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Group-theoretical statistical mechanics is applied to determine the number
of non-vanishing ensemble averages in the point groups of smectic liquid crys-
tals, modelled on the 32 possible crystallographic point groups supplemented
by linear symmetries. Assuming that the thermodynamic average exists accord-
ing to the number of irreducible representations in each point group that are
totally symmetric—a basic principle of group-theoretical statistical
mechanics—it is possible to conclude whether or not that average exists at
thermodynamic equilibrium. The conclusion is valid within the point-group
symmetry of the liquid crystal. The number of ensemble averages supported by
the smectic point group, exemplified by the time correlation functions,
decreases from triclinic to monoclinic to orthorhombic to trigonal to tetragonal
to hexagonal to cubic. Within each of these major classifications, the pattern of
non-vanishing correlation functions and other ensemble averages has its own
distinctive signature, based on point-group theory. By choosing the correlation
functions that are known Fourier transforms of spectra, this type of analysis
leads to a convenient method of determining how spectra are affected by the
type of smectic point-group symmetry. The analysis leads to an appreciation of
the differences in allowed ensemble averages between the various smectic point
groups and molecular and other types of liquid. The treatment can be extended
straightforwardly to consider the effects of external fields.

1. Introduction

Recent work has shown that the symmetry of the director in nematic and
chloesteric liquid crystals falls into one of four point groups, two achiral (nematic)
and two chiral (cholesteric) [1]. The molecular dynamics within this local point-
group symmetry may then be explored systematically with the newly developed
principles [2-5] of group-theoretical statistical mechanics (GTSM). In smectic liquid
crystals the relevant point-group symmetries are similar to those of the 32 point
groups of solid molecular crystals, described by the following 7 major classi-
fications: triclinic, monoclinic, orthorhombic, trigonal, tetragonal, hexagonal and
cubic. Each of these major classifications supports a number of point-group sym-
metries, which cover all known crystal symmetries. Molecules crystallise within
these point groups, forming an underlying structure classified by 230 space groups.
However, the external symmetry and physical appearance of a molecular crystal
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falls into one of the point groups. Similarly, the physical properties of a smectic
liquid crystal may be explored with a point-group description [1] of the local
structure, which distinguishes it from an isotropic molecular liquid. In principle, the
point-group symmetry within the smectic phase may be any symmetry, but in order
to construct a systematic approach to the problem of smectic local ordering, we
assume in this paper that the smectic symmetry can be described by the 32 crystallo-
graphic point groups supplemented by the 4 point groups of the nematic and
cholesteric liquid crystals. We therefore provide symmetry data for 36 point groups,
any one of which may provide a framework [1] for the application of GTSM and
the determination of non-vanishing ensemble averages of the molecular dynamics
within the local point-group symmetry. Many such averages exist at the local level,
but disappear if the smectic sample is isotropic on the macroscopic scale of a
laboratory sample. If the smectic liquid crystal maintains the point-group aniso-
tropy at this level, and is anisotropic overall. then the ensemble averages survive
averaging in the laboratory frame (X, Y, Z) as well as in the local frame of the point
group, which we denote by (xp, yp, 2p).

The difference between solid molecular crystals and liquid crystals with three-
dimensional anisotropy is not easy to define. De Vries [6] has pointed out that the
most significant difference is that in the solid crystal any alkyl chains at the ends of
the molecule have very little disorder, or none at all, whereas in a liquid crystal that
has three-dimensional anisotropy these chains are slightly disordered. The difference
in local point group symmetry seems to be minimal. For example, the smectic H
phase of BBEA (4-n-butyloxybenzal-4-ethylaniline) is a liquid and not a solid molec-
ular crystal because there is no transmission of phonon modes through the smectic
liquid crystal, which is capable of flow. Translational coupling is much weaker than
rotational coupling. When the two compete, as in structures with optically active
molecules, the translational correlation is destroyed so as to achieve a more favour-
able rotational arrangement. A molecular-crystal structure of an optically active
compound has a single three-dimensional lattice, but that of a three-dimensional
smectic phase becomes twisted if the molecules are optically active, similarly to a
cholesteric phase [1]. Three-dimensional anisotropic liquid crystals may be mixed in
all proportions, in contrast with molecular crystals. If translational order disap-
pears, there is no three-dimensional order at all.

