermo-
dynamic equilibrium and field-on equilibrium (the steady
state) because of time reversal symmetry. However, it may
exist as a transient, and should be observable using conven-
tional apparatus to pulse the molecular ensemble with an
applied E,. A small net translation should be transiently
observable, akin to the well known phenomenon of dielectro-
phoresis {41] usually attributed to non-uniformities in the
applied electric field, i.e. to field gradients. Similarly, eq. (36)
shows the existence of a non-vanishing transient angular
velocity, which may be observable by techniques sensitive to
molecular angular motion, such as far infrar red absorption
or nuclear magnetic resonance relaxation. The transient
angular velocity is intuitively understandable in terms of a
removal of external torque.

5. Computer simulations

To illustrate the results of g.t.s.m. in liquid water the effect of
an external Y axis electric field was simulated using methods
and conditions described fully elsewhere [42]). The results
were as predicted by theory, i.e. the symmetry pattern was
changed in frame (X, Y, Z) and remained unchanged in frame
(x, y, z). Similar results were obtained for liquid methyl
chloride of C;, symmetry for a range of auto and cross
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correlation functions. There was detailed agreement with
g.t.s.m. in both cases. It is expected that further work will
pursue the consequencies of shear in a molecular liquid in
frames (X, Y, Z) and (x, y, z), and in particular will con-
centrate on shear induced correlation functions of relevance
to depolarised light scattering and the Weissenberg effect.

6. Application to angularly resolved pair radial distribution
functions

The radial distribution function has been resolved into
angular components by Heyes et al. [38] in the context of
Couette flow and its computer simulation. This is a probe of
atomic and molecular liquid structure which measures the
spatial anisotropy of molecules or atoms around any member
of the ensemble. It is denoted g, [38, 39] and can be used to
probe the rheology of gaseous flow, for example Refs [38].
The subscripts denote Cartesian components of frame
(X, Y, Z) and peaks in g, represent the amplitude and
position of correlation shells of given symmetry. The radial
distribution function can refer to pairs of atoms, denoted i
and j, or to multi-particle correlations involving clusters. For
pair coordination shells an angular resolution method was
found by Heyes and Szczepanski {38] to be critically import-
ant in isolating structural changes that the complete r.d.f.
tends to obscure. These strong, anisotropic, structural
changes are induced by shearing a liquid or gas with a strain
rate such as dv,/0Z where v, is an applied velocity com-
ponent. Angular resolution of the pair r.d.f. showed local
shearing strain through computer simulation.

6.1. The D symmetries of pair and four particle radial
distribution functions

We refer to the angularly resolved accumulator function of
Heyes and Szczepanski {38], f,5. The space around each atom
is divided into concentric spherical shells of thickness dr. For
each atom in the shell in the range r + dr/2 the function

N <RnuRﬂu>

- N Z ) (R

is accumulated in a computer simulation, usually going out as
far as half the molecular dynamics box side. In eq. (38) the
accumulator function f,4 is given with respect to the pair
r.d.f.,, and consequently R,; is the ath Cartesian component
of the vector R, joining particle i and j. N is the number of
atoms over which the number is computed. The angularly
resolved r.d.f. is then

(38)

VY,
gstn = 20 (39)
where V(r) is the volume of the shell bounded by r + dr/2:
V(r) = 4nrér.

The conventional pair r.d.f. leaves out of consideration the
Cartesian components and effectively replaces R,; and Ry; in
eq. (38) by R;. The product inside the ensemble average
brackets { ), in eq. (38) is a particular scalar element of the
tensor product (R, R, >, whose complete D symmetry is

p'D" = D® + D + DY (41)

In the absence of an applied field, such as shear, only the
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ensemble average with the scalar symmetry D{” can have a
finite value. This gives the conventional radial distribution
function

<Rx.ij.y> = <Rh'jRYij> = <RZinZij> = (R, Ru>

(42)

We may extend the symmetry arguments to r.d.f.’s at field-off
thermodynamic equilibrium involving more than two atoms,
i and j. If we consider three atoms, i, j, and k, and denote the
vectors connecting them by

