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We develop new aspects of the statistical mechanics of non-Newtonian shear flow. The phenomena of non-
Newtonian flow in the dense liquid and gaseous states are investigated by NEMD computer simutations applied to
model monatomic fluids. We use mainly the PUT equations of motion for shear flow, but they are implemented in
a new way. We show that in non-Newtonian shear flow there appear non-vanishing correlation functions, of the
generic form, (v (Qv,({f)), and (P[0 {f)) for the soft-sphere and Lennard-Jones fluids in two and three
dimensions. These correlation functions are trivially zero in the absence of shear fiow. They become highty
structured with shear flow and generally have a finite negative value at ¢ = 0. They can exhibit time-reversal
asymmefiry, especially at iarge shear rate due to the vorlicity term in the strain rate tensor.

1. Introduction

At sufficicntly Jow shear rates the viscosity of a fluid is inde-
pendent of shear rate. This viscosity is called the Newtonian
viscosity. At large shear rates the viscosity of a fluid decreases
further below the Newtonian viscosity with increasing shear
rate. This decreasc in viscosity is called shear-thinning. At
still higher shear rates the viscosity of dense fluids increases
again dramatically. This is called shear-thickening. It only
occurs in dense liquids, unlikc shear-thinning which is
exhibited by fluids at all densitiecs The shear-thickening
regime is associated with a highly disordered microstructure
with large density fluctuations on an atomic distance scale,
hence its alternative name of ‘structural’ turbulence. This is
to distinguish it from ‘kinctic’ or ‘convective” turbulence,
exhibited by low-density gases under shear. One objective of
current rescarch is to understand the microscopic origins of
contribution, in this paper, is to use time corrclation func-
tions to characterise these non-equilibrium fluids. Time corre-
lation functions play a central role in describing the dynamics
of equilibrium and non-cquilibrivm states !-2 A shear velocity
ficld has a pronounced cflfect on the time correlation func-
tions of a simple fluid,>* making them sensitive probes of
tions that omly have non-zeyo structure in the presence of
shear flow, which make them particularly useful in this
respect.

lnthnrepmwedesmbethetheorythﬂptedxctsthose
time-correlation fanctions (CF) existing in (symmetry
breaking) simple planar shear flow, which are trivially zero in
the absence of shear flow for symmetry reasons. In addition,
we cxamine these CFs in the distinct regimes of non-
Newtonian flow and the onset of turbulence in the dense
liquid and gas phases.

The carliest simulations of shear flow using molecular
dynamics attempted to reproduce the experimental arrange-
ment of boundary-driven flow. The contents of the MD cell
were sheared by two boundarics translating in opposing
directions on opposite faces of the cell (in three dimensions).
Periodic: boundaries in one of the three dimensions was sacri-
ficed to achicve this. More recent advances in non-
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cquilibrium statistical mechanics have provided algorithms
that enable shear-thinning and the onsct of shear-thickening
to be simulated by molecular dynamics, maintaining periodic
boundary conditions in all three directions.>® Of these, the
SLLOD equations of motion wese the first to be applied
widely.® These equations of motion maintain the desired
velocity gradicat on an atomic distance scale throughout the
cell. The SLLOD equations of motion produce, in extreme
shear-thinning, what has come o be called the ‘string’ phase,
in both two and threc dimensions. This is so called because
the molecules reorganize from an cssentially random struc-
ture at zero shear rate to a new structure with long-range
order. The molecules reform into lines or “strings’ along the
flow direction. These strings pack into a triangular lattice,
when viewed in cross-section. The strings translate with an
average velocity with respect to one another, depending on
their position along the velocity gradient of the flow field (y
direction for a shear rate, dv,/dy} The string phasc is
observed in sheared colloidal suspensions, but would not be
observed experimentally in monatomic floids at the necessary
shear rates to produce shear-thinning. The reason for this
derives from the shear rates at which similar extents of shear-
thinning occur in these two systems. Colloidal fluids shear
thin at shear rates 3 = 1 571, depending somewhat on the size
of the suspending particle and its volume fraction. Mon-
atomic fluids, in contrast, shear thin at shear rates ~10'?
3~ !. The Reynolds number, Re = mI2pj/n, whexe m is the
mass of the particle, L is the separation between the shearing
plates, p is the number density and » is the shear viscosity,
predicts the conditions under which turbulence occurs. Turb-
vlence sets in when Re > 10°. For the same L we note that in
the shear-thinning regime, Re is ca lo"hrgrlormon-
atomic fluids than for colloidal suspensions.” Therefore,
aithough the string phase is an intrinsic property associated
with shear-thinning (and observed for colloidal dispersions),
shear-thinning followed by turbulence in monatomic fluids
occurs in essentially liquid-like structures with no long-range
order,

In a simulation we can suppress turbulence. The SLLOD
equations of motion suppress the velocity fluctuations inher-
ent in turbulence and thesefore promote and sustain these
strings at shear rates at which they would be unstable in the
real monatomic fluid. The effect can be demonstrated even by
simulation by comparing two cquations of motion that con-
strain the velocity fluctuations to differing cxtents. The
strings can be dismissed by constraining the velocity profile
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Aaly on a cell-distance scale, rather than at all points within

