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GROUP THEORETICAL STATISTICAL MECHANICS OF THE EVANS EFFECTS

PHASE CHANGES PRODUCED BY INHOMOGENEOUS ELECTRIC AND MAGNETIC FIELDS

M.W. EVANS

Theory Center, Cornell University, Ithaca, NY 14853, USA

The effects first observed by G.J. Evans are explored in terms of the symmetry of ensemble averages. using the
principles of group theoretical statistical mechanics (GTSM). The effects include phase changes brought about by
inhomogeneous electric and/or magnetic fields, all of whose gradients are included in the treatment in a multipole
expansion of the force differential across the interface between a molecular crystal and a molecular liquid. It is shown by
GTSM that the force differential is generated by extra vector components which are sustained in the laboratory frame by
the symmetry of the molecular crystal but which vanish in the liquid. In this way the symmetry of the former is

continuously imparted to the latter.

1. Introduction

One of the effects first observed by Gareth J.
Evans [1-5] is a phase change brought about by
the application of an inhomogeneous electric
field across the interface between the two
phases. We refer to these important phenomena
as the “Evans effects”. Evans himself modestly
referred to the electric field effect as the inverse
Costa Ribeiro effect because it is in some senses
the opposite [1-5] of the generation of an elec-
tric potential across a phase interface first re-
ported by Costa Ribeiro [6].

The Evans effects are observed [1-5] across a
boundary between two phases, one of whose
symmetries is different from the R,(3) point
group of an isotropic molecular or atomic ensem-
ble. Thus, there appear to be no Evans effects
across the interface between a liquid and a gas,
for example. They were reported [1-5] by Evans
not only for inhomogeneous electric fields, but
also for inhomogeneous magnetic fields. There
appears to be also an analogous influence of
electromagnetic fields in the presence of mag-
netic fields. These observations appear to be
both fundamentally important and practically
useful, and amount to far more than just the
inverse of the (electric) Costa Ribeiro effect.

In this paper we use the three principles of
group theoretical statistical mechanics (GTSM)

[7-12] to propose a mechanism for crystal/liquid
phase changes brought about by externally ap-
plied inhomogeneous electric and magnetic
fields, all of whose gradients exist in general in
frame (X, Y, Z) of the laboratory. In section 2,
the principles are briefly recounted, and applied
in section 3 using a multipole expansion of the
linear force differential cross the ideal (defect
free) crystal to liquid interface. The 32 possible
point groups of a molecular crystalline lattice are
typified by the lattices of most and least symmet-
ry, respectively the cubic and triclinic crystal
point groups, for which some details of the calcu-
lation are appended. It is concluded that an
Evans effect is made possible by force compo-
nents which are sustained in general by the point
group symmetry of the crystal lattice, but which
vanish in the point group R,(3) of an isotropic
molecular liquid. The force components in the
crystal are not all balanced across the interface
by those in the liquid, and as a result the inter-
face moves in to the phase of lesser symmetry
(the liquid).

2. The principles of group theoretical statistical
mechanics

This new branch of statistical mechanics rests
on three principles {7-12], with which the well-
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developed methods of point group theory [13-
15] are applied to ensemble averages. The princi-
ples allow conclusions to be drawn on the basis of
symmetry alone. They have already provided
valuable new insights in, for example, micro-
rheology, forecasting the existence of fundamen-
tal indicator cross correlation functions, confir-
med by computer simulation [16], shear induced
light scattering from atomic ensembles [17], and
other computer simulated and previously un-
known phenomena such as thermal conductivity
from combined shear and elongational stress
[18]. They also anticipate the existence of shear
induced spectroscopies of various kinds based on
new types of asymmetric (irreversible) indicator
ccf’s [19-21]. One of these is shear induced
dielectric spectroscopy [19]. The asymmetric
ccf’s are in general non-Markovian, non-linear
and irreversible, and the symmetry principles
apply equally in linear and non-linear response
theory, to field-free equilibrium, field-applied
steady states, and transient processes induced by
the application of external fields. In non-linear
optics they anticipate the existence of several
new birefringence phenomena [22-23]; for the
nematic, cholesteric and smectic phases of liquid
crystals they define non-vanishing ensemble av-
erages in the laboratory, director, and molecular
frames of reference [26-28]. In the molecular
frame of isotropic ensembles they confirm data
available from extensive computer simulation
{29, 30].

