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COLLECTIVE CORRELATION FUNCTIONS IN
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A combination of group theory and NEMD computer simulation confirms the existence of new asymmetric
cross-current correlation functions excited in a monatomic fluid subjected to couette flow. The structure
of these functions is explored and their implications for spectroscopic techniques such as depolarised light
scattering and infra-red absorption are discussed.
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1 INTRODUCTION

Group theoretical statistical mechanics, GTSM, [1] and non-equilibrium molecular
dynamics, NEMD, computer simulation [2] have recently revealed the existence of
fundamentally new asymmetric cross-correlation functions CCF’s. produced by a
shear rate, v,/dY applied to a fluid. These new time asymmetric cross correlation
functions in the laboratory frame X YZ break the Onsager Casimir symmetry [3]. For

example, for the velocity,
' OOy () # vx(Ovy(©0)). (1)

where v, is the « component of the centre of mass velocity, v of an atom diffusing in
an ensemble. The theory was described that predicts those time-correlation functions
existing in (symmetry breaking) simple planar shear flow, which are trivially zero in
the absence of shear flow for symmetry reasons, The new cross correlation functions
of this type are predicted by the third principle of group theoretical statistical
mechanics, GTSM. Their observation using SLLOD NEMD [2] and subsequently by
PUT in 2D and 3D [4] agreed with the predictions of the axioms of GTSM. In this
work we pursue the implications of GTSM for collective correlation functions in
couette shear flow, which have consequences for spectroscopy.

The D symmetry of shear in general is DY + D’ + D, which is that of the

tensor, v, i.e., the general product of velocity, v, and inverse position, r~'. The D
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symbols are irreducible representations of the rotation/reflection group Rf), and in
shear flow can be thought of as representing V-v; V. x v, and Vv, resepectively the
divergence, curl and dyadic of the velocity v. The divergence in pure shear is zero, the
curl is antisymmetric in index reversal, and the dyadic, Vv is symmetric. The light
scattering spectrum reflects the weighted sum of D' and D}’ components, the curl and
dyadic of the velocity, in our case the peculiar velocity. The curl of v, of D) symmetry,
is usually regarded as the definition of vortex, and the dyadic Vv is a symmetric
deformation of D? symmetry. The induced correlation functions corresponding to
the D\ part of the shear stress are antisymmetric, representing votticity, for example,

vy @y (D) exp (ig-(r(0) — r(®)> = — <vy(Ovyle) exp (ig-(r(0) — r(®)>

and those corresponding to the DY part of the shear stress are symmetric, the minus
sign in the above equation being replaced by a plus sign. The observed result is a

weighted combination and is therefore asymmetric. Examples are given in this paper.
Consider the current correlation function for a monatomic fluid,

Cyyr = {vy(O)vy(?) exp (ig-(r(0)—r()))> (2
Here g is the scattering vector and
r@) — r0) = Ar(t) = jo w1)dt, | (3)

" The shear-induced enhancement in mean square displacement is written as the integ-
ral over the asymmetric CCF,

BP@Y > = [ [f x> dndta @

0

= 2 [0t = DOy dt

The current CCF from Equation (2) is related to the self intermediate scattering
function [5], by

Fi(g, f) = <exp (ig=(r(0) — r(O)> %
which upon double differentiation provides,

2 IS .
@D _ _ pc,m ©
dt
Equation (5) gives the result,

Tiy(g, @) = %’z-ssn(q, ) )

where J is the temporal Fourier transform of Cyy and Syy(g, w) is the shear-induced
component of the self-dynamic structure factor. Integrating Equatio_n (6) gives,

jim 2 & = g [ (O ®

g0 dt 37

where 1, is the correlation time. This shows that the dynamic structure factor under
shear is a direct measure of the cross-correlation function of the type given in
Equation (1). The function Syy is in principle observable by e.g., light-scattering. The
scattering geometry is pictured in Figure 1. The initial polarisation vector has a
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Figure 1 Scattering geomelry for depolarised scattering from a fluid under shear. The geometry of the
figure corresponds to ¢ = {0, 0, Z).

component along the X axis of the laboratory, XYZ frame. The scattered polarisation
vector has a component along the y axis. It is well known that the Rytov, or shear
wave, dip in depolarised light scattering [3] does not appear to be related to specific
molecular structure, and has been attributed to ‘local’ strains set up by transverse
shear waves: Similarly, it is proposed that a component of the depolarised spectrum
due to Equation (8) exists for all atomic and molecular geometries in the steady state
under an applied macroscopic shear strain rate. This component disappears at shear-
free (isotropic) equilibrium.
The disymmetric CCF's of the form,

e (0)) # Lvx(Ory(0)) ®
(re@re0)> # Lrx(Dry(0))- (10)

exist in addition to those in Equation (1). The permanent molecular dipole moment,
Lo, is always expressible as the vector sum of the position vectors of the atoms in the