Smectic liquid crystals and solid molecular crystals therefore differ essentially in
translational order. In smectic liquid crystals there is still a residual point-group
symmetry, however, although translational space-group symmetry may have been
partially or completely destroyed.

The difference between a smectic liquid crystal and an isotropic molecular liquid
can be expressed in terms of extra ensemble averages supported by the former
within definable local point-group symmetries. In the isotropic molecular liquid,
these are absent, its point group in three dimensions is R,(3), the three-dimensional
rotation—reflection group [7], whose irreducible representations are the D represen-
tations

0 pit 0
DO, DY, ... and DY, DY, ...,

where the superscripts denote the order of the spherical harmonics and the sub-
scripts the signature under parity inversion. One of the principles of GTSM, devel-
oped recently by Whiffen [3] and Evans [4, 5], states that the ensemble average of
statistical mechanics exists within R,(3) if its D representation includes the totally
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symmetric representation (TSR) D{” at least once. Essentially, this is a statement of
Neumann’s Principle [7-9] in the language of point-group theory. Further axioms
extend this [10] to ensemble averages in the molecule-fixed frame (x, y, z) and the
local (director) frame [1] (xp, ¥p, Zp) of nematic and cholesteric liquid crystals.
Others extend consideration [11] to applied fields, such as electric, magnetic, elec-
tromagnetic or shearing fields [12-14] (strain-rate tensor). A particularly useful
application of GTSM has recently been made [15] to Couette flow in simple
(atomic liquids, where the Weissenberg effect was explained for the first time in
terms of fundamental cross-correlation functions (CCF)s) between velocity com-
ponents generated by the applied strain rate. The methods of GTSM have been
successful in providing a symmetry classification [3-6] for available computer simu-
lations of molecular dynamics in liquids, in particular the pattern of CCFs set up in
both frames (X, Y, Z) and (x, y, z) at isotropic equilibrium and at field-on equi-
librium [11]. Using non-equilibrium statistical-mechanics computer simulation, the
cross-correlations predicted by GTSM have been found to be sensitive probes of
non-Newtonian effects [16] such as shear thickening and thinning, convective and
structural turbulence and, in electrorheology, of the effect of electric fields on col-
loids. When dealing with isotropic liquids at equilibrium, GTSM shows these [4] to
be non-Gaussian in general, corroborating the evidence slowly emerging from com-
puter simulation [17-207 that liquid-state statistical mechanics is in general non-
Markovian and non-Gaussian. GTSM has recently also uncovered the phenomenon
[21] of time dissymmetry in CCF's such as those of velocity. This has been explained
by the fact that such cross-correlations are due to a combination of time-
antisymmetric components of D{" symmetry representing vorticity, and symmetric
tensor components of D{¥ symmetry representing deformation. The evidence is
therefore quickly accumulating that GTSM is a powerful and essentially simple new
method of investigating the dynamics of atoms and molecules in different ensemble
environments.

In this paper we apply these methods to investigate esnemble averages such as
time correlation functions [22] (Fourier transforms of frequency spectra) in the
smectic liquid-crystal environment, characterised by 35 point groups. In section 2
the symmetry of the D representations is mapped [2] from R,(3) to each point
group, and a table constructed of the symmetry of representative ensemble averages,
showing which averages may exist in the frame (xp, yp, zp) of the smectic environ-
ment but which disappear in the isotropic liquid. Among these are scalar com-
ponents of the time CCF <{e{t)v(0))> between the molecular angular velocity @ and
linear velocity v, which can therefore be present in a suitable smectic environment
and help to define the structure and dynamics of the liquid crystal. This CCF always
vanishes by symmetry in isotropic liquids, and is therefore one of the characteristics
of the smectic to isotropic phase change. Many other characteristics of this nature
emerge from the analysis. Section 3 is a discussion of the major results and section 4
contains suggestions for further work, including simulations of the smectic environ-
ment and its closely related molecular-crystalline counterpart.