Principle (1) is the Neumann or Curie princi-
ple expressed in the language of group theory
[7-12]. 1t operates in the laboratory frame (X,
Y, Z). Principle (2) is its equivalent in the
molecule fixed frame (x, y, z) of the literature
point group character tables, and evolved out of
work by Whiffen [29] and the present author
[7-12]. Principle (3) is a simple but powerful

cause effect theorem defining the effect of causal .

external fields on an ensemble. It is equally valid
for linear and non-linear response and for all
conceivable fields of force. Principle (1) states
that the thermodynamic ensemble average
(ABC . ..) of the atomic or molecular variables
A, B, C,...exists in frame (X, Y, Z) if the
product of their individual symmetry representa-

tions contains at least once the totally symmetric
representation of the point group of the ensem-
ble at field free thermodynamic equilibrium.
Principle (2) states that this average exists in the
molecule fixed frame (x, y, z) if the product of
representations in the point group of the mole-
cule contains the totally symmetric representa-
tion of that point group at least once. Principle
(3) states that in the steady state in the presence
of an applied field of force, or in the transient
condition immediately following the imposition
or removal of such a force field, new ensemble
averages may appear whose symmetry is that of
the applied field.

The application of these principles requires
definitions of the appropriate point groups and
their irreducible representations from point
group theory, and this is possible [7-12, 29] in
the isotropic molecular liquid condition and also
in the 32 point groups of the ideal (defect free)
molecular crystals, ranging from triclinic to cubic

(31].

3. Muitipole expansion of the external force
fields, inhomogeneous electric field

It is assumed that the electric field applied to
the crystal/liquid interface is in general
inhomogeneous [1-5], so that all gradients exist
in the laboratory frame (X, Y, Z). The linear
force imparted to the liquid and crystal parts of
the interface is assumed in consequence to take
the general form

(F),,=a({qE) + V(b{ uVE) + c(QVVE)
+d(QVVVE) + -+ )., ey

(F) ey = (a,gE) + V((b, pVE) + (¢, QVVE)
T(d QVVVE) + - - -).,y, (2)

where ( ) denote thermodynamic ensemble av-
eraging [32-34]. Here a, b, ¢, . . . are scalar con-
stants. The first term on the right-hand side
involves net charge, ¢, if present, and the others
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multiply the appropriate molecular multipole
moments and field gradients. Here p is the
permanent molecular dipole moment (a three
component vector), @ is the permanent molecu-
lar quadrupole moment (a nine component ten-
sor), {2 is the permanent molecular octupole
moment (a 27 component tensor), and so on.
The notation VE stands for the complete product
of the gradient vector V and electric field vector,
with nine components in general, VVE has 27
components in general, and so on. Thus, the
complete product of dipole moment and com-
plete ficld gradient has 27 scalar components.
The product VVVE has 81 scalar components,
and so on. These complete (n-order tensor)
products can be decomposed into independent
vector parts in each point group using the rules
of group theory. In egs. (1) and (2), the
operator V implics a sum of independent vector
components of each n-order tensor product. It
can be shown by GTSM that there are always
more vector components in the crystal part of the
interface than in the liquid. As a consequence,
there is a linear force differential across the
interface, i.e. there are more non-vanishing com-
ponents in the solid than in the liquid, and the
interface is forced into the liquid. The crystal
grows [1-5] under the influence of the external
inhomogeneous field. More generally the phase
whose symmetry allows the greater number of
vector force components grows at the expense of
the other. Thus, a nematic grows at the expensc
of an isotropic, a crystal at the expense of a
nematic, and so on. When the symmetries of two
phases reduce to the same point group, there is
no symmetry effect (e.g. gas and liquid). This
agrees qualitatively with observation [1-5]. In
atomic ensembles (e.g. the interface between
crystalline and liquid helium) charge has to be
present for the Evans effect to occur, because
there are no multipoles. In interfaces of carbon
tetrachloride molecules, the first effective mul-
tipole is the octupole, and in sulphur hexa-
fluoride systems the molecular hexadecapole mo-
ment. In the absence of charge the electric Evans
effect is therefore a potentially valuable measure
of the appropriate molecular multipole moment
multiplied with the appropriate field gradients.

3.1. The isotropic liquid phase

The point group is R, (3) with the irreducible
D representations [7-12]. The n-order tensor
ensemble averages on the right-hand side of eq.
(1) cach have D representations that include m
times the irreducible representation D" of the
polar vector average (F). These are given as
follows [7-12], wusing the Clebsch—Gordan
theorem to multiply D terms:

I'(4E)= D"
N(pVE)=D +3D" +2D? + D"

I(QVVE)=3D\"+9D\" +9D" +7D\"

) (5)
+3D.+ D,

I'(QVVVE)=25D'" + --.

