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Simulation and symmetry of shear and elongational flow

M.W. Evans ! and D.M. Heyes *

Department of Chemistry, Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 OEX, UK

Received 4 September 1989; in revised form 16 January 1990

In this summary of our current research we describe in detail the application of group theory statistical mechanics applied
to non-Newtonian shear and elongational flow. We go in some detail into the methodology, with many illustrative examples.
We look at shear flow, elongational flow, and then at both simultaneously applied to a model monatomic liquid. We consider
both steady state and transient flows and the consequences of the new time cross-correlation functions for spectroscopy. We
note that a combination of shear and elongational flow can produce a heat flux, the thermal equivalent of the Weissenberg

effect.

1. %Introduction

This article describes the recent impact of com-
puter simulation and group theoretical statistical
mechanics, GTSM, on the study of elongational
and shear flow. This is a very rapidly developing
area which is expanding our understanding of
rheology at the fundamental level, where the dy-
namics of atoms and molecules are studied di-
rectly through the classical (Newtonian and
Eulerian) equations of motion. This disposes of
the need for semi-empirical constitutive equations
[1-5], which do not adequately address the atomic
or molecular structure and dynamics of an ensem-
ble under imposed flow. The constitutive equa-
tions of traditional rheology bring with them the
frame indifference controversy [2], confusing the
issues and providing few new insights. The main
problem with traditional methods is that they are
descriptive rather than prescriptive.

In contrast, recent years have seen the emer-
gence of new simulation algorithms based on novel
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ways of treating numerically the fundamental
equations of motion of flow. Examples are the
SLLOD equations developed by D.J. Evans and
co-workers [6-10] and also applied by Heyes and
co-workers [11-16]; the profile unbiased thermo-
statting (PUT) methods, outlined later in this
article based on the recent work of Heyes, and
Brownian dynamics [17,18] (BD) in the study of
shear flow. An especially important development
in this latter context is the evolution [19] of ““sec-
ond generation” homogeneous deformation pro-
grams which can handle complicated combina-
tions of both types of flow. Applications of this
approach will be described here.

Using these methods, rheology has finally come
to terms with the existence of atoms and mole-
cules. An imposed elongational or laminar stress
or an 1mposed shear stress can be investigated
through its effect on individual atomic and molec-
ular dynamical trajectories, worked out on a pico-
second time scale and governed by the fundamen-
tal equations of motion is the classical approxima-
tion. All this is made possible by computers such
as the Cray-XMP whose speed and memory
capacities are expected to increase considerably. It
seems clear therefore that these new simulation
methods are destined to complement and replace
methods based on constitutive equations, or which
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otherwise do not use directly the fundamental
equations of motion.

' With the availability of individual trajectories
of atomic or molecular ensembles over typically
about half a million time steps, the data reduction
p‘;rocess becomes of central importance. Structural
changes during elongation or shear flow, or a

combination of both, can be displayed visually as

in the projections of the instantaneous molecular

configurations shown in fig. (1), and an apprecia-
tibn can be built up in terms of pair radial distri-
bution functions (p.r.d.f’s), and their angular res-
olution (see e.g., Heyes and Szczepanski [20)).
A\;ngular resolved Cartesian components of the
pir.d.f’s appear in the laboratory frame (X, ¥, Z)
when an atomic ensemble is subjected to shear

stress, for example. These components are specific

indicators of the rheology of the ensemble at the
atomic level, and disappear at shear-free equi-
librium. There are no direct counterparts from the
customary constitutive equations, which therefore
lack information on structural changes within the
flud. The traditional language of rheology is
“Newtonian” or ‘“non-Newtonian”. The fluid is
Newtonian if it appears to satisfy Newton’s linear
relation between stress and strain,

Oxy =MNYxys (1)

where, oyy is the XY component of the stress
tensor, 7 is the scalar viscosity and y,, = 9v,/97,
the shear velocity profile. When this is not the
case, essentially empirical methods are employed
to describe the way in which strain responds to
stress. One of the clearest classification schemes
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Fig. 1. Scattergrams for 3D sheared LJ fluids at the 3D LJ state p = 0.8442, T=0.722 with N = 500 using the PUT algorithm. The
projections of the centres of the LJ particles onto the YZ plane are shown. To facilitate the observation of any long-range structure,
the real MD cell and surrounding 8 images are given. y = 3.0.
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for non-Newtonian fluids i1s in terms of the De-
bora.h number, employed by Heyes [18]. Using
computer simulation of atomic ensembles, repre-
senting “simple” hiquids, the non-Newtonian fea-
tures can be classified in terms of specific and
fundamental indicators which are not empirical.
The angularly resolved p.r.d.f.’s represent one such
set, being thermodynamic ensemble averages built
up during the course of the simulation.

