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Communicated by A.R. Bishop

The symmetry and chirality of field induced natural and magnetic optical activity are investigated with Barron's definition of
chirality and the third principle of group theoretical statistical mechanics (g.t.s.m.). The results for several different external field
symmetries are given for the point group R,(3) of achiral ensembles and for R(3) of chiral ensembles. The distinction is made
between natural and magnetic optical rotation/dichroism and the field symmetries necessary for these to appear are defined in
both point groups. The analysis resolves some recent literature confusion and suggests new field induced dichroic phenomena.

1. Introduction

This communication aims to define the tensor
symmetries required for the appearance of dichro-
ism in chiral and achiral molecular ensembles. Di-
chroism accompanies optical activity through the
Kramers-Kronig relation, and causes birefringence.
The distinction between natural and magnetic op-
tical activity was first made by Kelvin, and Barron
[1-3] has recently expressed this difference in terms
of the parity reversal operator

P (r,p)-(-r, -p) (1)
and the time reversal operator
T: (r,p)-(r,-p). (2)

Here r denotes position and p denotes momentum,
as usual. Barron defines a natural, or truly chiral,
symmetry as being positive to T and negative to 2.
This symmetry may be that of a force field, or that
of a chiral molecular or crystalline structure, of a
chiral mesophase and so forth. There is no distinc-
tion made between a chiral effect and a chiral struc-
ture in this context, and by implication, none be-
tween the symmetries of cause and effect. Magnetic
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optical activity/circular dichroism is caused accord-
ing to Barron through Faraday’s effect by an achiral
magnetic field, which is positive to £ and negative
to T, and produces therefore an achiral effect.

The symmetry of cause and effect is the same. an
achiral magnetic field produces an achiral response,
magnetic circular dichroism. A chiral field symmetry
on the other hand produces chiral response [4-9].
Symmetry is defined in this communication through
the appropriate point group of the ensemble. If the
latter consists of achiral molecules this is R, (3), the
point group of all rotations and reflections [10]; if
the molecules of the ensemble are chiral, the point
group is R(3), the group of all rotations. Field sym-
metries may be defined precisely in either point group
through its irreducible representations (D
symmetries ).

The combination of D, £, and T symmetries for
either point group is sufficient to show whether a
given field symmetry (or combined symmetry) pro-
duces dichroism/optical activity/birefringence, and
whether this is natural (truly chiral) or magnetic
(Faraday) optical activity.

2. Basic symmetry definitions

In considering the interaction of electric, mag-
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netic, and electro-magnetic force fields with molec-
ular ensembles the fundamental vector symmetries
are taken to be those of the electric field (E), mag-
netic field (B) and Maxwell’s (classical, non-rela-
tivistic) wave-vector (k). The latter is also known as
the propagation vector. Their 2, T and D symme-
tries used in this Letter are defined in table 1.

Table | shows for example that the static (intrin-
sically time independent) electric field of force, E, is
a time-even polar vector, negative (ungerade) to P.
The D symmetry [11-13] (irreducible representa-
tion) of E in the point group R,(3) is D{"’ and in
R(3) it is D'V, E produces a response in achiral en-
sembles whose symmetry is D{!’, and a response in
chiral ensembles whose symmetry is D¢!’. A simple
example is polarisation, which is a non-vanishing en-
semble average over the molecular dipole moment,
{u>. The magnetic field of force is an axial vector
(gerade) which is negative to 7. These define the
symmetry of k through one part of the Maxwell
equations,

[(B)=T(kXE). (3)

Note that & is not a field of force. The tabulated sym-
metries of B and E come from their fundamental
definitions through the scalar (¢) and vector (A4)
potentials.

