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Abstract

Angular resolution of the pair radial distribution function in computer
simulations of shear induced thickenening in atomic (Lennard-Jones) liquids
has revealed the presence of anisotropic local structure which is explained on
the basis of group theoretical statistical mechanics. This explains the
observed structural asymmetry from the basic assumption that the symmetry
of allowed ensemble averages in the steady state in the presence of shear is
the same as that of the applied strain rate. The computer simulation results
are reproduced from group theory by assuming that the crystal like lattice
arrangement of atoms which appear in the simulations under shear can be
described by some of the thirty two crystallographic point groups, namely
hexagonal. trigonal, and triclinic. The hexagonal lattice symmetries C,, and
Cen; the trigonal symmetry S; and the triclinic symmetry C;(S,) are found
to support the crystal-like structures necessary to explain the observed
angular resolution of the pair radial distribution function.

Introduction

The non-equilibrium molecular dynamics computer simula-
tions of Heyes and co-workers [1-5] have revealed a number
of significant new phenomena of non-Newtonian rheology in
atomic liquids using a battery of new numerical techniques.
Among the most interesting of these is in the context of shear
thinning and thickening. Simulations have shown [3] that as
the shear rate is increased the atoms of the liquid ensemble
form structurally arrested states with crystal-like symmetries.
The point group of the ensemble is therefore changed from
the well-known [6-8] rotation-reflection group R, (3) of three
dimensional isotropic space to that of the shear induced
lattice. In this communication we use the recently developed
axioms [9-12] of group theoretical statistical mechanics
(g.t.s.m.) to explain the observed [3] symmetry of angularly
resolved pair radial distribution functions (r.d.f.’s) in non-
equilibrium simulations of Lennard-Jones ensembles. It is
shown that only a small number of lattice symmetries [13]
support the observed anisotropy under shear, and explains
why shear is able to produce this anisotropy.

Part 1 states the three principles of g.t.s.m.; part 2 states
the problem to which these axioms are applied; and part 3
discusses the results obtained from this application of g.t.s.m.
to shear induced structurally arrested states in atomic liquids.

1. The principles of group theoretical statistical mechanics

A long scries of conventional [14-20] and non-equilibrium
[1-5] computer simulations has led to the recent emergence of
three principles of the application of point group theory to
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statistical mechanics. This has become known as group
theoretical statistical mechanics (g.t.s.m.). The first of these is
Neumann’s Principle [21], also known as Curie’s Principle
[22. 23]. The second has emerged from the application of
point. group theory in the molecule fixed frame (x, y, 2)
by Whiffen [24] to some of the present author’s computer
simulation results. Frame (x, v, z) is as conventionally defined
in the character table [6-8, 13], and the third principle deals
with the effect of external fields, again in response to the
copious evidence of computer simulation.

1.1. Principle 1

The thermodynamic ensemble average (ABC. . .> over the
product 4BC. . . exists in the laboratory frame (X, Y, Z) if
the product of symmetry representations ' I(B)(C). . .
contains the totally symmetric representation (t.s.r.) of the
three dimensional rotation-reflection point group R, (3).

1.2. Principle 2

This ensemble average exists in the molecule fixed frame (x,
v. 2) if the product of symmetry representations in this frame
contains at least once the totally symmetric representation
(t.s.r.) of the molecular point group.

1.3. Principle 3

The ensemble average in frame (X, Y, Z) is changed by the
application of an external ficld of force in such a way that the
symmelry of new steady state ensemble averages is that of the
applied field itself.

Principle (1) shows, for example, that some time cross
correlation functions (c.c.f.’s) exist at thermodynamic equi-
librium, and exposes the limits of conventional diffusion
theory, where all time c.cf.’s are customarily ignored or
assumed simply to vanish for all t. The members of the set of
non-vanishing c.c.f’s in frame (X, Y, Z) are sclected by
Principle (1) for all molecular symmetries. Powerful evidence
for the role of ccf’s in non-Newtonian rheology has
emerged from the recent simulations of Evans and Heyes
[25-27].

Principle (2) rests on numecrous careful computer simula-
tions in the past few years. It means essentially that the set of
non-vanishing c.c.f.’s in frame (x, y, 2) may contain members
that simultancously vanish in (X, Y, Z). Both frames are
needed for an elementary appreciation of molecular diffusion
process. Principle (2) has successfully explained the data [24]
from computer simulations. and in combination with prin-
ciple (1) has pushed understanding of diffusion processes in
molecular matier well beyond the conventional boundaries
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[28-32], which are defined almost always by the assumption
that there exist no time c.c.f.’s of any kind, in either frame.
Principle (3) is a statement of how externally applied force
fields of given symmetry set up extra ensemble averages at
field-applied equilibrium. It is also valid in transient, non-
equilibrium regimes. In both cases the overall symmetry of
the new ensemble averages is that of the applied field. The
following examples illustrate Principle (3) at work.