" The effect of elongation and shear on the dy-
namics of individual atoms and molecules can be
d}cscribed in terms of time correlation functions,
which are Fourier transforms of spectral (frequen-
cy) functions through Fourer’s integral theorem
[21 24]. Correlation functions can be computed at
cqulhbnum through the equivalence of the en-
s;mble and running time averages of statistical
mechanics. Recently, Morriss and Evans [25] have
generalised non-linear response and fluctuation
dissipation theory with the use of non-equilibrium
time correlation functions, which correlate two
variables, as usual, but with one at equilibrium
abd the other in the tramsient condition after
application (or removal) of an external force field.
Both equilibrium and non-equilibrium types of
time correlation function can be used to reduce
the individual trajectories of atoms or molecules
to a form where they are in principle observable
by spectral methods. Auto correlation functions
(a.c.f’s) are usually identified as involving the
product of an atomic or molecular dynamical vari-
able 4(0) with A(?), where ¢ is the time. The a.c.f.
is

\

Ci(1) = (4(0) A(1)), @
wjhere (...) means “running time average”,
equivalent to “ensemble average”. The quantity 4
can be a scalar, vector or tensor, and in conse-
quence A(0)A(r) can be a scalar, vector or tensor
product The term “a.c.f.” is usually confined to
the diagonal elements of such products, for exam-
ple (A,(t)Ax(0)) and so on. The off = diagonal
eIerncnts, such as (A,(f)Ay(0)) are denoted
‘cross correlation functions” (c.c.f.’s). More gen-
era]ly, a c.cf. correlates A(0) with another varia-

Ie B(t) which may refer to the same atom a time
t ﬂater or a different atom of the ensemble. In this
article we deal almost exclusively with c.c.f.’s of

this type between two different variables 4 and B
of the same atom. The c.cf. is, therefore,

Cy(1) = (4(0) B(1)) (3)

(both diagonal and off-diagonal elements). Note
that the Fourier transforms of correlation func-
tions (a.c.f’s and c.c.f.’s, equilibrium and non-equi-
librium) are always spectral functions through
Fourier’s integral theorem. Some of these spectra
are observable experimentally so that time correla-
tion functions indicate directly to what extent a
fluid is non-Newtonian. They provide the essential
Iink between observation and computer simula-
tion.

The next section deals with the principles un-
derpinning the new simulation advances in non-
equilibrium molecular dynamics (NEMD).

2. Group theory statistical mechanics

This branch of statistical mechanics rests on
three principles [26—31] with which the well-devel-
oped methods of point group theory [32-35] are
applied to the ensemble averages exemplified in
the introduction. These principles allow conclu-
sions to be drawn on the basis of symmetry alone,
without going into further detail, thus providing a
powerful and valuable guide to computer simula-
tion, equilibrium and non-equilibrium alike, sav-
ing a vast amount of unnecessary computation,
and providing valuable new insights in the context
of elongational and shear flow at the necessary
atomic or molecular level.

Principle (1) 1s the Neumann or Curie principle
[36,37] expressed in the language of contemporary
group theory and statistical mechanics. It operates
m the laboratory frame, (X, Y, Z). Principle (2) is
the equivalent in a frame of reference (x, y, z)
defined with respect to the individual molecule of
an ensemble, and has been developed from recent
work by Whiffen [38]. Principle (3) is concerned
with the effect on the symmetry of ensemble aver-
ages of applied external force fields of all kinds,
and is a powerful, generally applicable and simple
statement. Principle (1) states that the thermody-
namic ensemble average (ABC...) of the atomic
or molecular variables 4, B, C,... exists in frame
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(X, Y, Z) if the product of their individual sym-
metry representations contains at least once the
to:tally symmetric representation of the point group
of the ensemble at field-free thermodynamic equi-
librium. Principle (2) states that this average exists
in the molecule fixed frame (x, y, z) if the prod-
uct of representations in the point group of the
mbolecule contains the totally symmetric represen-
ta{tion of that point group at least once. Principle
(3) states that in the steady state in the presence of
an applied field of force, or in the transient condi-
tion immediately following the imposition or re-
m“oval of such a force field, new ensemble aver-
ages may appear whose symmetry is that of the
applied field.