;y;rm)unmsu.OD using a profile-unbiased ther-

mostat (PUT). Evans and Morriss showed that the PUT -

aHonthmwasup:hleoqupemngthe ‘string’ plnsemn

atomlcﬂmds.llyvnrtueol’ﬂmhtmeonemargnethauhe
PUT algorithm is a more realistic model of the experimental

situation than the SLLOD aigorithm as it permits velocity

finctuations at least up to the distance scale of the MD cell.
Nevertheless, becanse of their still widespread use, we apply
both the SLLOD and PUT algorithms in two and three
dimensions to investigate all of these non-equilibrium rheolo-
gical regimes and determine their dynamical ‘signatures’ as
measured by the new cross-correlation fanctions (CCFs) We
note that many of the new CCFs are evident at shear rates
low enough (in the mild shear-thinning regime) at which both
SLLOD and PUT give indistinguishable results. It is only at
shear rates large enough to produce extreme shear-thinning
and shear-thickening that differences between the two equa-
tions of motion become manifest, in which case the PUT
resulis are most realistic.

We now discuss the theory that enables us to predict those
CCFs that may exist in the presence of a perturbing field.

Whiffen introduced the concept of ‘Group Theoretical Sta-
tistical Mechanics® (GTSM as the application of group
theory to the thermodynamic ensemble average, (... )% Sym-
metry can be used to predict those averages existing and van-
ishing in both the faboratory-fixed frame, XYZ, and the
molecule-fixed frame, xyz, applying group theory to the
ensembie averages.®'® In a recent publication we confirmed
by SLLOD NEMD the predictions of GTSM for planar
couctte flow, which predicts the existence of new cross-
correlation fanctions.!! In simple planar couvetic flow there
appear in the laboratory frame, XY Z, cross-corrclation func-
tions between components of the atomic diffusion velocity
and also others between the pressure tensor. If the strain rate
i3 Ovy/0Z, the cross-correlations are of the type (v {t)e,(0)),
Pa)P AD) and (P_(Py(0)), where » is the atomic
velocity in the XYZ frame and P, is the af component of
the pressure tensor. This also includes those CCFs with time
arguments reversed, which can be different functions at non-
equilibrium. These are not incorporated in classical rheologi-
cal treatments; they are, however, fundamentally important
to any understanding of rheology and have so far been
totally neglected. For example, they causc the Weissenberg
effect, which is a flow in a direction perpendicular to the
nnpoeedmmnte.lnﬁa,mdmydmhsmsanui

Having confirmed the validity of GTSM and the existence
of these new cross-cosrelation functions in a recent paper,'!
we extend this stady to explore specifically non-Newtonian
(also cafled shear-thickening) These occur at states dlose to
the liquid/solid cocxistence line for two- and three-
dimensional monatomic systems, We also investigate low-
density states in three dimensions to probe the onset of
kinctic or “‘convective’ turbulence.

This paper is organised as follows. In section 2 the GTSM
theory is applied to simple planar shear or couctie flow. A
bnd’smnmnysnndeof(hem-ﬂheotmamnmh
leading to the of new cross-correlation functions
induced by py(Z) shear flow. In section 3 the NEMD molecu-
Iar dynamics modeis for SLLOD and PUT are described and
applied to determine shear-flow time-correlation fonctions.
Discussion of the results is given in section 4. Conclusions are
presented in section 5.
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2. Gremp Theory Statistical Mechanics

The symmetry arguments for the appearance of the shear-
mdmdmmrdahmfnn&msdmdmmtheory
in tbe laboratory frame XYZ defined by the three-
dimensional rotation—reflection group, R (3), with irreducible
representations denoted by the D symbols, DX, ..., D¥® and
DY, ., DI, respectively; here the subscript, g (or gerade)
denotumtopmtymalsymmy and subscript u (or
ungerade) denotes odd to parity reversal symmetry. 414 The
superscripts refer to the order to the spherical harmonics. In
couetic flow in the imit of zero strain rate

dv
nuﬂ;;’ )]

where 1T is the shear stress and g s the viscosity, a simple
scalar of D? symmetry and the streaming velocity is v(Z).
Eqn (1) applics in the limit dvy/dZ — Q. At finite shear rate, 5
is a function of j = do,/dZ and a more complicated stress
tensor is required. In general,
= 2n(7)y. v
For both eqn (1) and eqn (2) GTSM applics at steady state
in the presence of shear flow, where the isotropic R{3) sym-
metry of the fluid is distorted, showing up in new non-zero

terms in the stress tensor. The latter is found by considering
the tensor product

F=ww"" k)]
making up nine elements of the velocity gradient. Here, », is
the position vector whose single laboratory frame component
s Z. This product has the D symmetry

roye ") =pi"p® = D@ + DV + pP “
where we have used the Cicbsch-Gordan theorem, '3
DDA = plete ...y ple—e) (5

In eqn (1) and (2) the symmetry of the shear viscosity, #, is
that of a scalar, Df” having ncgative time-reversal symmetry.
The shear stress tensor, T1, and the pressure teasor, K= —1I)
have the D+ D" + DP. The representation,
DY+ D + D‘”ofthestnmntetumrmﬂeasdnm
mnhsmmmymwdmy or sym-
metry, DAV, and a symmetric tracciess component of sym-