2. Mapping from R,(3) to the 36 point groups

We assume that the local smectic environment is modelled closely by the 32
crystallographic point groups, together with the point groups that characterise the
nematic and cholesteric liquid-crystal phases. Each point group is defined with
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respect to the frame (x,, yp, zp) and has its own set of irreducible representations in
this frame. Thus, for cubic (O,) symmetry, the principles of GTSM state that ther-
modynamic averages exist in the frame (xp, yp, zp), governed by this local cubic
symmetry, provided that the symmetry representations of the ensemble averages
contain at least once the TSR of this cubic point group. This is the A4,, irreducible
representation. This result is independent of the molecular symmetry within the
point group. (Analogously, GTSM states that the ensemble averages in an isotropic
environment exist if their symmetry representations contain the TSR Dg"’ of the
point group R,(3), irrespective of the molecular symmetry.)

In general we must define the irreducible representation of the quantity being
averaged in the Ry(3) point group and then in the relevant local smectic point
group. If for example the latter is the tetragonal D,; (or 42m in the Hermann-
Mauguin international notation), the relevant TSR is the irreducible representation
A,. GTSM implies the powerful result that any thermodynamic ensemble average
within the local smectic point group D,, of the frame (x, yp, zp) may exist in this
frame if this irreducible representation contains A,. This is a powerful result because
it is wholly independent of any residual space-group structure in the smectic liquid
crystal. Proceeding on these grounds, it is possible to link the symmetry of ensemble
averages in the liquid and smectic liquid crystal by mapping the irreducible repre-
sentation of the quantities being averaged from the point group R, (3) to D,4. For
ease of development, it is convenient to divide quantities into scalars, pseudoscalars,
polar and axial vectors, and higher-order tensors. A scalar is characterised by the
TSR in any point group. The irreducible representation of the pseudoscalar in R, (3)
is D©, which is odd under parity reversal, but still a zeroth-order quantity with no
directional property. This representation maps on to B, of the point group D,,. In
chiral point groups C,, D,, T, O the irreducible representations of both the scalar
and pseudoscalar map on to the TSR of the point group, so that ensemble averages
over both scalars and pseudoscalars can exist in chiral point groups at the local
level in smectic liquid crystals. There are two distinct liquid-crystal enantiomorphs.

A polar vector (e.g. velocity) is represented in R,(3) by D!V, meaning that it is
odd under parity reversal and has first-order directional properties. An axial vector,
on the other hand, is represented by D", which is even under parity reversal. An
example of a polar vector is molecular linear velocity v. Molecular angular velocity
is an axial vector. The irreducible representations D{" and D{" respectively map
onto B, + E and A, + E of the point group D,,. These do not contain the point
group’s TSR, and in consegence no ensemble average over a polar or axial vector
can exist in the frame (xp, yp, zp) of the local smectic point group D,,.

In local smectic point groups where the TRS appears as part of the irreducible
representation in the point group of a polar or axial vector quantity, the thermody-
namic average in the local frame of reference (xp, yp, zp) may exist, provided that it
is positive under time-reversal symmetry. Examples are listed in the table.

Second-rank tensor quantities are characterised in R,(3) by D{? or D and are
second-order directional quantities that are even or odd under parity reversal.

There is a useful relation between D quantities in the point group Ry(3) that is
given by the Clebsch—Gordan Theorem

D@D = pirtm 4 pln—mD (1)

This is also applicable in the point groups of smectic liquid crystals because the sum
of D representations maps on to the same sum in the smectic point group. Thus, if
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we extend our consideration of ensemble averages to time correlation functions that
are averages over products of vectors, we have, for example,

IF(v)I'(@) = DD = DY + D + DY (Ru(3) (2a)

This shows that the D representation of the time correlation tensor generated by the
tensor product of molecular linear and angular velocity is a sum of three ungerade D
representations in the molecular-liquid point group R,(3). The time correlation
function vanishes for all ¢ in the isotropic liquid because its complete D representa-
tion does not include Dg‘”. In the D,, smectic point group, however, this is not the
case, because the irreducible representation of the CCR {v(t)eX0)) is the sum
A, + A, + 2B, + B, + 2E, which includes the TSS A4; once. GTSM therefore
implies that one element of {v(f)(0)> may exist in the D,, point group of the
smectic liquid crystal. This result may be checked in principle with molecular-
dynamics computer simulation.