The application of these principles requires def-
initions of the appropriate point groups and their
irreducible representations from point group the-
or}y. The point group of an isotropic ensemble of
aéhﬂﬂ molecules, or of atoms, at field-free ther-
modynamic equilibrium is the group of all rota-
tions and reflections, denoted R y(3). “Reflection”
1ﬂ this context is more accurately defined as the
parity inversion operation (X, Y, Z) to (- X, —
YL — Z). The irreducible representations of R, (3)
are denoted,

Dgo),...,Dgf") or D, .. DM,

£ 3>

where the subscript “g” denotes positive to parity
inversion and “u” negative. The D representation
of the thermodynamic ensemble average {A4) is
identified within the point group with that of A
itself, and is denoted I'(4). The D representation
of the c.c.f. (A(r)B(0)) is the product of represen-
tations I'(4A)I(B).

The totally symmetric irreducible representa-
tion of R,(3) is D{?, that of a scalar quantity such
as mass which is invariant to all rotations and
re%ﬂections about a point in (X, Y, Z). Vector
quantities are polar or axial. The former is de-
noted DV, and is exemplified by linear centre of
mjass velocity (v), and the latter is D", exem-
plified by molecular angular velocity. A polar
vector is negative and an axial vector positive to
parity inversion. Tensor quantities are rank (2)
oﬁwmds in D representation, and may be u or g.
Finally, pseudoscalars are D, and are scalar

quantities negative to parity inversion.

Principle (1) applied in R (3) implies that the
ensemble average (A(?)) vanishes for all ¢ unless
it contains DD,(0) at least once. This implies that
the ensemble average over a pseudoscalar or a
vector vanishes at field-free equilibrium. The point
group of an ensemble of chiral (optically active)
molecules in (X, Y, Z) is the group of all possible
rotations, R(3). In this case parity inversion takes
the ensemble to its opposite enantiomer, a physi-
cally different entity, and is not therefore a valid
operation of point group theory. The irreducible
representations of R(3) are

D(0),...,D(n),

without the g and u subscripts of parity inversion.
In R(3) the D representations of a scalar and
pseudoscalar are both D@, the totally symmetric
irreducible representation. Principle (1) implies

that ensemble averages over both scalar and pseu-

doscalar quantities exist in R(3), an example of
the latter being the rotation of plane polarised
radiation, positive in one enantiomer and negative
in the other. Ensemble averages over all quantities
that do not contain D vanish in R(3).

In order to find the D representation of a time
correlation function, the Clebsch—-Gordan theo-
rem is used,

DMPm — D+tm 4 DinFm-1)
4+ --- +DCUr—m) (4)

This theorem is valid both for g and u subscripts,
the rule for subscript multiplication being

gg=g  gu=ug=u, uu=g. (5)
From eqs. (4) and (5) we have, for example,
Dél)Dgfl) = Dg(o) + Dél) + Dg(z), (6)
or

DOD® = DO + DD + DD, (7)

Equations (6) and (7) express the fact that the
product of two vector quantities is in general the
sum of three irreducible representations of R (3)
in frame (X, Y, Z), which are also the representa-
tions of the equivalent ensemble averages. The D
representation of the correlation function
(v(2)v(0)) is therefore the right hand side of eq.
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(6), and that of {v(#)w(0)) the right hand side of
eq. (7). Here v is molecular centre of mass linear
velocity and o the angular velocity of the same
miolecule.