Maxwell’s equations show that the 7" symmetries
of B and E must be opposite. The symmetries of E,
B, and & given in table 1 are self-consistent within
the framework of Maxwell’s field equations. These
contain the well known phase factor wt—k-r, which
is an exponent and therefore a scalar, + to 2. Since
ris — to P, k must also be — to P to obtain a scalar
from k-r. The T symmetry of wt is — because fre-
quency (a number) is not reversed by motion re-
versal. In this respect the scalar symbol w, denoting
angular frequency, must be carefully distinguished
from the vector w, denoting angular velocity. The
latter is — to T Position ris + to 7 and the overall

Table 1
Fundamental symmetry definitions.

Field P T Rn(3) R(3)
E — + D‘(Il) DM
B + - D:l) D(l)
k _ - D‘(Il) D
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T symmetry of &k-r and wr must be the same, so that
k must be — to T. This symmetry of & is the same
as used by Barron [1-3].

These careful definitions are necessary because of
the ambiguities of Maxwell’s theory, discussed. for
example, by Landau and Lifshitz [14].

Subtle and profound problems emerge when an at-
tempt is made to compare k with the photon mo-
mentum (p) of quantum mechanics. These may well
be at the root of the different conclusions of this Let-
ter and the recent work of Ross et al. [13], suggest-
ing that the definition and experimental observation
of chiral effects are fundamentally important to any
attempt to resolve these ambiguities.

The relation is the superficially simple

h
p:z—nk, (4)

where A is Planck’s constant from de Broglie’s par-
ticle/wave duality. Here p is the photon momentum.

.This has no classical meaning because p is massless,

travelling always at c, the speed of light, and clas-
sically, Planck’s constant vanishes. The T symmetry
of p is not obvious. It depends, for example through
the uncertainty relation

h
Sr> —
Sp-Sx2 an (3)
on that of Planck’s constant itself. The energy/fre-
quency relation

E=hv (6)

suggests that 4 is + to T, because E and v are both
positive to T, frequency being a number, and energy
a scalar, both quantities being unaffected by motion
reversal. However, if k is — and 4 + to T, p must be
— to T from eq. (4). If however, p is — to T the un-
certainty relation (eq. (5)) implies that the quantity
x (position) must be — to T, a result which contra-
dicts the fundamental (classical) definition (2) of
the operator T. These ambiguities arise because T in
quantum mechanics is ill-defined [1-3]. Also the
O(4, 1) invariant relativistic quantity in de Broglie’s
theory is the square of the phase wt—k-r, and the en-
ergy of photons is given by

E=(m3c*+p3c?) /2. (M

This means that if the phase factor is either + or —
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to 7, the relativistic invariant is always + to 7" Sim-
ilarly if p is either + or — to 7T the energy is always
+to 7.

The ambiguities do not end here, for if we ex-
amine the units of Planck’s constant (J s), they are
those of energy multiplied by time, leading to the su-
perficial conclusion that # has — T symmetry, i.e. is
a pseudo-scalar. However, this immediately contra-
dicts the energy/frequency relation. In order to re-
coveran E + to T we would need a frequency, v, —
to T. Since frequency denotes the number of events
per unit time, it does not change with motion
reversal.

Finally, if k is thought of as a unit vector in the
direction of travel of a light beam, then motion re-
versal due to the classical T operator reverses the di-
rection of the vector k, whose T symmetry is there-
fore negative, as in table 1.

3. Combined symmetries of tensor products

The fundamentals of table | are sufficient to re-
solve old and recent literature controversies and sug-
gest new effects.

Define the combined D symmetry of a tensor
product such as EB as the product of their individual
symmetry representations in the appropriate point
group. Thus

R.(3): T(EB)=T(E)['(B)
=D{® +D{" +D{*, (8)

R(3): T'(EB)=T(E)[(B)
=D®+ DM +DP (9)