ﬂ”+W’ A system under shear at steady state
ausuthek.ﬂ)symmetryoftheemihh:mnﬂmdtobe
broken by the strain rate temsor of symmetry, DP + DY
+D‘"Thnmakespom'bbtheemmceofmﬂeaver-
apo“h:ssymﬂrymdmgto(ﬂ'su On the molecular
scale, the strain rate tensor applied in couctte flow makes
possible the existence of time correlation functions of the
same symmetry both in the XYZ frame and in the molecule-
fixed xyz frame. {In monatomic fluids the second case is inap-
plicable) The temsor symmetry of all time correfation
functions of the type, (A{B)A*{1)), where A is a polar or axial
vector is also, D + DY + D'®. Thus all nine clements may
exist in an atomic fluid under shear. Where there is only one
component of the velocity gradient in the planar couette flow,
2g. dvy/dZ, then only one independent off-diagonal clement
of the time autocorrelation function, {AHOA™(t)) appears in
the laboratory XYZ frame. However, this may appear in all
time cross-correlation functions of this type (ie. containing
the X and Z superscripts) and will be the microscopic charac-
teristic of the applied strain rate tensors The strain rate
tensor will also allow the existence in the X' YZ frame of time
cross-correlation functions of type, (A(OWB7(1)), with D™
+ D'V 4+ D™ symmetry.



1. CHEM. SOC. FARADAY TRANS, 1990, VOL. 86

“in the special case of shear to an atomic liquid,
trpated in this work, the DI + DIV + D' symmetry of the
;medﬁdd(l)mtheoﬂ'-dmgonﬂpeuﬂnrvdoutym
K 955(05,(1))-to -appear in the laboratory
along with The off-diagonal clement of the pressure
r time coomrelation  functions, (P (O)Py{t),
PP 1)), (PrOPp ) and (PrAQP.(1)). These
results arc appreciated recognising that, (Py(0)P (1)), con-
tains the component (54(0)6,{1)6,(0)5,(r)). The two corre-
non-zero. Similar remarks can be made for (P (0)P1(1))
and (P, Pz(t)). In cach of these cascs the component veloc-
ity time correlation functions exist by symmetry. Thus the
cnﬂuwed(n,(ﬂh,(t))mplmtbemﬂmoﬂbeabovcde—

tensor in the laboratory X YZ frame is:
(D‘.“’ + D(‘l) + D‘.”KD:"’ + D('l) + Dc'zy, ©
which, on expansion, gives
(D + D2 + DY + D) + A0 + DD + D)
+ 3D + D" + D).

This includes scalar, vector and tensor symmetry up to rank
(4). The CCF (ox(0)o(1)) also exists.

3. Simeulation Details
In this section we describc two methods for incorporating
planar shear flow in the classical equations of motion of
molecular dypamics. The first method described, SLLOD,
forces the molecuks to fiow along supcrposed shear flow
lines. Velocity deviations from this are presumed to be caused
by temperature fluctuations. These are damped out by the
thermostatting process. The newer profile unbiased algo-
rithm (PUT) was devised to climinate this drawback, to allow
more freedom for velocity fluctuations about the local flow
velocity derived from the MDD cell average shear rate It is
thercfore more realistic at high shear rates close to the onset
of tarbulence. Both algorithms give the same results at low
shear rates close to the Newtonian regime. The PUT algo-
rithm is more realistic at high shear rates at which appre-
ciable shear thinning is manifest; therefome,nnsomtlns
algorithm which we concentrate.
The threc-dimensional MD simulations used particles
interacting via the Lennard-Jones potential

() = 4el(o/n)'* — (/1] M
using the soft-sphere potential
#r) = 4elo/n)'. ®)

31 Two-dimensional Simmlstions
The molecular coordinates were updated in time steps of
duration h, uosing the lcapfrog recasting of the Verlet
algorithm'%

R.(t + k) = R(1) + AR,(1), ®
and

Rft + k) = R1) + ARf1). (19

Welnveommedthepamclesnbnmpts,:,forthemtm
constant total energy we have

AR (1) = AR (t — k) + F (i}’ /m (1)
AR (1) = AR (t — h) + F ()’ /m (12
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where F (1) and F.(t) arc the forces on a molecule at time ¢
and m is the mass of the molecule (for simplicity, they all have
the same mass bere).

(13)

where r,; = R; — R;. The subscript, i, denotes the molecule
index and R, is the position of molecule i. At constant tem-
perature, T, (which is cssential for dissipative sheared fiuids)
wec maintained constant temperaturc using the so-called
velocity rescaling method as first derived by Woodcock!?

AR () =[AR(t —B) - X]x K(t — B + X + F()i*/m (14)
ARf1) = [AR(t — h)— V] x K(t — W) + ¥ + F(ph*/m. (15)

At this point we have introduced extra displacements, X and
¥, components of K, which are zero at equilibrium but which
will be assigned values when shear flow is introduced into the
dynamics. The constant, K(t — k), is a scaling factor which,
under shearing conditions, is on average slightly less than
unity.