Thus the charge-field term contains D'"" once,
the dipole-field gradient term contains D"’ three
times, the quadrupole-gradient of the field gradi-
ent contains D'' nine times, and the octupole
term contains D" 25 times. These numbers
signify the number of ways in which a vector can
be produced in each term on the right-hand side
of eq. (1). The details of how the vector appears
from the tensor are given in appendix A. In
R, (3) a vector quantity can always be written as
the sum of three scalar components multiplied by
the unit vectors i, j, and &k in axes X, Y, and Z,
respectively. The ensemble is overall isotropic,
so that each scalar component is the same on
average. There is only one independent scalar
component of each vector type. This is summar-
ised by the numbers in brackets in table 1. (In
the crystal lattices this may no longer be the
case, there may be more than one independent
scalar components of the vector.)

In general, all the different types of force
vectors summarised in table 1 are generated in
the molecular liquid by an inhomogeneous elec-
tric field and its gradients. The term on the left
hand side of eq. (1) is the vector sum of all these
components.
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Tables 1 and 2

Molecular linear force components in an inhomogeneous electric or magnetic field across a phase interface.

Point Phase T({F)) No. of independent vectors

yToup - - -

¢ V({(gE)) V((WVE)) V((QVVE))
R,(3) Liquid D\’ 1(1) 3(3) 9(9)
0(434) Cubic ‘ 1(1) 4(4) 20020)
0, (m3m) Cubic T, 1(1) 4(4) 20020)
T,(43m) Cubic T, 1(1) 4(4) 20(20)
T,(m3) Cubic T, 1(1) 7(7) 41¢41)
T(23) Cubic T 1) 7(7) 41(41)
C(1) Triclinic 3A 1(3) 9(27) 54(162)
c(l) Triclinic 3A, 1(3) 9(27) 54(162)

Note: For a magnetic field, replace E by B, and clectric multipoles by magnetic muitipoles where appropriate.

3.2. Cubic and triclinic molecular crystals (solid
phases)

The exercise above can be repeated for the
five cubic and two triclinic crystal lattices using
the appropriate point group and the second prin-
ciple of GTSM applied not to surviving scalar
averages, but to surviving vector (force compo-
nent) averages. The frame (x, y, z) of principle
(2) becomes the frame of the crystal lattice. The
latter can always be identified with the labora-
tory frame (X, Y, Z), and in general [15, 32]
there are 32 distinct crystal point groups, ranging
from triclinic to cubic. Some details of the calcu-
lations are given in appendix B and summarised
in table 1.

This table shows that there are always more
types of vector components (with their indepen-
dent scalar types in brackets) sustainable in the
crystal lattices than in the liquid ensemble the
other side of the interface. As a result, the
vector sum of force components is in general
different in magnitude and direction on each side
of the interface, i.e. there is a resultant force
vector across the interface, and one phase must
be forced into the other by the applied

inhomogeneous electric field. The way in which

this occurs is governed by principle (3) of
GTSM, the symmetry of the resultant force vec-
tor is imparted to the phase of lesser symmetry,
the liquid.

The exercise may be repeated for tensor com-
ponents of force gradients, gradients of force
gradients, and so on. The complete pattern of

resultant symmetry is imparted to the liquid by
principle (3), and the crystal grows into the
liquid as observed [1-5], for example, in ice/
water. In accordance with these considerations,
the liquid has never been observed to expand
into the solid lattice; the latter never appears to
melt at the interface [1-5].

3.3. Inhomogeneous magnetic field

The force imparted across the crystal/liquid
interface by an inhomogeneous magnetic field
can be described in general by an expansion
analogous to (1) and (2):

(F),=W({ap,VB) + (bQ ,VVB)
+(c2,VVVB) + - ), . (3)

<F>u'ys = V(<al”BVB> + <b1Q1;VVB>
+{c, 2,VVVB) + --- )Cr‘VS . (4)

Here pm,; is a permanent molecular magnetic
dipole moment assumed to be fixed in time in
the molecular frame. @, is a permanent, time
invariant, molecular magnetic quadrupole mo-
ment, £2, the octopole moment, and so on. The
gradients of the magnetic field are n-order ten-
sors, in analogy with (1) and (2).

The analysis of the magnetic Evans effect [1-
5] proceeds as for the electric analogue, using
the appropriate irreducible representations in
each point group of the magnetic field and its
gradients, and the molecular magnetic multipole
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moments. Some details are given in appendix C
and the exercise summarised in table 2.