Table 2
Some combined field symmetries.
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through the Clebsch-Gordan theorem. Similarly. the
combined P and T symmetries are the products of
individual P and T symmetries. Proceeding in this
way, table 2 defines combined symmetries for sev-
eral field combinations (tensor products) of interest.
From fundamentals the first rank tensor has three
scalar components in the three dimensional labora-
tory frame (X, Y, Z); the second rank tensor (e.g.
EB) has nine components, and is a three by three
matrix; and the third rank tensor (EBk) has 27 sca-
lar components. Note that the tensors in table 2 are
all force fields or products thereof. EBk falls into this
category because Ek has the units of B, a force field.
In classical electromagnetic field theory, rank 0
natural optical rotation is the rotation of plane po-
larised radiation in a chiral ensemble. The rotation
changes sign between enantiomers (for chiral en-
sembles), and is a pseudo-scalar quantity negative to
P and positive to T. The symmetry signature of nat-
ural optical rotation is therefore recognisable through
the presence of D® (+) in R(3). {Its equivalent in
Rn(3) is D{?’.) The equivalent signatures for mag-
netic optical activity are D"’ (—) and D{"’( —) re-
spectively. (The quantities in brackets denote the T
symmetry.) The signatures of natural optical activ-
ity of all ranks are chiral and those of magnetic op-
tical activity achiral. Optical activity/dichroism of
either type occur whenever the combined field sym-
metries contain these signatures. Table 3 i1s a sum-
mary of dichroic/optically active effects expected
from the combined field symmetries of table 2.

4. Discussion

Table 3 gives the relation between combined field

Tensor P T R, (3) R(3)

E - + D{V D™

Ek + — D{® +D{ + D D® + DM+ D@

Bk - + D +D{" + D D@ +D"+ D@

B + — D{” D"

EE + + D +D{" +D{» D@ +D" + D@

BB + + D£°)+D=”+D‘Z) D(0)+D(l)+D(2)

EB - - D{® +D{"’ + D D@ +D" +DW

EBk + + D{®» +3D{" +2D{ + D D 43D +2D® 4+ D®
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Table 3
Summary of field induced optical activity/dichroism.

Tensor Occurrence of signature
D(+)  D{P(-)  D(+)  DU(-)

E no no no no

Ek no yes no yes

Bk yes no yes no

B no yes no yes

EE no no yes no

BB no no yes no

EB no no no yes

EBk no no yes no

symmetry and the production of natural or magnetic
dichroism either in achiral or chiral ensembles. We
compare these results with those of other workers.

4.1. Symmetry E

The achiral electric field produces no dichroism of
any kind. This agrees with Ross et al. [15].

4.2. Combined symmetry Ek

The achiral cross (rank 1) product kX E=+B
produces magnetic circular dichroism in both chiral
and achiral ensembles, the overall 7 symmetry of
which is negative, not positive as indicated by Ross
et al. [15]. The latter oppositely define k as being
positive to T and 2.

4.3. Combined symmetry Bk

Table 3 shows that the chiral dot (rank O) product
B-k produces natural (truly chiral) dichroism in
chiral and achiral ensembles. This is the magneto-
chiral effect of Wagniére and Meier [16-18], and
Barron and Vrbancich [19], whose symmetry has
been discussed by Evans {20]. Ross et al. are led to
classify this as achiral because of their opposite k
definition. The product B-k in the magneto-chiral
effect must be generated by a combination of a mag-
netic field and an unpolarised laser. In electromag-
netic radiation B-k vanishes. However, the rank 1
product Bx k does not, and by Barron’s definition
this is chiral. The complete symmetry of the tensor
Bk is given in table 2, all three D components of
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which are chiral. Ross et al. do not refer to the lit-
erature on the forward [16-20]) or inverse [21.22
magneto-chiral effect.

4.4. Symmetry B

The achiral magnetic field produces magnetic cir-
cular dichroism, the Faraday effect. in both achiral
and chiral ensembles.