K(t — K) = [(2N — 3k T/2E,(t — K)}'? (16)
where E(r — k) is the kinetic energy of the MD cell of par-
ticles

E.(z—h)=—}:mm—h)‘ an
i=l
where to an adequate approximation
R =[AR( — k) — R)/h. (18)

Lees-Edwards periodic boundary conditions.!® These arc
written succinctly as
Ri=R, +nL,j 19
KRk @

where the superscript i refers to the image of the particic
whose position in the ‘real’ MD cell is R. The value of n! (the
image ccll index) in the y-direction is in the range
—a0 < i} < 0. The real MD cell corresponds to a] = 0. The
side-length of the MD cell in the y direction is L,. The posi-
tion displacements derived from eqn (19) and (20) arc

R.=R +nLjt+nlL, @1

R =R, +nL, @
where ¢ is the time duration of the simulation since the appli-
cation of the shear velocity field. The range of values of n;',
the image cell index in the x-direction, is —o0 <m < 0. If
the ‘real” particle at R moves out of the cell, its image i enters
at the position

R,—~{R, +n L7t +nL) @)
R,~{R, + mL}. @

The notation {...} denotes the application of periodic
boundary conditions so that R! falls within the same limits as
that of R, (ie. 0 < R. < L, where L, is the side-length of the
MDcdlmthexduecuon).

The method distinguishes SLLOD from
PUT. In SLLOD & lincar velocity profile 0,(2) is assumed in
be taken as an extra comtribution to the temperature and
duly suppressed. In PUT no assumption is made about the
instantanpeous velocity distribution within the MD cell
However, by virtue of the Lees-Edwards boundary condi-
tions, the flow on distance scales of the order of L, is forced



-

04
to be lincar couette. Ineqn (14), (15) and (18), for SLLOD

X=R, i, @5
and ¥ = 0. For PUT
g
X;=(AR.:+ Y AR v+ 1), (26)
J#ri .
nd
Y, =AR,+ ¥ AR Jnl + 1), @n

Jei

where . are all those molecules within a radius r, of the
centre of molecule i We adopted two values of 7, 1.5¢ and
200.

Our implementation of the PUT equations of motion
differs from that of Evans and Morriss. We believe this new
method is more realistic in maintaining the local circular (2D)
or spherical (3D) symmetry of the fluids. In both cases a local
temperature for molecule i is defined with respect to a ‘local’
drift velocity. The difference between the two approaches lies
in the method for cvaluating the local drift welocity. Evans
and Morriss partitioned the MD cell into sub-boxes. The

-average drift velocity within each sub-box was calculated. -

This was then used to determine the temperature of each par-
ticle in the cell. However, we did not use such a procedure to
obtain the temperature of each particle. Rather, a local drift
velocity was determined for each molecule by taking a circu-
lar truncation radius and finding the average velocity within
the disc. This is straightforwardly performed in the forces
double loop of the program and does not slow the program
significantly. We suggest that our treatment is more realistic
(i.e. less constrained) This we rationalice as follows. Using the
subcell method there is a driving force biasing the density of
cach subcell to be that of the average density of the whole
MDD cell. This is because subcells with fewer molecules than
the average will be effectively ‘colder’ than the mean tem-
perature. Similarly, subcells with more particies than the
average will be ‘hotter’ than the average. There will be com-
pensating drifts of partices from hot to cold subcells to
correct any temporary imbalance of numbers of molecules. In
the present implementation of PUT there is no implicit
space-fixed grid for thermostatting purposes. Therefore,
density floctuations arc allowed to occur naturally in this
implementation of PUT.
We calculated the viscosity, #, from

n=—Puly (28)
where

l N N—-1 N

P.,=—(Z sl — X E('nl'uﬁn)d—“”@) )
A =1 =1 > dr

and 9, is the peculiar velocity (ie. that in excess of the stream-

ing flow velocity), r;, is the x component of r,; and 4 =

(N/p), the area of the MD cell.

The basics of the three-dimensional simulations bave been
described clsewhere.'® The MD simulations were performed
on cubic unit cells of volume V containing N = 108 and
N = 500 Lennard-Jones (LJ) particles of mass m. The inter-
actions were truncated at 2 50. A large time-step version of
the Verlet algorithm was used to increment the positions of
the m 2% in the case of the SLLOD simulations. We
useUreducedmﬁtsthroughout.i.e.k,T/e—bTandnumbu
density p = No®/V. Time is in o(m/c)'/%, shear rate is in
(5/m)"2/o, viscosity is in (me)'/*/0* and stress is in e~ 3. (Note
that in two dimensions » has units of (me)'/2/s and stress has
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units of s5”%). Two state points were cxamined. There was a
near tripié-point state, at p = 0.8442 and T =0.722 A low-
density state, p = 0.1 and T = 2.5, was also examined. At this
density the shear viscosity is dominated by the kinetic com-
ponent, i,. The PUT algorithm was implemented as a
straightforward extension of the two-dimensional method.
For SLLOD a previously described formulation was
used*?° As before, the peculiar or thermal velocity is
denoted by #,. The SLLOD equations of motion are written
in as two first-order equations

Ry=vx =iy + R, (30
Ry=vy =1y (31)
Rr=vy=1, 32)

diy
E’ Fyfm — yo; — oy 33)

dy
_dt_ Fy/m — fioy (39

dl')
= Fzfm — 5, (35)

where the a component of the force on a particle is F,, the
vdoutys thepewharavdomyoompomts ,and §
is the coeﬁamt in the Gaussian isokinetic thermosumng

control.'?. (We were not able to cast the PUT algorithm into
two first-order differential equations with Gaussian isokinetic
thermostatting  This scheme, eqn (30)(35) was possible with
SLLOD)

The quantity, R_, a ‘peculiar” position, measures the dis-
tance moved from internal forces only, B (1) = R (1) — R(0),

neglecting the streaming component

R_(t)=£5.(")dl’. (36)
Computations were carried out on a CRAY-1S at the Uni-
versity of London Computer Centre.