YYZ frame. This then confirms the existence of the CCF's,
oy (Dox(0)>  # oy Dy (0) - (imn

and,
{oy(Ditox(0)>  # {Jiox(Ditoy(0) . (12)
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The Fourier transform of Equation (11) is a disymmetric shear induced complex
permittivity. The Fourier Transform of Equation (12) is the far infra red power
absorption accompanied by a dispersion in the refractive index. Therefore the newly
discovered shear induced CCF’s that have already been shown to be sensitive probes
of the non-Newtonian state [6] are also proved here to influence a wide range of
spectroscopic techniques, such as enhanced depolarised light scattering and infra-red
absorption. Therefore, it is to be expected that the non-Newtonian state of the fluid
is closely related to the magnitude of these spectroscopic effects.

Kim et al. [7] already demonstrated by NEMD that shear flow induces depolarised
light scattering in simple monatomic fluids. In a subsequent paper they showed that
there is a shear induced birefringence [8], which can be ascribed to the well-known [9,
10] steady state distortion of the fiuid under shear. The shear induced molecular
polarizability, ey, is given in the shear applied steady state,

{oexy> o< {Horlox (13) .

Just as the dielectric polarisation can be expressed in a power series in the applied
clectric field, involving molecular polarisability (oc E) and molecular hyper-
polarisability (ec F?), so we can also define a shear induced polarisability and shear
induced hyperpolarisability.

In the next section we outline simulations performed to verify the existence of these
“new CCF’s and explore their form. ' '

2 SIMULATION DETAILS

The MD simulations followed particles of mass, m, interacting via the Lennard-Jones,
LJ, potential,

¢(r) = 4e((a/n)? — (a/r)), (14)

The MD simulations were performed on a cubic unit cell of volume ¥V containing
N(= 108) molecules. The interactions were truncated at 2.5 6. We use LJ reduced unit
throughout, i.e., ks T/e — T, and number density, p = No*{V. Time is in o(m/e)'?,
strain rate is in (e/m)? /o, viscosity is in (me)'? /o* and stress is in &7, The tem-
perature was fixed by velocity rescaling of the peculiar velocities [11}. The state point-
considered was a near triple point state, at p = 0.8442 and T = 0.722. The simu-
lations were for 150,000 — 250,000 time steps of magnitude, 0.01.

Using the PUT algorithm [10] to promote shear flow in MD, we have produced
some examples of the new current correlation function (2) for different g, for two
strain rates,y = 1 and = 2.

We calculated the shear viscosity, #, from,

n = — PyylYs (15)

where,

1 N o N-1 N d r.

Pyy = 4 Z WV Vy — Z 2 ("xfj"yij/"ij) M (16)
V\i=i i=1 j>i dr

where r; is the x component of ryand V = (N/p), the volume of the MD cell. The

peculiar velocity is .
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3 RESULTS AND DISCUSSION

Here we follow on from previous studies of the intermediate scattering function, F(g,
1) of unsheared LJ fluids [12, 13], we consider essentially the shear excited component
of F(g, f). The collective correlation functions are derived from Equation (2) using,

N
Cox = ZI ¥y COS (@yrxr + Gyrv) (17)

Cor = Vyi €08 (qyrxs + GvTwi) (18)

v; SIN (@yTyi + GyTvi) (19

¥
qu = v

i
N
&
N
Sex = Z
i=1
i
‘21 vi Sin (@xrxi + qyTvi) (20)
Sl ==
Here the velocities are excess or ‘peculiar’ velocities, being the velocity deviation from
the local spacial average. From Equations (17) to (20) we can construct a number of
component collective correlation functions,
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Figure 2 Some examples of the new shear induced current correlation functions. We give S,y,(¢) and for
p=0,1,2and ¢* = (g% q%. 9% =, 0, 0). (a) y = O, solid line, (b) y = 1, squares, (¢) ¥y = 2, A.
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Figure 3 As for Figure 2 except that we give a Cy(8), for y =0, 1,2 and ¢* = (g%, 4%
g%y = (0, 125,07y = 0, solid Wing; 7 = |, squares; y = 2, A.