We shall see that the correlation function
(v(1)v(0)) is a key indicator of the response of a
fluid to elongational or shear stress. Its D repre-
seintalion in R, (3) is given by eq. (6), which is

vzlilid both for the equilibrium and non-equi-

librium (transient) condition. Equation (6) shows
tHat in general there are three parts to (v(1)v(0)):
ﬂ) the scalar (dot) product D*;

(2) the vector (cross) product D(”

(3) the tensor (dyadic) product D(z)

Principle (1) means that only the dot product
e)fu'sts at field-free equilibrium, this being the a.c.f.
(v(t) - v(0)). Principle (3) implies that an external
fi;eld of the right symmetry may result in the
appearance of the other two parts of (v(t)v(0)),
both in the transient condition and in the field-on

st}eady state.

The molecule fixed frame (x, y, z)

The relevant point group in this case is that of
the molecule itself, as in the standard point group
character tables. Symmetry representations of
scalar vector and tensor quantities can be mapped
from frame (X, Y, Z) on to frame (x, y, z) using
tﬂe mapping rules of point group theory. Some of
tljlese mappings for thirty six of the molecular
point groups are illustrated in table (1). Quantities
which are positive or negative to parity inversion
Lq frame (X, Y, Z) map naturally on to different
symmetry representations in (x, y, z). One conse-
quence of this is that c.c.f.’s such as (v(Z)w(0))
Wthh vanish by principle (1) in frame (X, Y, Z)
ehst in principle (2) for some molecular point
groups in frame (x, y, z). The number of scalar
elements of the correlation function [39-42] in
frame (x, y, z) is given by the number of occur-
rénces (table (1)) of the totally symmetric irreduci-
ble representation of the molecular point group.
Pl‘recise agreement has been obtained between re-
cent computer simulations [40-46] of these ele-
ments and principle (2). The last column of table
(1) refers to the fact that in molecular crystals, the
pomt group equivalent to (x, y, z) in liquids is

one of the thirty two crystallographic point groups.

This implies that in crystals, and also in liquid
crystals *, principle (2) can be applied to frames
other than that of the molecule itself such as that
of the nematic, cholesteric or smectic director,
with several interesting consequencies.

In future studies of the rheology of molecular
(structured) fluids and liquid crystals, the com-
bined use of the three principles and computer
simulation will produce a wealth of results in-
accessible to the traditional approach. The latter
results in a morass of insoluble constitutive equa-
tions with many empirical parameters.

In the sections that follow, we review the re-
sults obtained already for atomic ensembles sub-
jected to elongational and shear stress, bringing in
to operation principle (3) both for the field-on
steady state and for transient, nonequilibrium
processes.

3. Asymmetric correlation functions

Shear stress (and also elongational stress) is
equivalent to an applied force field with a particu-
lar D symmetry in frame ( X, Y, Z). The response
of the atomic ensemble is governed by principle
(3). Before dealing with the nature of this response
we give some simple examples of the use of this
principle in atomic and molecular ensembles sub-
jected to representative force field symmetries.

One of the simplest examples of principle (3) is
Newton’s second law of motion in an inertial
frame, where force results in linear acceleration.
Thus a simple linear force imparted to the centre
of mass of each molecule of an ensemble results in
the acceleration of the ensemble, an ensemble
average with the same D" symmetry as the ap-
plied field. A static electric field, again with D{"
symmetry, results in polarisation of the dielectric
expressed as the development of a non-vanishing
ensemble average over the molecular permanent
dipole moments, with the same D{ symmetry. A
magnetic field of D{"” symmetry results in mag-
netisation, a non vanishing ensemble average over
the molecular magnetic dipole moments, again

* See for example the review by J.V. Moscicki [47).
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with the same D{” symmetry. Principle (3) be-
comes increasingly useful when dealing with more
cqmplicated ensemble responses to imposed fields
ofi force. For example it was shown by computer
sirjnulation some years ago [47-50] that a static
electric field in axis Z of frame (X, Y, Z) results
n the appearance of

(ox(t)wy(0)) = —(vy (£)wx(0)) (8)

in the same, laboratory, frame. Principle (3) ap-
plies here and explains why this particular c.c.f.
symmetry is observed. The electric field symmetry
is DV, which is imparted to the vector part of
( zj;(t)w(O)}, which has the same DY symmetry
and is the cross product (v(z) X w(0)), whose
component in Z is ((vy(?)wy(0)) — (v t)wy
(d)))k by definition, where k is a unit vector in
the Z axis. In order for this not to vanish identi-
cally, result (8) follows, and is confirmed by the
numerical simulation [47-50]. The D field sym-
metry has produced by principle (3) the D{" com-
pcjment of the c.c.f. (v(1)w(0)), and this compo-
nent only.