Rl—R R2_=’Rik; RJER

we may in general attempt to construct the angularly resolved
triplet r.d.f., whose scalar elements are contained within the
triple tensor product (R, R,;R;> with twenty seven possible
components. However, the first principle of g.t.s.m. shows
that all of these must vanish at thermodynamic equilibrium
from the Clebsch-Gordan expansion

T(R)T(R)T(R;) = D,’D,D]’
= D + 3D + 2D + D{

s

I

(43)

which does not contain the totally symmetric irreducible
representation D{*. This type of triplet r.d.f. therefore vanishes
at equilibrium. Considering a cluster of four atoms, denoted
by i, j, k, and /, there is a possible total of six interconnecting
vectors denoted

R =R;; R, = Ry;
R; =

Rkl; R6 = Rjk'
The angularly resolved quadruplet r.d.f. has a total of 729
scalar components contained within (R, R,R,;R,R;R,>. the
product of D representations is overall gerade, even to parity
inversion

(Dél))ﬁ —_

R] = R,‘,; R4 = R .

il s

15D + 36D + 40D® + 29DY + 15D

+ SD&(’S) + D&(’é) (44)

and contains the D" fifteen times, signifying fifteen indepen-
dent types of quadruplet angularly resolved r.d.f.’s at equi-
librium. These are described in the Appendix as type (1)

(R, " R,)(R - R.)(Ry - Ry);
I=1...,6,...; N=1,...,6

to type 15

(RR)):(RGRD) . . .- (RyRYY;
I=1...,6;...; N=1,...,6

which can be observed in principle in a computer simuiation
to characterise the angularly resolved equilibrium structure
of the atomic liquid in respect of the individual quadruplet
clusters it contains. A theory of liquid structure must be
capable of reproducing both pair and quadruplet r.d.f’s
self-consistently and match the computer simulations. It is
doubtful whether this has been achieved yet, even in atomic
liquids.

6.2. The effect of shear on the pair and quadruplet angularly
resolved r.d f.’s

Heyes and Szczepanski have verified [38] their existence by
effect of shear on gases, liquids, colloids, gels, and suspen-

sions, and have discovered [38, 39] the role of the angularly
resolved pair r.d.f. in characterisations of local shear strain-
ing. Recently, new time correlation functions between atom
velocity components have been simulated by Evans and
Heyes [16, 17] using SLLOD and PUT algorithms of non-
equilibrium molecular dynamics computer simulation. These
results were anticipated with the third principle of g.t.s.m.
and do not appear in conventional text book treatments of
rheology. It is shown in the appendix how the third principle
of g.t.s.m. generates many new angularly resolved cluster and
sub-cluster steady state ensemble averages that form the basis
of the relevant accumulator and radial distribution functions
discovered by Heyes and Szczepanski. Starting our discussion
with the simplest of these, described in egs. (5A) of the
Appendix, we have noted there that in the special case 7 = J
Heyes and Szczepanski have verified [38] their existence by
SLLOD simulation. For I = J they form the XZ and ZX
components of the angularly resolved r.d.f. (2) for an applied
strain rate dv,[0Z.

This is precisely the outcome of principle (3) in this simple
case.

Thecase 7 # Jof eq. (5A) of the appendix corresponds to
whatis termed there a “subcluster” average, in this case a pair
sub-cluster of a four atom cluster. Of the six possible ways of
linking the four atom cluster we are considering only two,
and forming r.d.f.’s based on averages of the type (R, Ry, ).
These angularly resolved components appear in response to
shear.