2.1. Time-reversal symmetryt

Time-reversal symmetry is defined in this context as the operation (q, p) — (q,
—p), which leaves positions unchanged but reverses momenta. Parity reversal is the
operation (q, p) = (—q, —p). When dealing with scalars and pseudoscalars, the
ensemble average over these quantities must be unchanged (i.e. positive) under time
reversal. When dealing with vectors, however, some are positive under time reversal,
such as the electric field E, the position vector r, the linear acceleration v, the
angular acceleration & and the acceleration due to gravity g. Others are negative
under time reversal, such as the magnetic field B, the linear velocity v, the angular
velocity @ and the electromagnetic-field propagation vector k. A thermodynamic
ensemble average over a vector that is negative under time reversal vanishes, but
one that is positive may exist if the vector is also positive under parity reversal in
the isotropic-liquid point group R,(3). In the local smectic-phase point groups,
however, the latter requirement is not necessary, and the thermodynamic ensemble
average exists provided that it is carried out over a vector that is positive under time
reversal and provided that the irreducible representation of that vector includes the
TSR of the point group. Thus the average <r), for example, may exist in the point
group C,, of the trigonal class, because the vector’s irreducible representation in the
point group is A, + E. The latter includes the TSR A4, once. From GTSM, one
independent ensemble average exists over a polar with positive time-reversal sym-
metry. An example is {r>. Other examples in this local smectic point group are (V)
and <{®). This may again be investigated with computer simulation. In the tetrago-
nal local smectic point group D,4, however, all these ensemble averages should
vanish by GTSM.

When dealing with time correlation functions, the time-reversal arguments must
be applied with care to each individual case. The pitfalls of the procedure may be
illustrated with reference to the simple time CCR of the type <A()A0)) [22]. If A
represents linear velocity v, for example, the product within the averaging brackets
{ > is overall negative under time reversal. However, this type of time correlation
function clearly does not vanish for all ¢ since it is simply the time derivative of
(A(t)A(0))>. It exists according to the elementary theory of correlation function in

t See [9, 17].
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reversible thermodynamic equilibrinm [22]. It is itself a function that is a time
derivative, and is intrinsically negative under time reversal. More generally, the class
of time correlation functions that are time derivatives of other correlation functions
have an existence for 0 < ¢ < oo despite the fact that the product of the two quan-
tities inside the averaging brackets may in itself appear negative under time reversal.

Bearing in mind these considerations of time reversal, mappings of some D
representations form the point group R,(3) are given in the table for 36 local smectic
point groups. Column one of the table contains the name of the point group in
Schonflies and Hermann—-Mauguin notations (the latter in parentheses). Column
two is the representation of the scalar in the point group (i.e. the TSR), column three
contains the symmetry representation of the pseudoscalar, column four that of the
axial vector and column five that of the polar vector. Columns six and seven map
products of D representations onto each point group. Columns eight and nine give
the number of independent ensemble averages expected in the local smectic point
group for representative time correlation-functions, column eight for the rotational
velocity correlation tensor and column nine for the angular-linear velocity cross-
correlation tensor. Both tensors are defined in the frame (x,, yp, zp) of the local
smectic point group. Finally, column ten records the crystal class of the point group
if it were being used to describe solid molecular cystals.

Note that in isotropic molecular liquid environments only one independent
ensemble average (the trace) is expected in column eight, and none in column nine,
evidencing by GTSM a considerable difference between the local molecular
dynamics of smectic liquid crystals and isotropic molecular liquids.

Some examples of the symmetry of the correlation functions in columns eight
and nine are as follows.

2.2. Local smectic point group C,,(m)

Rotational-velocity autocorrelation function (ACF).

The irreducible representation of the rotational-velocity correlation tensor in the
point group C,,, is

TEEMO) = (24" + A')24" + 41
=4A1A1 +2A1A11 +2A11A1 +A11All
=54 + 44", 3)

showing five occurrences of the TSR in the product of representations of the corre-
lation tensor. Thus five independent ensemble averages may exist in the local
smectic frame of reference (xp, yp, zp). The individual products that give 4! in (3)
are (i) 44' A" and (ii) A''A'". The others give A''. Referring to the point-group
character table for C,,, we find that 4! represents the Cartesian components x
and yp of the local smectic frame of reference. The 4! entry represents z,. The
product 44" A! therefore represents four independent components of the rotational-
velocity correlation tensor:

Ll Otx0)35 ftyp( )ity 0)>s bt (it (0)D,  hy(t)ftsr(0).
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The fifth component {j,, i, (0)> comes from 4'' 4. The complete symmetry of the

correlation tensor in the local smectic frame of reference is therefore

d 0
() = b 0}, Cy (m)
0 ¢

[T ST

and the five independent elements are recorded in the table.