3.1. Symmetry of a shear field

Principle (3) has recently been applied to in-
vestigate the response of an atomic ensemble to
shear stress in terms of the indicator c.cf.
(v(¢)v(0)). This has resulted in the discovery
[51-54] of new types of correlation function which
are neither symmetric nor anti-symmetric in time
re;versal, thus seeming to violate the cornerstone
Onsager—Casimir reciprocal principle for systems
at: equilibrium [55]. These asymmetric c.c.f.’s ap-
p<:3ar in response to a stress tensor and shear strain
rate of the type,

7= 00x/9Y, (9)

1 where

which is one component of the tensor vr™
v lis a velocity vector of D{V symmetry and r~" an
inverse position vector of the same D symmetry.

The D representation of this product is,
FKU)F(r"l) =D{¥ + D" + D, (10)

w‘ihere we have used the Clebsch—Gordan theorem.
The force field producing this strain rate has the

same symmetry, which by principle (3) produces
new ensemble averages of this symmetry in the
field-on steady state or in the transient condition.
This time it is possible in principle to generate
simultaneously all three symmetry types on the
right hand side of eq. (10). However, vr™! is
traceless in shear flow, and the force field does not
include D{®. New ensemble averages with the
other two D symmetries may appear, however, by
principle (3). Shear may therefore produce both
the D{ and D{? components of a correlation
function such as {v(r)v(0)) whose complete D
representation is the same as that of the external
field symmetry (10). If the shear stress is applied
in the plane XY these are

(ux(1)vy(0)) = — (v, (1) vx(0)), (11a)
of D{V symmetry and
(ox (1) vy (0)) = vy (£)vx(0)), (11b)

of D® symmetry. The observed response of the
indicator c.c.f. (v(¢)v(0)) 1s therefore in general a
weighted combination of egs. (1la) and (11b),
giving the result [52-54]

(ox(2) vy (0)) # (vy () vx(0)), (12)

This is uniquely indicative of the response at the
fundamental level of an atomic ensemble to shear,
a new and totally unexpected result of the seem-
ingly simple statement that we have called princi-
ple (3).

The c.cf. (12) is “asymmetric”’ because it is
neither antisymmetric (eq. (11a)) nor symmetric
(eq. (11b)) in the interchange of subscripts X and
Y, equivalent to shifting the time argument. This
occurs even though the sample may be statistically
stationary in the shear-on steady state, and despite
the fact that the Onsager—Casimir reciprocal
principle demands for equilibrium systems either
symmetry or antisymmetry in X and Y.

3.2. Simulation details

We used the SLLOD equations of motion to
incorporate laminar shear flow in most of the
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calculauons [11]. The peculiar or thermal velocity
1s denoted by v. For molecular position, R,

1\'zy=uy=5y, (14)
o

}‘QZ=UZ=5Z’ (15)
fﬂﬁx Fy .

'_t._ 771— — YDy, (16)
dﬁy Fy

T me (17)
do, 17

ar o m (18)

where the a component of the force on a particle
ijs F, the velocity is v,, the peculiar velocity is 7,
(i.e. that component of the velocity in excess of
t:he streaming flow velocity). We maintain con-
stant kinetic energy (“temperature”) within the
Verlet algorithm using velocity rescaling applied
ﬁo f,. The transient time correlation functions
were determined using the method of Evans and
Moms [25] with appropriate symmetry mappings
of the equilibrium phase state points to reduce the
noise at long time.