4.5. Combined symmetry EE

This is an achiral combined field symmetry in the
point group R, (3) which is, however, overall posi-
tive to time reversal. Its signature in the point group
R(3) does not refer to parity reversal (table 2}, and
contains D@ (+), which is imparted by g.t.s.m’s
principle three [4-9] to the chiral molecular ensem-
ble as natural optical activity. The Kerr effect is
characterised by D@ (+)+D'® (+) from EE in
R(3), and is therefore accompanied in chiral ensem-
bles only by natural (chiral) dichroism at ranks 0
and 2.

Electrostriction is characterised by D‘®’(+) in
R(3) and is similarly accompanied by natural op-
tical activity at rank 0. The field EXx E* may be gen-
erated [20] in a laser, where E* is the complex con-
Jjugate of E. This is an achiral pseudovector positive
to T, not negative to T as in a magnetic field. It gen-
erates the inverse Faraday effect in both achiral and
chiral ensembles which by principle three must in-
clude the overall symmetry Ex E*. This is a type of
magnetization generated by a quantity pesitive to T,
notnegative as produced by B. The latter is also ca-
pable of generating rank 1 natural optical activity/
dichroism in chiral ensembles only. This seems to be
a new effect.

Ross et al. [15] also define the combined P and
T symmetries of EE as being both positive and the
field EE as achiral, in agreement with our analysis.
This is because k does not enter into consideration
in this case.

4.6. Combined symmetry BB

The considerations are similar to those for EE, here
we have the Cotton-Mouton effect, magnetostric-
tion, and the field B X B* generated in a laser. The
field BB is achiral, again in agreement with Ross et
al.
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4.7. Combined symmetry EB

This is an achiral field symmetry negative to both
P and T. Here we are in disagreement with Ross et
al. [15], who classify the field as chiral due to their
opposite definition of k. By Barron’s definition [1]
it cannot produce truly chiral optical activity/di-
chroism, either in chiral or achiral ensembles, be-
cause it is negative to T. Confusion about the chiral
effect of EB has been reviewed by Barron [1]. We
argue here that because EB is negative to both 7 and
P it can produce neither natural nor magnetic optical
activity in achiral ensembles (such as water). The
controversy and confusion, going back to Pierre Cunie
[1] could surely be settled by a very simple exper-
iment, that of measuring the effect of an additional
static electric field on magnetic circular dichroism in
Faraday’s magnetic field experiment. In achiral en-
sembles the observed optical rotation in the latter
should not be directly or linearly affected by E. Table
3 shows that EB can produce magnetic optical ac-
tivity/dichroism in chiral ensembles only, so that an
additional E in Faraday’s experiment will appear to
linearly enhance the optical rotation in this case due
to additional magnetic optical activity from the
combined symmetry EB. This effect should not oc-
cur in achiral ensembles. In this context the inverse
magneto-chiral effect [21] is caused by the time-odd,
parity-odd field pseudo-vector E X B*, and in chiral
ensembles this should also produce magnetic optical
activity /dichroism.

4.8. Combined symmetry EBk

This is an achiral combined field symmetry pos-
itive both to £ and T. Here we are fortuitously in
agreement with Ross et al., as regards chirality, but
in disagreement as regards combined parity reversal
(their “joint field parity”) and combined time re-
versal symmetry, again due to their opposite k def-
inition. The combined field symmetry may produce
natural optical activity and dichroism to rank O, 1,
2.and 3 in chiral ensembles only.

5. Conclusions

Classical definitions of the 7 and 2 symmetries of
E, B, and k& lead to a classification of observable op-
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tical rotation effects, both natural and magnetic.
Some of the predictions made differ from those of
Rossetal. {15] due to the profound difficulties which
are encountered in the quantum mechanical defi-
nition of the operator T, and therefore in the 7 sym-
metry of photon momentum. The present treatment
1s classical, relying on the propagation vector k. ar-
gued as being — both to £ and 7. Experimental con-
sequences of this classical definition have been dis-
cussed and compared with those of Ross et al.
(photon momentum definition). Such observations
could lead to profound consequences at the bound-
ary between classical and quantum electrodynamics.
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