Similar arguments applied to the generic ACF {A(t)A(0)) show these five inde-
pendent elements, with the same symmetry pattern. In a molecular crystal this result
is related to the number of lattice modes, but in a smectic liquid crystal there are no
phonon modes.

The cross-correlation function {v(t)ex(0))
The irreducible representation is now

T(V)I(@) = 24" + ALY A + 2411)
=2A1A1 +A11A1 +4A1A11 +2A11A11
=44 + 5441, @)

showing four occurrences of 4*. Thus the crystal class supports four independent
ensemble averages, which are scalar elements of {v(t)@(0)). Bearing in mind that the
linear velocity v is referred to the Cartesian components X, Y and Z of the C,,,
point-group character table, and the angular-velocity component @ by R,, R, and
R,, we arrive at the symmetry

0 0 gq
v(t)0)y ={ 0 O b, |
¢, d; 0

Thus four independent elements exist, which all vanish in the equivalent molecular
liquid.

2.3. Orthorhombic D, (232)
Rotational-velocity ACF
The relevant irreducible representation of the time ACF is
rgr@g) = (B, + B, + B;3XB, + B, + Bj) = 34, + 2B, + 2B, + 2B;, (5)

which contains the totally symmetric component three times. From the axioms of
GTSM, we can expect three independent ensembles in the local smectic point group
D, (232), a chiral class. From the point-group character table for D,, and using the
rules for forming the products of irreducible representations, we have the symmetry

OR0)> = ,» Ds.

S O R
oS o O
6 O O
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In this case all the off-diagonal elements vanish, leaving three independent diagonal
elements, The far-infrared spectrum in the local smectic frame is different for each
element.

The CCF {v(t)o(0)>
The irreducible representation is
I(v)['@) = (B, + B, + B3XB, + B, + B;) =34, + 2B, + 2B, + 2B;,  (6)

which again contains A, three times and is the same as (5). This is because the D,
point group is chiral, and D{" and D{"" of R,(3) map on to the same representation
in D,, i.e. B; + B, + B;. Using (6) and the Cartesian and R representations in the
point-group character table for D, leads to the symmetry

a 0 O
v(tlo(0)> = +]0 b, O
0 0 ¢

Thus the three diagonal elements of (w(t}(0))> exist in the class D, (232). These
elements change sign in the opposite enantiomer.

2.3. Orthorhombic C,, (2mm)

Rotational-velocity ACF
In this achiral orthorhombic crystal class the irreducible representation is

@l =(A4; + B, + B,YA4; + B, + B,) =34, + 24, + 2B, + 2B,, ™

leading to the symmetry recorded in the table. Three independent diagonal elements
exist as in the orthorhombic D, .

The CCF {v(t)a(0)>
Here the irreducible representation is
I'(v)[(w) = (A, + B, + B,}A, + B, + B,) =2A4, + 34, + 2B, + 2B,, (8)

which contains A, twice. Reference to the point-group character tables reveals that
the two independent elements are off-diagonals, so that the complete matrix sym-
metry is

0 a O
v}@0))>=[b, 0 0f C,,.
0O 0 O

This contrasts with the orthorhombic D, (232) crystal class, where only the diago-
nals of the CCF are visible.