The MD simulations followed particles of mass,
m, interacting via the Lennard-Jones, LJ, poten-
t;ial,

o(r) = 4e((o/r)2 = (a/r)%), (19)

The basic technique has been described elsewhere

[11]. The MD simulations were performed on a
cublc unit cell volume V containing N = 256 and

N 500 for the transient flows and N = 500 for .

tjhe steady-state shear flows. The interactions were
truncated at 2.5 o. We use LJ reduced units
throughout, i.e. k37/€¢ — T, and number density,
p = No?/V. Time is in o(m/€)'/?, strain rate is in
(e/m)"/?/a, viscosity is in (me)'/?/o? and stress
is in ea™>. The temperature was fixed by velocity
rescaling of the peculiar velocities [56]. The time
step was 0.015. The state point mainly considered
\‘Nas a near triple-point state, at p = 0.8442 and
?‘= 0.722. In the sheared case, y = 1.0, produces
n=2.1, about 30% shear thinning [12]. The stress
and thermodynamic properties are governed
mainly by the configurational (¢(r)) dependent

terms. Computations were carried out in single
precision on a CRAY-XMP at the University of
London Computer Centre.

We calculated the shear viscosity, 7, from,

n=—Pyy/Y, (20)
where
1( X
PXY: 7 Z 5 5y1
i=1

N-—

T x|

dr (21)

U

i ,;,)dqb( ))’

where r,;; is the x component of
(N/p), the volume of the MD cell.

Some stimulations were also carried out at steady
state using the PUT algorithm [57]. In SLLOD a
linear velocity profile vy(Y) is assumed in the
thermostatting procedure. Any deviations from
this will be taken as an extra contribution to the
temperature and duly suppressed. In PUT no as-
sumption is made about the instantaneous shear
velocity distribution within the MD cell. It is
therefore more realistic than SLLOD at high shear
rates, because it naturally incorporates the local
velocity fluctuations about the mean (from the
shear rate). Therefore the onset of turbulence is
more realistically modelled. Our implementation
of the PUT equations of motion differs from that
of Evans and Morriss, in determining a local
temperature for each particle from its local drift
velocity. The instantaneous average drift velocity
around each particle is obtained by summing the
velocities within an enclosing sphere. A spherical
truncation radius of value r, = 1.5 o or 2.0 o was
typically used. (Properties were only moderately
sensitive to values of r, in this range.)

If the shear strain rate is Y =00v,/0Y, the new
cross correlations are of the type (v, (#)vy(0)),
(Pax(1)Poy(0)) and (P, (t)Pyy(0)), where v is
the atomic velocity in the XYZ frame and P,gq is
the aff component of the pressure tensor [11].
That is, (Pxz(0)Pyz(1)), (Pxy(Q)Pxx(2)}, {Pxy
OYPy (1)), (Pxy(0)Pzz(2)), (Px0)Pyx(1)),
(Pyy(0)Py(1)) and (PzA0)Pzx(1)). This in-
cludes also these c.c.f’s with time arguments re-
versed, which as noted can be different functions

r; and V=
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Fig. 2. The peculiar velocity time correlation functions

(% (0)5x()), solid line, SLLOD, dashed line, PUT, at the 3D

LIIN = 500 state, p =0.8442, 7=0.722 and 7 =1. The fluid is

suﬁjccted to steady-state shear and the correlation functions
are steady state.

at non-equilibrium. For the purpose of proving
the existence of new velocity cross-correlation
fu‘nctions, it does not matter if we use v,(#)v5(0)
or (1) 0s(0). In shear and elongational flow, the
laboratory frame velocity is origin dependent. Also
in transient flows the laboratory frame velocity is
discontinuous at ¢=0, the time at which the
change in flow rate is made. Therefore the magni-
tude of the laboratory frame correlation functions
is not well-defined. In contrast, the peculiar veloc-
it)j' frame correlation functions are well-defined.
This is the reason why we report correlation func-
tions here based on the peculiar velocities.
Examples of asymmetric c.c.f’s derived from
these equations of motion are shown in figs. (2)
and (3). In these figures the symmetric component
(the “deformation”) dominates over the anti-sym-
rntjatric component (“ vorticity”). Consistent results
were obtained in the liquid and gaseous states
using both SLLOD and PUT algorithms with
samples of 108 and 500 atoms. Principle (3) also
allows similar off-diagonal asymmetric c.c.f’s of
other atomic dynamic variables, such as atomic
poﬁsition and pressure tensor [51,52] P4, and in
general any c.c.f. which is overall positive to parity