4. Results and Discussion
A summary of the two- and three-dimensional simulations
petformed is given in table 1. This also incorporates the
simulation.
In three-dimensions, we cvaluated the correlation func-
tions,

GAOx1)), BHORA)), BlOBx(0)), GLORLD,
GHORLD, GORLD), (V/ky TKPrrOPxy(0),
(V/kg TKP xz(0WP (1)),  (V/kg TKPrAOP 1)),

(V/kg TKP 1 OWP A1), (V /hg TKPrAAOWP (1)),

(V/kg TKP (OWP 1)), (V/ky T PrstOWPxx1)),

(V/kg TKPO)P (1)) and (V/ky TKPxz(0)P2A1)).
GTSM predicts that the following correlation functions could
cxist in doy/dZ shear flow: (5 081)), (TLORLD)),
(oA0841)), @ORA)), (¥ fkg TP 1Oy A1)),
(V/kg TKPxO)Px (1)), (V/kg T Pr(OP 1)) and
(V/ky T PxA0)P2:(2)). Wec observed all of these as non-zero
functions and also the different CCFs formed by reversing the
time arguments in the above CCFs. In two-dimensions the

cross-corrclation functions of the above form with only X
and Y components were evaluated. The existence of the
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Table 1. Summary of the NEMD simulations®
D P T N B 3 N,1000 P_P, P * "
g 2 0.73322 1.0 896 0267 8.73 873 873 — 0124 278
L 2 0.73322 1.0 882 0.0075 0267 4 949 9.49 — 0079 2651
2 07332 10 882 00005 2 4 20.57 21.40 — 0079 1.767
| 2 0.73322 1.0 882 0.003 2 4 1.7 1209 —_ (1147, 1.643
g 2 0.73322 190 882 0.001 5 4 871 1346 — 0.056 0.447
2 0.73322 1.0 882 0.001 5 8 1994 2588 -—_ 0053 1269
P 2 0.73322 10 882 0.001 5 8 11.59 1970 — 0.065 0.7
g‘ 2 073322 1.0 896 ) 89 875 512 — 0.062 1.02
2 0.73322 10 882 0901 10 4 4961 6571 —_— 0025 1374
P 2 0.73322 1.0 882 0.001 10 8 54.45 70.60 — 0027 1.635
) 'ad 2 0.73322 1.0 882 0.001 10 8 8196 10893 — 0032 3210
S 2 0.73322 1.0 882 0.001 10 8 866 1368 — 0016 0.18%0
P 2 0.73322 1.0 882 0.00025 17.82 4 521.98 50020 — 0018 10.32
P 2 0.73322 10 882 0.00015 17.82 8 T28.96 72000 — 0.019 1546
S 2 0.73322 1.0 882 0.0003 178 8 675 12.26 - 0.022 0,052
s 3 a1 25 108 00075 0 200 024 Q24 23 _ _
S 3 0.1 25 500 0.003 0 2 025 025 025 - —
| o 3 01 25 500 0.004 o 20 027 025 025 — —
S 3 01 25 108 0.0075 1 600 Q36 Q17 017 0.132 0.149
S 3 01 25 108 0.0075 1 600 036 017 017 0132 0.149
'S 3 0.1 25 500 0.003 1 20 039 018 018 0.141 0.157
| ad 3 a1 25 500 0002 1 2 048 Q13 Qi3 0048 Q085
S 3 0.1 25 500 0.003 5 20 0.56 008 012 0034 0.044
| g 3 0.1 25 500 0.003 5 20 058 0.09 009 0.014 0024
S 3 0.1 25 500 0.003 10 20 063 008 .18 0019 0028
| o 3 0.1 25 500 0.002 10 20 064 005 005 0.0056 0.0096
| od 3 0.1 25 500 00015 20 » 0.66 003 0.2 00027 0.0036
P 3 0.8442 0722 108 0.0075 0 200 031 031 033 — —
s 3 0.8442 0.722 108 0.0075 0 28 003 (171 7] 0.01 —_ —_
b 3 0.8442 0.722 108 0.0075 (1] 700 003 0.02 0.02 —_— —
S 3 0.8442 0722 108 0.0075 1 20 112 Q75 122 ag779 208
S 3 0.8442 0.722 108 00075 1 40 1.17 079 1.26 0075 208
S 3 0.8442 0.2 108 0.0075 1 440 1.15 o8 1.25 0.075 208
S 3 0.3442 0722 108 0.0075 1 610 1.15 0.78 125 Q075 2071 (5
S 3 0.3442 0722 108 0.0075 1 600 117 0.7 125 0075 208
P 3 0.8442 0722 108 0.0075 1 800 1.50 115 159 0072 206
P 3 0.8442 0722 500 0.0075 1 30 1.61 1.31 173 00744 211
S 3 0.8442 0722 500 0.0075 1 20 1.2 0.90 135 0.0801 211
S 3 0.8442 0.722 108 0.0075 3 200 193 1.29 224 0.0542 0.88
s 3 08442 (1 % 77] S00 00075 3 2 —0.18 —0.30 —002 Q0589 Q.66
P 3 0.8442 0722 108 00075 3 200 51 255 s 0.0590 1.19
P 3 0.8442 0.722 500 0.0075 3 40 467 354 533 0.0641 149
P 3 08442 0.722 500 0.0075 3 20 2712 210 426 00631 1.10
P 3 0.8442 0722 500 0.003 10 20 —049 036 399 00234 0.126
P 3 0.8442 0122 500 0.002 20 20 —125 —1385 -0.56 0.0031 0.0112
P* 3 08442 07122 500 0.002 20 20 —-107 1.89 820 0.0029 00143
| o 3 0.8442 0122 500 0.002 20 30 —114 200 857 0.0029 00138
S 3 0.8442 0722 500 0.003 2 20 -0.17 069 242 00169 0.0486
S 3 0.8442 0722 500 0.003 20 20 - oan 026 203 a0171 00468