When considering four out of the six ways of linking a four
atom cluster the appendix outlines the many new averages
that the shearing field produces. Among these are types
(i)—(vi) of the Appendix. Taking Type 1 as an example, we
choose asexamples I = 1,J = 2, K = 3, L = 4. The Type
(i) average is therefore {R; - R, R, - R,>. We are looking
at an ensemble average involving the jj, ik, il, and jl pairs
of the cluster of four atoms i, j, k, and /. The Type (i) ensemble
average written out in terms of scalar components gives
accumulator functions for the four vector sub-clusters. For a
shear induced by dv,[0Z they are (1)

IR AN, < {RRRR}>
Jozr = 5 X LLYX({R,-R,R, R
@

fYYZX’ (3)fZZZX, (4)fXXXZ’ (S)fYYXZ, (6)fZZXZ'

Each assumulator function provides its own angularly
resolved radial distribution function

Vixzx(r)
NV(r)

and so on. The Type (iii) of the Appendix produces the new
accumulators : (7) fizxz, (8) fzxzxs (9) fzxxz» and (10) fxzzx;
providing plenty of scope for the use of computer simulation.
All these results are obtained from a simple application of the
third principle of g.t.s.m.

Exxzx(r) = (45)

6.3. Non-equilibrium computer simulations

Non-equilibrium molecular dynamics (n.e.m.d.) computer
simulations were performed to test these predictions. PUT
shear flow simulations on the Lennard-Jones (LJ) fluid were
made at p = 0.8442 and T = 0.722 using a reduced shear
rate of = 0.0 and 1.0. The simulations were conducted for
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20000 time steps after equilibration, on 108 LJ molecules. To
facilitate the computations, the four particle symmations f,g,5
were made for a restricted set of interactions in which the pair
separations were less than 1.16. We consider this a valid
simplification because the same symmetry rules should apply
to a homogeneous subset of four particles as to the total
especially as the major source of non-Newtonian behaviour
occurs from structural distortions in the short pair separation
range. (For the purposes of summation j and k are considered
to be neighbours of i, and / is considered to be a neighbour
of j.) Taking 100 averages evenely separated over 20,000 time
steps (At = 0.004 in reduced units) we found thataty = 0.0,

Sxxzx» frvaxs Jzzzxs fxxxz> fyvzys fzzxzs Fryvx, and fyyyz, are
statistically zero +0.002. However, at the moderately shear

thinned state of y = 1.0 (n = 2.04) fyxzx, fyvzxs fzzzxs fxxxz>
fyvyz, and f,,,, are all statistically non-zero, whereas fyy,y
and f,, are statistically zero, in detailed agreement with the
third principle of g.t.s.m.

6.4. The molecule fixed frame (x, y, z), principle 2 of
g.t.s.m.

Principle 2 refers to a molecular rather than an atomic liquid,
and in this case allows the evaluation of ensemble averages in
frame (x, y, z) of the point group character tables. Radial
distribution functions can also be computed for molecular
liquids in frame (x, y, z) by mapping the D representations as
described earlier in this paper for time correlation functions.
Principle 2 then provides the number of non-vanishing
averages in the frame (x, y, z) of the point group. Some of the
mappings relevant to molecular point groups are summarised
in the table of Section 2. A radial distribution function with
symmetry D + D’ + D{? in frame (X, Y, Z) is equivalent
to

r(<R|jR5>X)‘:) = Al + (AZ + Bl + BZ)

+ (24, + A, + B, + B,) (46)

showing three occurrences of the point group’s totally
symmetric irreducible representation 4,. By Principle 2 there
are three possible independent occurrences in frame (x, y, z)
providing valuable extra information on the structure of the
atomic or molecular liquid using centre of mass or atom pair
radial distribution functions.

In the presence of shear, additional D{” and D’ type
averages are formed in frame (X, Y, Z). Their equivalents in
frame (x, y, z) are independent averages of the Type 9, i.e. the
symmetry does not change but the structural details of the
pair radial distribution functions reflect the imposed shear. In
frame (X, Y, Z), as we have seen, there are extra statistical
correlations due to shear. Similar results can be predicted for
other sub-cluster averages of interest.
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Appendix

In this appendix we illustrate the g.t.s.m. rules for isolating
the possible non-vanishing angularly resolved radial distri-
bution functions up to order four (the quadruplet), referred
to as “‘cluster averages”. We first explain the following basic
notations and definitions.