2.4. Trigonal C,, (3m)

Rotational velocity
The irreducible representation in this case is

F@)Ir() = (4, + EXA, + E) = 24, + A, + 3E, ©)
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which contains the TSR twice. One comes from the product A, 4, and the other
from EE, which signifies the product (xp, ypNXp, yp) in the Cartesian representation
of the point-group character table. It is well known that this notation implies the
equivalence of xp and yp. The product implies four rotational-velocity correlation
function elements according to GTSM. These four elements are not independent,
and are grouped together, being equivalent to one A,, generated by the product rule

EE=A, + A, + E
However, from the elementary theory of time correlation functions, we know that

i Oe(0)D # frr(O)ft,(0)D

because one is an autocorrelation function, with finite value at t = 0, and the other a
CCF, which vanishes at t = 0. This, together with the independent appearance of
g ()41.,(0)) from A4, A, leads to the final symmetry

(O (0> = ity (), (0)) # {f ()2 (0)).
The two independent non-vanishing elements are thus
(D0 = sty (O)fty(0)>
and {f_(t)it,(0)>. The further resuit
Can(D8,0)) = ()it (0)> =0

follows from the fact that the irreducible representation (9) allows two and only two
independent non-vanishing elements. The symmetry of the complete ACF matrix is
thus

0
0 ’ C3v (Bm)’
b

o O

a
<Mp©0)> =10
0

and is recorded in the table.

The CCF (v(t)o(0))
The relevant irreducible representation is
IT'(V)w)=(A, + EXA, + E)= A; + 24, + 3E (10)
allowing one occurrence of 4,, and, by GTSM, one independent non-vanishing
CCF element. This comes from the product EE = A, + 4, + E. The non-vanishing
element must therefore be from the four possible generated from (xp, ypXxp, Vp)-

There is no independent occurrence of the diagonal element (v, (t)v..(0)> from (10),
and therefore the single independent element is

o()0,5(0)) = — <0, ()w,,(0)). (11)

The minus sign [19] comes from the fact that the overall matrix symmetry is odd
under parity reversal; the result (11) represents the vector cross-product symmetry,
denoted by D!’ in the Ry(3) point group. The overall matrix symmetry is thus

0 a, O
v()o(0)> =1 —a; 0 0}, C,, (3m),
0 0 0

as in the table.
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2.5. The cubic crystal classes

There are five cubic crystal classes of high symmetry [1]. Two of these (T and O)
are chiral. Applying the same methods as in section 2.1-2.4 results in the classi-
fication in the table, which shows that the diagonal elements are supported for the
rotational velocity and other time autocorrelation functions. Cross-correlation func-
tions are supported only in the chiral classes T and O. No more than one indepen-
dent element appears in each class, i.e. there is no more than one occurrence of the
relevant totally symmetric irreducible representation in each local point group. The
far-infrared spectrum remains the same along the x,, yp and z, axes of the cubic
point group.

3. Discussion of results

The table provides a classification scheme for non-vanishing thermodynamic
ensemble averages in the given point-group classification scheme. Each point group
may accommodate molecules of independent symmetry, but the overall thermody-
namic average is determined by the point-group symmetry alone. We have shown
only a few representative thermodynamic ensemble averages in the table, but in
general all such averages may be accommodated. For example, if we wish to con-
sider polarisability of a volume element in the isotropic environment, we take the
R,(3) point group and represent the polarisability with the D symmetry D\ + D2,
a symmetric second-rank tensor that is even under parity reversal. The overall
macroscopic polarisability of a point-group representation of local smectic sym-
metry may then be investigated according to how many occurrences there are of
the TSR in the local point group. The latter’s character table may then be used to
find out in more detail the nature of the polarisability tensor in the local smectic
point group, i.e. which ensemble averages over the polarisability vanish and which
exist. If we are investigating pyroelectric symmetry, on the other hand, we note that
pyroelectricity has D symmetry in R,(3), and we then map this onto the smectic
point group representing local symmetry in the liquid crystal as in the table. This
shows that in some local smectic point groups pyroelectric properties are supported
in principle while in others they are not, according to whether the totally symmetric
representation occurs in the point group. In some cases the pyroelectricity is differ-
ent along each smectic axis axis (three occurrences of the TSR). For a given point-
group symmetry, care must be taken to examine the time-reversal symmetry of the
quantity being averaged thermodynamically.

Some D symmetries of physical quantities are listed below.

(i) The magnetic dipole is an axial (or pseudo) vector of D{"’ symmetry.

(ii) Electric polarisability, thermal and electric conductivity, thermoelectricity,
thermal expansion and magnetic susceptibility each have D + D@ sym-
metry in R,(3).