Qo

CCF

-02

-04

00 G , 02

Fig. 3. The peculiar velocity time correlation functions

(Bx(0)0y (1)), solid line, and {5, (0)559¢)), O, PUT, at the 3D

LJ state, p=0.733, T=1.0 and y=35. The simulations are at
steady-state shear. The correlation functions are steady state.

inversion in the point group R (3). (In the point
group R(3) of an ensemble of chiral molecules,
shearing may produce many more c.c.f.’s which
are negative to parity inversion in R (3). This has
yet to be explored, in common with all molecular
liquids.) Asymmetric correlation functions of the
pressure tensor appear under shear flow of the
generic type (Pg(#)Pxy(0)) or (P,y(t) Py (0))
[51,52], providing the first explanation of the
Weissenberg effect on the fundamental level. An
example of the latter type is given in fig. 4.

-650;

CCF

=700

00 02 ¢ 04

Fig. 4. The time cross-correlation function (V/kT ){ PyA0)

Pyz (1)), solid line and (V/kgT ) PyA0) Pyz(1)), O, using the

SLLOD algorithm at the 3D LJ N =500 state, p=0.8442,

T=0.722 and y = 20. The simulations are at steady-state shear.
The correlation functions are steady state.
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The (Pyz(0)Pyz(1)) and (Pyz(1)Py(0)) for
the PUT 3D LJ p=0.8442, T=0.722, y=20.0
and N = 500 state are shown in fig. 4. They both
start from a finite negative value and then decay
fm an oscillatory manner with frequency v =7y.
This oscillatory structure we attribute to the for-
mation of a “string” phase in which the molecules
travel along the streamlines in lines packed to-
gether In a triangular lattice when viewed In
cross-section in fig. 1. (The PUT algorithm in-
duces a string phase in 3D for these finite periodic
systems in contrast to the case for 2D fluids [19].)
iAdjacent molecules in neighbouring strings are
separated by a distance ~ o. The relative velocity
between these molecules in the streaming direction
is ~ oy. Hence the frequency with which
‘nelg,hbounng strings have atoms adjacent in the
‘XY plane or “frequency of registry” of molecules
1s ~ 7. Irrespective of the wider debate concerning
‘the existence of the string phase in monatomic
fluids, this figure is noteworthy because the time-
jreversed function, ( Pyz(0) Py, (1)), is significantly
different, being neither symmetric nor anti-syrn-
metric to { Py;(0)Py;(¢)). This can be traced to
the contribution and dominance of the vorticity
Eomponent of the flow, which unlike the pure
fstrajn component of the strain rate tensor, causes
hegative to time reversal. (Calculations with N =
108 produced the same time-reversal asymmetry,
revcahng that this effect is independent of N.) The
Welssenberg effect is the pressure generated per-
bendicular to the plane of shear, and this is ex-
plained in the computer simulation on the basis of
cross correlation between the XY and ZZ ele-
ments of the pressure tensor, a direct consequence
of principle (3) and the symmetry of the field of
force generated by the external shearing stress.

4. Transient flows and elongation

The external force field generating elongational
(or laminar) flow is of D{” symmetry, that of the
scalar product of v and 7. By principle (3)
plongatlonal flow generates ensemble averages of
the same symmetry, the diagonal elements of
{v(1)u(0)), symmetric to time reversal. The ob-
servable effect of elongational stress in general is

therefore to change the time dependence of each
of these diagonal elements. This again is precisely
what 1s observed by computer simulation [19],
where, for the first time, molecular dynamics was
used to mvestigate complicated flows generated by
a mixture of elongation and shear. Under elonga-
tional stress, the indicator c.c.f. does not develop
off-diagonal elements; under shear stress the indi-
cator c.c.f. is purely off-diagonal and asymmetric.

The D symmetry in this case is the complete
D+ DY + D, allowing the appearance of
both symmetric diagonal elements and asymmetric
off-diagonal elements of the indicator c.c.f., for
example {(v(t)v(0)). The detailed time evolution
of diagonal and off-diagonal elements is mutually
interdependent [19] and one type of flow in-
fluences the other.