(1) The scalar product of two position vectors R, and R,
has the symmetry D{.

R, ‘R, = RyR;x + RyRyy + RzR,;. (1A)
(2) The vector product has the symmetry D"
r ra
RIYR.IZ - RIZRJY
R, xR, = [R,ZR,, - R,,R,z] (2A)
RIXRJ)’ - RIYRJX
(3) The symmetry D{® is the off-diagonal
r ra
0 R R,y R, R,
RR] = [ RyR,y O R,,R,z]. (3A)
RIZRJX RIZRJY 0

The sum of the diagonal elements of this matrix is the scalar
product R, - R,. The double dot product R,R? : Ry RY is the
trace of the matrix product. With these definitions it is con-
venient to develop a systematic shorthand notation with
which to examine the possible non-vanishing ensemble av-
erages in angularly resolved pair and quadruplet radial distri-
bution functions.

Field-free equilibrium
(1) The pair or doublet cluster average is generated by eq. (44)
of the text. We denote the scalar part of the r.h.s. (i.e. D{) by
“0”. In field free equilibrium this denotes the one possible
type of radial distribution function as described in the text.
(2) The quadruplet cluster average contains no less than
fifteen D{” occurrences, denoting by g.t.s.m. fifteen indepen-
dent types of six vector ensemble averages. To find their
different meanings we must examine the generating product
of D representations

(D" DY = (DY + D + DY (4A)

and denoting D" by “1” and D{” by *“2™ gives the following
27 possibilities

000 001 002
100 101 102
200 201 202
010 o011 012
110 111 112
210 211 212
020 021 022
120 121 122
220 221 222

The symbol “000” for example, means a scalar product
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(D")’. Each of thse D{’s have originally come from the dot
product part of D{" D{", representing the dot product of two
position vectors, e.g. R, - R;. G.t.s.m. tells us that the ensem-
ble average (R, - R,) exists at thermodynamic equilibrium.
Thus, what is represented by “000 is a triple dot product
average such as (R, - R;Ry - R, Ry, - R};>. This is one of the
fifteen cluster average types represented by the “15D{”” part
of eq. (44) of the text. The origin of the other fourteen is made
clear by the bolded sets of code numbers in.the above section
of twenty seven. Each of the bolded code numbers produces
DY in some way. For example 101 represents D{" D D",
which corresponds to an allowed ensemble average of the
type {R, x R, Ry - R, - R,, x R)>). Thisis the basis upon
which the accumulator functions can be built for the angularly
resolved radial distribution functions of a cluster of four
atcams, interlinked by the six vectors R, . . . R, as defined in
the text. The complete set of fiteeen average types is made up
of :he following generic members, where I, J, K, L, M, N can
each take any value from 1 to 6. This set can be investigated
in many interesting ways by computer simulation for / = 1,

,6,...;N=1,...,6.
Type |
(R, R,Ry R, Ry "Ry
Type 2
(R, x R,-Ryx R, -Ry x Ry
Type 3

<R/R}-3 RKRZRM *Ry>

Type 4

(R;,"R,-Rx x R, Ry x Ry
Type 5

R, x R,Ry x R, -R,, - Ry
Type 6

R, x R, R, x R,“R,, x Ry
Type 7

(R, x R,*R; x R, :R,RY>
Type 8

{R; x RT:R:R, R, x R\
Type 9

(R,RT:R; x R,:R,R,>

Type 10

(R, - R, - RxR]:R,R}>

Type 11

(R, x R,R,RT:R,, x R,
Type 12

{R; x R,:RyR!:R,R]>

Type 13

<RIRJT5RKRZ:RM *Ry>

Type 14

(R,RT:RRT:R, x Ry

Type 15

CRR]:RyR]:RyRY>
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Angular resolution in the fifteen cluster products

These quadruplet cluster ensemble averages intrinsically
involve angular resolution with Cartesian components,
because the various vector and tensor products may survive
ansemble averaging. Only in Type 1 is the product restricted
to Cartesian components of the same type. Clearly, Types 1
to 15 contain a vast amount of information about intrinsic
structural correlation in an atomic liquid between a given
four atom cluster of the complete N atom ensemble.