'PdenotestbePUTalgomhmmthr = 1.5¢ and P* denotes the PUT algorithm with r, = 2.00. S denotes the SLLOD algorithm. D denotes
the dimension. N is the number of molecules in the MD cell of volume V. N,nticnunhuolmﬂq-olduahonlq. is the kimetic

component of the viscosity. qnsthctotalmoouty‘l‘hcnorn-lptme

units are LJ units

arc Pyy, Pry and Py, , respectively. The shear rate is 7. All

componcents
the two-dimensional simulations were performed with the SS potential {eqa (8)). To comvert quantity X in L) units

to SS units ¢fr) = da/r“thulmnluplybylhehaots 0.8909, 1.2599, 1.12246, 0.8909 and 1.12446 for time, pressure tensor componeats,

viscosity, distance and shear rate, respectively. * Ref. (3).

correlation function is independent of the use of b, or v,. We
chosc to usc &, .

We first consider the three-dimensional simulations per-
formed for high density near the L) triple-point state. We
consider the time correlation function, {5 0)6,(t)), which in
the absence of shear flow is zero at all times, r. In Fig 1,
(500 x(1)) is given for SLLOD and PUT algorithms for
7 = 1.0. As for all these ficld-induced CCFs they start at ¢t =0
from a value more negative than their himiting value as
t — 0. At 7 = 1 there is little difference between the two algo-
rithms. The similarity between the associated shear vis-
cositics, revealed in table 1, supports the view that the two
algorithms “are producing cssentially the same non-

Newtonian state point. However, at progressively increasing
shear rate differences appear in the CCFs produced by
SLLOD and PUT. The former are generally more structured.
This is because the dynamics are more ‘constrained’ by
SLLOD than PUT (the x-component of velocity is steered
continuously to ydr,/dy) so that the sysiem exists in a more
confined region of phase space. PUT equations of motion are
more realistic at these extremely high shear rates when arbi-
trarily large deviations in v, about the continuum value are
allowed.

We now consider a shear rate that manifests extreme
shear-thinning by two orders of magnitude The
PO Af)) and (PrAOP{1)) for the PUT three-
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@ @90 -

0.0 0.4 o8 1.2

time corrclation fonction (u,mﬁ,(t)) using SLLOD
and PUT (squares) at the three-dimensional state
p=08442, T =072 and $ = 1.0; N = 500.

dimensional L] p = 08442, T = 0.722, y = 200 and N = 500
state are shown in Fig. 2. They both start from a finite nega-
tive valuc and then decay in an oscillatory manner with fre-
quency v = §. This oscillatory structure we attribute to the
formation of a ‘string’ phase in which the molecules travel
along the streamiines in kines packed together in a triangular
Iattice when viewed in cross-section [sce fig 4(c), later].
Adjacent molecules in neighbouring strings are separated by
a distance of the order of 0. The relative velocity between
these molecules in the streaming direction is = 67. Hence the

of registry of molecules is . The time-reversed
function (P (0)P,(1)), is quite different, having an apparent
negative parity to time when compared with (P (0)P,(1)).
This can be traced to the contribution of the vorticity com-
ponent of the flow, which unlike the pure strain component
of the strain rate tensor, causcs negative parity to time

00 01 (;2 " 03
t
Fig. 2. The time corrclation fonction (V/ky TIP 0P (1)), solid

imand(VIk.T)(PnMPn(t)).mmgPlﬂuthem
dimcusional L) state: p = 08442, T = 0.722 and 3 = 20.0; N = 500.
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\/\/\/\/
-160

-160

CCF/10

Qo0 02 0.4
t
Fig. A The time correlation function (V/k, TP (0P 40> for
SLLOD (solid line) and PUT ({square symbols) at the three-
dimensional state p = 08442, T = 0.722 and 3 = 200; N = 500.

reversal In fig. 3, (Py(0)P,;(1)) from the same state point is
shown for SLLOD and PUT. All the (P (0)P_(1)) are non-
zero in SLLOD and PUT. The SLLOD equations of motion
show again a more structured CCF. In the absence of shear
these CCFs are trivially zero at all times.