(1) It has been shown by conventional computer simula-
tion that a static electric field applied [17-19] to a liquid of
dipolar molecules in axis Z of frame (X, Y, Z) produces the
result

(D@, (0)) = —vy(Dax(0)) (1)

where v is the linear centre of mass velocity of a diffusing
molecule and @ its own angular velocity. The c.c.f.’s (1)
vanish in frame (X, Y, Z) at field-off equilibrium but appear
in response to the static field. This cannot be explained by the
conventional theory of diffusion [28-30] or dielectric relaxa-
tion [31, 32]. However, it is a sample consequence of Principle
(3) in that the irreducible representation in R, (3) of the static
electric field E is D'V, that of a polar vector. The D symmetry
of the complete nine-element tensor {»()@(0)) is

(W) = DPD = DY + D’ + DY )

the product of a polar and axial vector. The vector part, i.e.,
<) x @(0)), gives eq. (1), with D symmetry. The electric
field has made possible the existence of the thermodynamic
ensemble average (1) with the same symmetry as the field
itself. Evans and Heyes [25-27] have shown recently that
the D symmetry of the strain rate tensor of the shear is
DY + D + D@, which by Principle (3) sets up new ensemble
averages, such as pair distribution functions or time correla-
tion functions in frame (X, Y, Z) at the field on steady state.
They found that this D symmetry is the same as that of the
generic time a.c.f. {A()4(0)), with A representing atomic
velocity for example. They then used state of the art non-
equilibrium computer simulation to show the presence of new
time c.c.f.’s with the overall symmetry of the strain rate.
Principle (3) produces similar entirely novel results [25-27]
for the time c.c.f.’s of pressure tensor components, revealing
the fundamental origin of the Weissenberg effect of macro-
scopic non-Newtonian rheology [33], and explaining through
c.c.f.’s the pressure set up in a sheared liquid in a direction
perpendicular to the plane of shear. Further work by Evans
and Heyes [27], using independent state of the art algorithms,
showed that the new c.c.f.’s are also sensitive to the typical
[34-38] macroscopic phenomena of non-Newtonian rheology,
including the appearance of shear induced thickening and
thinning, the appearance of string phases, and structurally
arrested states. These all involve time c.c.f.’s in frame (X, Y, Z)
for an atomic liquid, and also in frame (x, y, z) for a
molecular liquid. Conventional methods of macroscopic
rheology have failed to recognise this, in the same way that
conventional diffusion theory has failed to recognise the role
of c.c.f.’s at equilibrium. In both cases they are governed by
Principle (3).

2. Crystal-Like arrested states at high shear rates, an excess
of symmetry

Principle (3) may be applied to angularly resolved pair distri-
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bution functions, defined by
[ [
f;{i(") = ( Z Z <Rzi] Rﬂq /R(Z] >>/N (3)
i)
gp(r) = 15V, (NI(V(N) )

Here R,;, = R,, — R,;, where R, is the « cartesian com-
ponent of the position of molecule i.

The angular component f,, measures the anisotropic dis-
positions of molecules or atoms, and involves the ensemble
average (R,; Ry; >. Peaks in g,; supply information on shear
induced structurally arrested states. In eq. (4), ¥ is the volume
of the shell bounded by r + 6r/2

V(ry = 4nrior &)

For a shear resulting in a strain rate response of type dv,/0Z.
Principle (3) predicts the existence of the ensemble average
{(Ry;Rz;>, but no other off-diagonal elements such as
{Ry;jRy;> or {Ry;R;;»>. This is simulated by Heyes [3] and
is in satisfactory agreement with numerically derived data
for low shear rates, but as the latter increase, off-diagonal
elements of the angularly resolved pair r.d.f. appear [3] which
are disallowed by Principle (3) in R, (3). Heyes has explained
this in terms of slow structural relaxation, outside the time
window of the simulation. The applied shear has clearly led
to lower symmetry in frame (X, Y, Z), a crystal-like environ-
ment has been generated from a shear induced phase change,
taking the ensemble from R, (3) to some other crystal-like
point group of lower symmetry. The problem of how to apply
group theoretical methods within this.new group to explain
the results actually observed by Heyes (Figs. (7) and (8) of
Ref. [3]).

3. Application of G.t.s.m.

The g,,(r) in Figs. (7) and (8) of Ref. [3] emphasise pair corre-
lations in the « direction and give relative nearest neighbour
distances in the X, Y, and Z directions. Figure (7) shows a
strain rate in reduced units of y = 30 and shows that the first
peak in gy, (r) is 0.1¢ further out than that of g,,(r) and
g,2(r), where ¢ is a Lennard-Jones parameter. This trend
becomes more pronounced at y = 110 where the separation
is 0.15¢. Being a spherical average, however, g(r) tends to
obscure the strong anisotropic structural changes due to
shearing.