Sub-clusters

There is no difficulty, in principle, in looking at, for example,
a Type 1 or Type 2 cluster r.d.f. with computer simulation,
provided enough power is available to obtain good statistics.
If not, the quadruplet correlation may be broken down using
less than the complete set of six vectors R,,... R,;. Using a
subset of any four of these, R,, . . . , R,, means that there are
available three types of sub-cluster ensemble averages of the

following types, for 7 = 1,...,6;...; =1,...,6.
Type 16

(R, -R;Ry ‘R,

Type 17

(R, x R, Ry x R,)

Type 18

{R,R}:R(R]>

which may be more accessible. Types 16 to 18 provide infor-
mation about the nature of correlation in a cluster of four
atoms using four out of the six possible ways of linking the
four atoms with atom to atom position vectors R. G.t.s.m.
shows that there are three ways of doing this. It also shows
that all ensemble averages over products involving odd
numbers of position vectors will vanish, and that we cannot
use sub-clusters involving five, three, or one linking vectors(s).
Considering averages using two out of the six possible vectors
gives the nineteenth generic type <R, - R;). Note that
angular resolution is not intrinsic to Types 1, 16 and 19, but
is implicitly present in all cluster and sub-cluster averages at
field-free equilibrium. We now show that the presence of
simple strain rate dv,/0Z induces a vast number of possi-
bilities, all of which can be investigated in principle by com-
puter simulation.

. Steady state in the presence of shear

The presence of shear with symmetry D + D" + D
brings into consideration the third principle of g.t.s.m., as
explained in the text. The effect on Type 19 generic sub-
clusters is to make possible the existence of D{" and D{
ensembles averages represented respectively by (R, x R,)
and {R,R?>. For an applied strain rate involving dvy/0Z the
extra ensemble averages

(RizR;x — RyRyz> # 0; (R;zRy) # 0;{R;xR;> # 0
(5A)

are expected in the presence of shear at the steady state. For
four vector sub-clusters and the full six vector averages of
Types 1 to 18 the third principle of g.t.s.m. predicts respec-
tively the appearance of six extra DY type averages and six
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extra D{" type averages (four vector sub-cluster) and for the
full six vector cluster no less than forty new types of D{?
symmetry and thirty six new types of D{” symmetry. We
restrict consideration here to the four vector sub-clusters. The

new types of D symmetry are, in general, for/ = 1,...,6;
...;L=1...,6

Type (i)

(R, *R,)(R¢ x R.))
Type (i)

(R, % R))(R - R.)>
Type (iii)

(R x R;) x (R x R.))
Type (iv)

{(R; x R))(x)RxRL>
Type (v)

(R,R7(x)(Rx x R.))
Type (vi)

(R,RT(x x)(RcRL)>

In Types (iv), (v) and (vi) the symbols (x) and (x x) are
defined as forming vector products between a conventional
three element column vector and the vector part of a three by
three tensor. The latter is defined as follows. If R, R}, of D
symmetry, has the form

[ A

0 a b

c 0 d

e /O
then its vector part, of D{" symmetry, is the three element
column vector

ra 0 rA
d—f
e—b
a—c

and the product R, x R,(x)RyR] for example is the con-
ventional 4 x B where

ra rA
d—f
A=R xR,; B=|e-b
a—c

Similarly we can obtain the six D{” averages giving a total of
twelve new sub-cluster averages in response to shear. Each of
these contains many angularly resolved components which
can be investigated with simulation. Note that type (5A) with
I = Jhave been computed by Heyes and Szczepanski [2], but
that the others are unexplored as yet. They are likely to
produce a great deal of information about non-Newtonian
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effects [9-12] such as shear thickening and thinning, the onset
of convective and structural turbulence, the formation of two
and three dimensional string phases, electrorheology, colloids,
and so on. They are incorporated in egs. (38) and (39) of the
text as described for the simple pair r.d.f.
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