Fig. 4 shows the development of fluid structure from an
essentially amorphous state at y = 1.0 through to a two-
phase region at § = 3.0 to a full string phase at $ = 20. Both
the SLLOD and the PUT algorithms give cssentially the
same bebaviour. This was obtained for PUT using r, = 1.5
and?.ﬂ,andmlheld’mmdependanofthenumberof
necighbouring molecules used to define a local drift velocity.
The string phasc is more stable with PUT than SLLOD as it
shows straighter strings. In the 3 = 20.0 SLLOD simulation
strings more often buckle and ‘snap”. We note that in three
dimensions the PUT cquations of motion produced a stable
siring phase for periodically repeating cells of ca. 500 mol-
ecules. The string phase is dispelled in two dimensions by
replacing SLLOD by PUT equations of motion. This work
reveals that this is not observed in three dimensions. In the
N — oo limit the string phase cannot be stable for monatomic
fluids because of the large Reynolds Number associated with
the shear rate used.® This behaviour is totally different to
what is observed in two dimensions, where no evidence of a
string phase is secen from PUT.>® The appearance of a stable
string phase obviously depends strongly on the dimension of
the space for finite periodic PUT systems.?! Although an
improvement on SLLOD, the PUT equations of motion still
produce the string phase in three dimensions for finite per-
iodic systems. The periodic boundary conditions appear to
bave a more important role in three than in two dimensions
in stabilising the string phase. The dimensions of the MD cell
are significantly smaller in three than in two dimensions for
the same value of N. Consequently, one needs to consider
much larger N in three dimensions than in two dimensions in
order to achieve comparable MD cefl side-lengths.

We now consider those correlation functions from the low-
dengity gas state. At low density there is no string phase so
that many of the distinctive features associated with shear-
thinning at kiquid density arc lost. The CCFs become shorter
ranged. The same new CCFs do appear in the gas phase,
again manifesting time irreversibility. The SLLOD CCFs are
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Fig. 4. Scattergrams for three-dimensional sheared LJ fluids at the
three-dimensional state p = 0.8442, T = 0.722, N = 500 and a range
of 7 using the PUT algorithm. The projections of the centres of the
LJ particles onto the YZ plane are shown. To facilitate the observa-
tion of any long-range structure, the real MD cell and surrounding
cight images are given. (@) 7 = 1.0, r, = 1.5; () 7 = 3.0; () ¥ = 200,
r,=20.
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Fig. 5. The time corrclation function (F(0} (:)> using SLLOD
(solid line) and PUT (squares) at the threc-dimensional LJ state;
p=01,T=25and 7 = 10; N = 500.

more pronounced but basically have the same form, as shown
in fig. S for (F0)5,(t)>. The (P (0)Pyz(t)) function is the
most pronounced and structured of all the new stress CCFs
at low density. It increases in amplitude with increasing j. It
obviously reflects the microscopic mechanism of shear stress
relaxation closely and decays to zero as t — oo, whereas the
{PxA0)P,(t)) are more insensitive in this respect, showing a
small time dependence about the means, {(Py,;>{P,> which
could be difficult to resolve experimentally.

As at high density the structures of the high shear rate
fluids are different for SLLOD and PUT, the latter promotes
the formation of droplets, as shown in fig. 6. (The corre-
sponding SLLOD scattergram shows a random distribution
of points.) The droplet formation is manifest also in a major
decrease in viscosity, when compared with the corresponding
SLLOD state, as revealed in table 1. (Small clusters do
appear in SLLOD states at densities of ca. 0.01 at these shear
rates.2?) We note that sheared colloidal particles aiso aggre-
gate in compact clusters.??

We now consider the two-dimensional fluids. The soft-
sphere density and temperature chosen were the same as for
earlier reports using SLLOD and PUT. We used N = 882
instead of the N = 896 soft-discs in the earlier treatments.
Otherwise the density and temperature are the same.®

We find, in fig. 7, that the SLLOD equations of motion
shear thin accompanied by the formation of a two-
dimensional string phase (lines of atoms flowing along the
streaming direction, stacked against each other at a separa-
tion of approximately one molecular diameter). The PUT
systems manifest no string phase, in agreement with previous
work.5-2* However, the amorphous structure produced shows
greater density fluctuations in the cell (proved to be reversible
by ascending and descending shear rate) than in the imple-
mentation of PUT in ref. (6). The cavitation observed and
shear-thickening is typical of experimental shear-thickening
suspensions. We therefore suggest that our implementation of
the PUT principle is more realistic. It must be recognised,
however, that, unlike Gaussian thermostatted SLLOD, there
is no unique prescription for a profile-unbiased thermostat,
as there is freedom in defining the local ‘drift’ velocity from
which the local temperature is derived.

The two-dimensional correlation functions are qualitat-
ively the same as in the dense three-dimensional state. The
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Fig. 6. Scattergrams for threc-dimensional sheared L) fluids at the
three-dimensional state: p = 0.1, T = 25, N = 500 and a range of
for the PUT algorithm. The presentation is as for fig. 4. (a) = 1.0,
r,=20,(0)7=50,r,=20.

{Ox(0)5,(t)) start from a negative value and ascend to zero.
An example of this function for the PUT 7 = 17.8 state is
given in fig 8, together with its time-reversed complement
function (9,(0)5,(t)>. The function, (P ()P {(0)), also
reveals considerable short-time structure, e.g for a = X in
fig. 9.

These CCFs could provide ‘signatures’ of the various
stages of non-Newtonian behaviour (shear-thinning and
-thickening) which could be measured by spectroscopy. There
is strong evidence that MD can be employed to model these
states. A number of recent MD simulations of ‘microscale
hydrodynamics’ have shown that it is possible to simulate the
onset of turbulence at a molecular level, looking at flow
around a microscopic observation.?® There, stationary eddy
formation, wake oscillations and von Karman vortex street
shedding were observed in a two-dimensional fluid of repul-
sive particles.