4. Discussion

The GTSM analysis given here is quite gener-
al, and provides the following indications.
(1) The electric and magnetic Evans effects [1-5]
depend on the different symmetries on the liquid
and crystalline sides of the interface. If there is
no symmetry difference (as in a liquid/gas inter-
face) there is no symmetry effect.
(2) The interface between environments of dif-
ferent point group symmetry is in general forced
into that of lesser symmetry. Thus, a crystal
grows into a liquid, a smectic into a nematic, a
nematic into an isotropic liquid, a crystal into a
gas and so on.
(3) The relevant consideration is the point group
of the environment on cither side of the inter-
face, not the point group of the molecules them-
selves. As a consequence, electric and magnetic
Evans effects are expected in molecular solu-
tions, suspensions, colloids, aggregates and so
forth, provided that the environmental point
groups are different on either side of the inter-
face. This appears to provide plenty of scope for
inducing industrially interesting effects across an
interface such as a membrane, one example
being aggregation of colloids. Many other poten-
tial applications have been reviewed by Evans in
the source literature [1-5].
(4) The mechanism proposed in this communica-
tion accounts for dielectrophoresis and electric
and magnetic levitation effects [1-5] through the
fact that field gradients produce linear force
through interaction with the appropriate molecu-
lar multipole moment.
(5) These symmetry considerations are unaffect-
ed by replacing the multipole moments by sums
over those of the N molecules in the ensemble.
By doing this we extend our analysis to multi-
body properties of the environments on either
side of the interface.
(6) When the point groups of distinct environ-
ments on either side of an interface are identical,
the number of allowed force components is the

same, but the magnitude of the components in
either environment may be different in general.
Considerations of symmetry alone cannot rule
out the possibility of a force differential induced
by inhomogencous electric or magnetic fields
across the interface between, for example, a
layer of carbon tetrachloride and a layer of
water.

(7) The point group analysis can be extended
straightforwardly to interactions of electromag-
netic fields with environments on either side of
the interface, i.e. to the electromagnetic Evans
effect. Similarly, we can consider any combina-
tion of electric, magnetic and electromagnetic
field symmetries.

Acknowledgements

The Academic Board of RHBNC is thanked
for the award of an Honorary Fellowship, and
Dr. G.J. Evans for many interesting discussions.

This research was conducted using the re-
sources of the Center for Theory and Simula-
tions in Science and Engineering (Cornell
Theory Center) which receives major funding
from the National Science Foundatjon and IBM
Corporation, with additional foundation from
New York State and Members of the Corporate
Research Institute.

Appendix A
Vector components of some tensor products

We examine further the three vector compo-
nents of a tensor product such as ( uVE) of the
text. The symmetry representation of this tensor
indicates that it contains three polar vector
types. These, written in full, are

Type 1: (m x (VX E)) or
((mxV)XE) (=V,(nVE))
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Type 2: (u(V-E)) or
((r-V)E) (=V,(RVE))
Type 3: (w(VE")] or
((uV)E) (=V,(puVE)).
WRVE) =V, +V,+V,.

It the applied electric field is inhomogeneous,
the three scalar components of each vector type
exist and are equal after thermodynamic averag-
ing in an isotropic molecular liquid environment.

Appendix B

Vector components in cubic and triclinic molecu-
lar crystals, inhomogeneous electric field

In this appendix we consider some details of
the calculations leading to table 1 of the text for
one cubic group and one triclinic.

B.1. Cubic crystal point group T, (43m)

The representation of a polar vector in point
group T, (43m) is T,, and this is found in column
two of table 1. This is the irreducible representa-
tion of both (F) and {(gE) in any molecular
crystal with this cubic point group symmetry.
The other columns of the table contain the num-
ber of times T, occurs in the relevant symmetry
representations of the higher order tensors at the
head of each column. For example, the repre-
sentation of ( uVE) is

I(pVE)=T,T,T, = T,(A, + T\, + E+T),)
=3T,+4T,+2E+ A, + A},

which is worked out using the rules for multiply-

ing irreducible representations [13-15] in the
point group T,. This contains T, four times,
signifying four independent ways in which a vec-
tor can be obtained from the tensor ( uVE) in
T,. There are four vector components of linear
force generated by ( uVE) in T, compared with
only three in the liquid point group R, (3).

In order to obtain the results of table 1 we
have used the fact that the representations in
R, (3) of the molecular dipole, quadrupole, and
octupole moments are respectively:

M(pw=D",
r(Q)=n"+ DY,
r@)=p,"+ D",

and have mapped [13—15] these representations
on to the appropriate crystal point groups.

B.2. Triclinic crystal lattice, C, (S,) (1)

The calculations proceed in the same way, but
in this case the three scalar components of each
vector are all independent. This is recognised by
the numbers in brackets in columns two to four.

Appendix C
Calculations for an inhomogeneous magnetic field

The calculations for table 2 proceed analog-
ously to those for table 1; using the symmetries
of the magnetic dipole, quadrupole and oc-
tupole, i.e.

I(py)=D,"
r(Q,)=D,"+ D,
r(2,)=0"+D.
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