As the shear rate is increased the system of molecules
cannot adapt sufficiently rapidly to the shear distortions and
the atoms overlap appreciably to form structurally arrested
states. The stress grows and the diagonal elements of the
pressure tensor take on metastable negative values. The
asymmetric expansion coefficients g,,(r) under this condition
are shown in Fig. (8) of Ref. [3]. At a shear rate of 5 only the
gy7 component is statistically different from zero. However,
Fig. (8) shows the appearance of statistically significant
gyy(r) and g,,(r) of GREATER magnitude than g,,(r) at
y = 110. This reflects slow structural relaxation times of the
order of the simulation time. The ensemble in this state
behaves like a solid in directions orthogonal to the streaming
direction, but the atoms move within these “strings” fairly
freely and the force autocorrelation function is more damped
in the X than the Y and Z directions.

In order to explain Fig. (8) of Ref. [3] it is necessary to
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assume that the overall point group of at least some part of
the ensemble is no longer R, (3) of the isotropic liquid, dis-
torted by shear, but is that of a shear-induced crystal-like
structure. From the “‘snap-shots” of the simulation provided
by Heyes [3] this appears to be hexagonal, trigonal, or tri-
clinic, an overall triangular lattice which produces

fXX:/éfY)':/éfZZ :’éfXZ:’éfXY :’éfYZ:’éO (5)

To find the symmetry of the applied shear within each
of these crystal-like point groups it is necessary to map
DP + D" + DY on to the appropriate irreducible repre-
sentation within that crystal-like point group. These
representations for thirty five point groups of interest, includ-
ing the crystalline point groups, are shown in tabular form.
The following are examples of this procedure for shear
induced crystal-like point groups.

3.1. Hexagonal C,, (Hermann Mauguin 6)

In this crystal point group, one of the hexagonal crystal
symmetries, the symmetry of shear is

D(gO) + D(gl) + D(gZ) AllAll + EIAH 4 AIIEI + EIEI

(6)
which allows ensemble averages of the type
<RXinXij> # (R yi R Yij> # <RZinZij>; (7a)
(RyyRy; > # (RyjRzy) # (RyyRzy (7b)

using Principle (3) within the C,, point group rather than the
R, (3) point group. Equation (7) predicts angularly resolved
pair distribution functions with the property (5). Thus both
the digonal and off-diagonal elements have a different r
dependence if the structurally arrested state has the crystal
symmetry Cy, or 6. Comparison of this result with available
computer simulations by Heyes can be made by examining
the numerical data in Figs. (7) and (8) of Ref. [3}. These show
that at strain rates ) = 110 and y = 30 in normalised units
the diagonal elements g,, and g,, are almost equal but dis-
cernably different, the third, g, being distinctly different
from the other two. In Fig. (8) of Ref. [3] the amplitudes of
the off-diagonal elements gy, and g,, are greater than the
third element g,, all three being distinctly different.

Our calculations, based on Principle (3) applied to the
various point groups show that the hexagonal point group
Cq, (6/m) also gives this result, along with the trigonal S, and
the triclinic S,. Other hexagonal or in general triangular type
lattices are either disqualified on the basis of being chiral, or
produce degeneracies, in the sense that one or more angularly
resolved pair r.d.f. elements are equal.

4. Discussion

Shear thickening is accompanied by the appearance of struc-
turally arrested states in which the crystal-like symmetry
supports six different angularly resolved radial pair distribu-
tion functions. These are rationalised with group theoretical
statistical mechanics.

More generally, the methods developed in this paper,
based on the three principles of group theoretical statistical
mechanics, can be applied to structural and dynamical
properties of atomic and molecular ensembles both in the
laboratory frame (X, ¥, Z) and in the molecule fixed frame

(x. v, z). The methods can deal with angularly removed pair,
triplet, quadruplet and N order distribution functions for
atom atom interactions, for example, in molecular liquids
such as water. The presence of structurally arrested states is
indicated by the presence of a component which is not allowed
by the three principles of g.t.s.m. applied to angularly
resolved functions in the presence of shear. For example, in
simple atomic ensembles the angularly resolved quadruplet
radial distribution function has a maximum of 729 scalar
components, but g.t.s.m. shows that only fifteen of these can
have an independent existence at equilibrium. These break
down further into different symmetries, providing a wealth of
information on the equilibrium structure. When shear is
applied, a further 36 independent components of D{” sym-
metry and 40 components of D symmetry become visible
when the ensemble has not become structurally arrested. In
the latter condition, the overall point group changes as
described in the text, providing a rich variety of extra
information.

The same methods can be applied to dynamical ensemble
averages, and in molecular ensembles we have available two
frames of reference, (x, y, z) and (X, Y, Z). Averages in the
former are governed by principle two and in the latter by
principle three.
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