An examination of the three-dimensional CCFs reveals
that aithough (5(0)51)) and (P, {0)P, (1)) are zero in the
absence of shear they manifest an increasingly strong ampli-
tude as shear rate mnses. For example, in the three-
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CCF

0.0 1 4
10-?¢
Fig. & The time corrclation funcnon 0x{0p (1)), squarc symbols,
and {oos(f)), solid limc, for the two-dimensional SS states:

p=0733, T =10 and 7 = 17.8 using the PUT algorithm with 7, =
15.

dimensional gas state, {(vy(O)v;{0)) has the values of 0.00,
—044 and —0.75 at § =00, 1.0 and 5.0, respectively, using
the PUT algorithm (r, = 200). The corresponding SLLOD
values are 0.00, — 142 and — 1.71, being somewhat larger but
following the same qualitative trend. The associated values of
LV kg NICPxAO)P;(0)) are for PUT 000, —023 and
—1.19. These values are of the same order of magnitude as
the fluctuations in the diagonal elements of the stress tensor
so should be experimentally observable. The near triple-point
state-point follows a similar trend, eg. <(7)(0)5(0)) are
—0.09, —023 and —0.07 at # = 1, 3 and 20, respectively, for
PUT (r, = 1.50) and the [V/(ky TIKP (0P 1,{0)) are —84,
—296and——l70.(1‘heﬂuctuznonsmsmhatlamm
the two-phase regime at $=3) As the dense three-
dimensional fluid results apply to a string phase, these trends
are most applicable to dense colloidal suspensions which can
manifest the string phase. The string phase is not produced in

=252

10* CCF

-258

0 1 2
10-?¢

Fig. 9. The time corrclation function (V/ky TPy y#00P 4 4(1)) for the
two-dimensional PUT state: p=0733, T = 1.0 and 7 = 178 with
r,=15
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two dimensions. In the two-dimensional systems, (7,(0)6,(0))

are —003, —021 and —042 for y = 0267, 2000 and 200,
respectively, through the structural turbulence transition
Therefore the amplitudes of these CCFs are roughly pro-
portional to the extent of shear-thinning and -thickening in
both SLLOD and PUT simulations.

4. Conclusi
In this paper we have established the link between 2 macro-
scopic applied ficld symmetry and the precise symmetry of
the induced time correlation functions. We have looked at
planar couette shear flow, showing that therc are new time
correlation functions in both the Cartesian and peculiar
frames of reference. Despite present limitations on the avail-
lation functions arc shown to be semsitive probes of the
magnitude of the microscopic shear rate and also to the pre-
sence of long-range order. This offers evidence that ultimately
they could be used to probe non-Newtonian flow spectro-
scopically.

We describe a new implementation of the PUT equations
of motion that produces morc realistic states at high shear
rates in the shear-thickening regime in two dimensions. (In
three dimensions we obtained the string phase) We also
observe shear-induced droplet formation in the gascous state,
similar to that created in sheared colloidal suspensions.

DM .H. gratefully thanks The Royal Society for the award of
a Royal Socicty 1983 University Research Fellowship.
M.W.E. thanks RHBNC for an academic visitor award. We
thank SER.C. for the award of computer time at the Uni-
versity of London Computer Centre, and the RHBNC Com-
puter Centre for use of their VAX 11/780 computer facilities.

References

. Evans, Phys. Rev. A, 1987, 36, 4515

. Evans and G. P. Morriss, Mol Phys, 1987, 61, 1151.

. Heyes, G. P. Morriss and D. J Evans, J. Chem. Phys,
U.47ﬂl.

Heyes, Mol. Phys., 1986, 57, 1265.

. Evans and G. P. Morriss, Phys. Rev. A, 1984, 39, 1528.
'vans and G. P. Morriss, Phys. Rev. Lett, 1986, 56 2172
Heyes, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1365.
Whiffen, Mol Phys, 1988, €3, 1053.

vans, Chem. Phys. Lett., 1988, 33, 152.

vans, J. Phys. Chem,, 1988, in press.

vans and D. M. Heyes, Mol. Phys., 1988, €5, 1441.
Proc. R. Soc. Londom, Ser. A, 1950, 208, 523.
Proc. R. Soc. Londonm, Ser_ A, 1958, 245, 278.

EUUU
- -
mm:y‘:

!!'l

z;:uuccc
H'l

M
. H.
. W.
W.
- W.

bt
l'!!

po.

POURESvnNaws wn=

it
i
D
s
1

16 L. Verlet, Phys. Rev, 1967, 98, 159.

17 L. V. Woodcock, Chem. Phys. Lett, 1971, 10, 257.

18 A W.Leesand S F. Edwards, J. Phys. C, 1972, 5, 1921.

19 K. D. Hammonds and D. M. Heyes, J. Chem. Soc, Faraday
Trans. 2, 1988, 84, 705.

20 D. MacGowan and D. M. Heyes, Mol Sim , 1988, 1, 277.

21 Discovered simultancously by W. Loose, private communmica-
tion_

22 D. M. Heyes and R. Szczepanski, J. Chem. Soc., Faraday Trans.
2, 1987, 83, 319.

23 E. Guyon, in Les Howuches Session XLVI, 1986 (Elsevier,
Amsterdam, 1987), chap. 2.

24 H.J. M. Hanley, G. P. Morriss, T. R. Welberry and D. J. Evans,
Physica A, 1988, 149, 406.

25 D.C. Rapaport, Phys. Rev. A, 1987, 36, 3288.

Paper 9/03069G; Received 19th July, 1989