(iii) The quadrupole moment has D symmetry.
(iv) The gyration tensor of optical activity has D{® + D{? symmetry.

(v) The first hyperpolarisability has D’ + D¢ symmetry.
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(vi) Piezoelectricity and the electro-optic Kerr effect have 2DV’ + D 4 DY
symmetry.

(vii) Elasticity is a symmetric fourth-rank tensor of 2D + 2D® + D sym-
metry.

Thermodynamic ensemble averages over all these quantities vanish in the isotropic-
liquid environment except for polarisability and elasticity, which contain the Dg"’
representation. In the local smectic point groups, however, new thermodynamic
averages may exist that vanish in the laboratory frame if the local (crystal-like)
smectic symmetry is not maintained to the macroscopic level. (A key difference
between a smectic liquid crystal and a molecular solid crystal is that the same
(crystal) point-group symmetry is maintained in the latter from the local to the
macroscopic Jevel.) Local ensemble averages may exist in the smectic liquid crystal,
depending on the number of occurrences of the appropriate totally symmetric irre-
ducible representation and on the time-reversal symmetry of the quantity being
averaged. The molecular electric polarisability and quadrupole moment are both
positive under time-reversal symmetry, and extra ensemble averages over these
quantities might appear in some of the local point groups. For example, in the
orthorhombic class of C,, point-group symmetry the representation Dg"’ + Dgz’ of
the electric polarisability maps on to 34, + A, + B, + B, showing that there are
three independent non-vanishing thermodynamic averages over the molecular pol-
arisability in this local point group. These correspond in the Cartesian notation of
the point-group character table to X2, Y2 and Z?2, the three diagonal elements of the
polarisability-tensor average. All three become equal in the isotropic molecular
liquid. Again, this result is independent of the individual molecular symmetry within
the C,, point group. In the monoclinic C,, crystal class D\ + D{¥ maps on to
4A' + 24", meaning that four independent thermodynamic averages over polarisa-
bility exist in this class. These are denoted by X2, Y2, Z? and XY in the point-group
character table opposite to the 4! entry, signifying the existence of three indepen-
dent diagonal thermodynamic averages and one off-diagonal symmetric pair,
XY = YX. In the molecular liquid only one average exists, the trace of the diagonal
averages, which are the same in the three isotropic laboratory axes in the molecular
liquid. Group-theoretical statistical mechanics provides a unifying picture of the
properties of these ensemble averages together with those of the set of non-
vanishing time correlation functions for each local point group.

4. Suggestions for computer simulation

The results obtained in section 2 and discussed in section 3 provide a coherent
system of predicting the existence of ensemble averages in the point groups of the
table. The numerical values of these averages and the time dependences of the
correlation functions must be obtained using additional complementary methods,
such as bandshape analysis and molecular-dynamics computer simulation. Not only
would this provide a needed and detailed check on the predictions of GTSM
applied to smectic liquid crystals, but it would also be a new area of fruitful investi-
gation of liquid-crystal molecular dynamics, extending the range of liquid-state
computer simulations.

The methods developed in section 2 can also be extended to deal with the effect
of external fields on smectic liquid crystals, using the third principle of GTSM [10].
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This states that the symmetry of ensemble averages set up in a molecular environ-
ment subjected to an externally applied macroscopic force field is the symmetry of
the applied field itself. In an ensemble of atoms subjected to a strain rate of overall
symmetry D!” + D\ + D{? recent computer simulation [15, 16, 21] has indeed
revealed the existence of new types of ensemble average set up by the field and
taking its overall symmetry. These CCFs explain the fundamental origin of the
well known Weissenberg effect of rheology [12-14). Similarly, an electric field of
symmetry D{sets up ensemble averages of this symmetry in the R,(3) point group,
and thus also in the local smectic point groups. The symmetry of the electric-field-
induced ensemble average in a given point group is D{!’, mapped onto its equivalent
irreducible representation in the local point group. Similar predictions can be made
for other applied macroscopic fields, such as a magnetic field, an electromagnetic
field and strain rate, applied to the smectic liquid crystal in the laboratory axes X, Y
and Z. These methods, used with computer simulation and experimental spectros-
copy, for example [17-20], will reveal a great deal about fundamental and unknown
areas of chemical physics.
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