Cur() = (qu(o)cqy(f»a (21)
Corx(t) = er(@epx(8)D (22)
Sxy() = {5,5(0)5,¢ (1)) (23)
Serxt) = (5,(0)5,6(0) 7 (24)

These functions are used in calculating the real and imaginary parts of the frequency
sransforms. In Figure 2 we give S,yy(#) and for y = 0, 1, 2 and ¢* = (¢*%, 4%,
g%) = (0, 0, 0). The S,yx(0) is negative at finite shear rates; a feature unforeseen in
classical theories of dynamical motion in liquids. In Figure 3 we give a typical example
of C,xyand Cyy, fory = 0, 1, 2and ¢* = (g%, qt.q%) = (0, 1.25, 0). It shows that
shear flow creates a nonzero time correlation function, which increases in magnitude
with shear rate. (At y = 1, 2 we find for N = 108 that n = 2.06 and 1.66, respect-
ively.) A comparison between Cpxy and C,yy in Figures 3(a) and (b) respectively,
reveals that a time asymmetry appears in these collective functions as well as in the
single particle cross correlation function, {vyvy). As the only difference between the
C,pand S . is a translation of the position vectors they should be identical at all times
and shear rates. We do find that S,y and S yy are statistically indistinguishable from
C,xr and ¢ yx, which incidentally vindicates the boundary conditions used, that there
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Figure 3 As for Figure 2 except that we give b C, () for y=0,1,2 and g* = (g% 7%
g*) = (0,125 0%y = 0, solid line; y = 1, squares; y = 2, A.

are no velocity discontinuities across the MD cell boundaties. The periodic boundary
need to be ruled out in this work, because this is a frequent cause of controversy in
the literature on collective CCF’s in light and neuiron scattering.

In Figure 4, we consider S,yy, for y=0,1,2 and ¢*=(¢% %
g*) = (1.25,0, 0). This function is quite different in appearance from Figure 3,
despite having the same ¢. These collective cross correlation functions are therefore
sensitive to g. In Figure 5, we consider C,yy, for y = 0, 1, 2 and q; = (4%, 9%
g*) = (1.25, 1.25, 0). These functions are similar to those in Figure 3.

We note that in some cases (e.g., in Figures (4) and (5)), the collective CCF’s are
non-zero even in the absence of shear for finite ¢. This is more evident at high g. This
extra correlation we believe is statistical in origin, coming from the definition in
equations (17) and (18) and finite sampling of a c,x and c,y. These figures (consist-
ently) show the remnants of such correlation at y = 0 in the very small amplitude
oscillations of the solid line.

We clarify the fact that the shear induced cross cotrelation functions of Kimet al.
[7, 8] are the well-known collision induced functions first discovered by McTague and
Birnbaum in the late 1960’s, corresponding to induced absorption in the far infra red.
The present CCF’s have a quite different origin, and depend on no collision induced
process. They are related, rather, to the Rytov family of phenomena, and in this paper
are shown clearly to be exclusively due to shear and its various non-Newtonian

response phenomena.



406 M.W. EVANS AND D.M. HEYES

T T T ¥ T L) L

4t

- 1 —_
1

0 B.25 0.5 0.75 1.25 1.5 1.75

t

Figure 4 S, (1) fory =0,1,2 and g* = (g%, g%¢%) = (1.25,0,057 = 0, solid line; y = 1, squares;
y =2, 4.

The new light scattering spectrum predicted by computer simulation in this paper
has several potential applications. We first note that the spectrum is dissymmetric in
interchange of the indices X and Y of shear, a property which can be exploited
experimentally by reversing the direction of the shear. The experimental arrangement
for observing depolarised light scattering from a sheared fluid consists of a couette
made up of two co-axial cylinders, the inner cylinder creates the shear while the outer
is a static glass wall, transparent to the incoming laser frequency. The overall scatter-
ing geometry is as illustrated in Figure 1. The rate of shear achievable in the labora-
tory is usually no greater than a megahertz, and to create a non-Newtonian response
at this shear rate requires a colloidal dispersion or liquid crystal rather than a simple
molecular fluid. The time decay of the new cross CCF’s is roughly compatible with
the inverse rate of shear, so that photon correlation techniques rather than high
frequency Rayleigh/Brioullin scattering are necessary if the shear rate is in the MHz,
equivalent to time scales in the microsecond range. Depolarised scattering is usually
observed from laser radiation, but cyclotron or neutron radiation could be used in
principle. Inelastic collisions of neutrons with the particles of a sheared fluid deal
directly with exchange of momentum, which is the dynamical variable basically
responsible for the depolarised, shear induced spectrum. Cyclotron radiation is now
available over a very wide range of frequencies with which to probe the non-
Newtonian nature of a sheared fluid.
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Figure 5 C,yp(0) fory=20,1,2 and g* = g% 9% q%) = (125, 1.25, 0, y = 0, solid line; vy = 1,
squares, y = 2, A.
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