The elongational flow lines are specified by,

" 0uy/0X, 0vy/0Y and 9dv,/0Z. Within the usual

restriction of the simulation cells containing N =
102-10° molecules, a steady-state elongational
flow cannot be achieved for a sufficiently long
time to obtain reasonable statistical averages. In
previous simulations of elongational flow, this was
overcome by implementing a series of transient
elongational flows (lasting for 3-4 ps for Ar)
starting from different points in equilibrium phase
space [9,10]. A series of short-lived steady states
was achieved for the purpose of averaging. At the
small strain rates considered here a steady state
can be achieved before the end of the transient,
making this approach suitable for investigating
non-Newtonian steady states. This approach is
applied here.

The equations for elongational flow are similar
to those for shear flow,

Ry=vy=0y+94R, (22)
Ryzvyzﬁy+.}-’yRy, (23)
doy Fy |

d:r = m YxUx> (25)
doy Fy | _

dr ~ m  YrUr (26)
and

doy;  F, . _

d& ~m Y20z (27)
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As for shear flow, thermostatting was performed
uging velocity rescaling. For convenience, we de-
fine ¥y = ¥78x, Yy = V8 and v = v,6,. Elonga-
tional flow has §, =1, §,= —3 and §,= — 3 or
any permutation of this sequence. We consider
hf}:re two elongational strain geometries:

(i) 8x=1,8y=—7and §;= —3;

(i) 6y=—1%, 8y=1and 8,= — 4.
W.e calculated the tensile viscosity, 14, from,
Paa
nr= Z%T, (28)
« T
where,
1({ X
P&a = Vv .glmxam 5111
N=1 N rp p.. d¢(r)
of jlai j i
- T | )T @)
i=1 j>i t

AF the fluid MD cell is periodically repeated in all

three dimensions, the elongational flow should
or!ﬂy be susceptible to similar finite N artefacts as
for shear flow. There is a constraint that must be
sa\‘tisfied in elongational flow, which is absent in
the pure shear flow simulations. There is upper
lix‘nit on v, determined so that none of the cell
dimensions, sidelength L, should be less than twice
the pair potential truncation distance (1.e. 5 o) at
any time during the elongation transient. (The
m}aximum distortion occurs at the end of the tran-
sient, as L{1)/L(0)=exp(y,t).) Despite there
b%ing this upper bound on v, the range of allowa-
ble ¥, was sufficient to capture Newtonian and
n(jm-Ncwtonian phenomena broadly comparable
ta those of shear flow up to y = 0.5. The elonga-
tiémal viscosities are obtained by applying eq. (28)
in the plateau region of the response, should one
be manifest. At high ;. the material structurally
degrades before a plateau in either shear or elon-
gational stress occurs. The value of this critical v,
depends on p, T and y if shear flow is also
involved.

We employed typically 2400 unique starting
points in phase space for elongational flow. We
considered a selection of ¥,=8,=1, §,= — 3

and §,= — }. The expansion of the MD cell in

Fig. 5. Elongational flow with 8, =1, §, =—} and 8, =-1.

2
ov,/dy =0. The normal pressure responses, P,.(t), of p=

0.8442, T=10.722, ¥y = 0.049 and N = 256 liquids subjected to

elongational strain rates applied at time 1 = 0: Py, solid line,

Pyy, O, and Pz, o. The response functions are transients,
with the flow imposed at r = 0.

the X direction leads to a decrease in Py,. The
contraction in the dimensions of the MD cell in
the Y and Z directions creates an increase in Py .
(The equilibrium pressure at this N =256 state
point is 0.100 4 0.004. The equilibrium total inter-
nal energy per particle is —5.020 4+ 0.001.) Figure
5 shows the time development of the change in
P,, as a result of the elongational strain, y,=
0.049. Figure 6 presents Pyy,— 3P, — 3Pz, for
three values of y;=0.049, 0.098 and 0.197. They
yield %'ﬂr of 3.37, 2.88 and 2.70 % 0.03, respec-
tively. We use in; as a natural measure of the
elongational viscosity, because in the y,— 0 limit
then the Navier-Stokes equation gives 7= 31,
[11]. This is known as Trouton’s rule in the rheo-
logical community. At finite strain rates there is
no rigorous link between n and 7, because the
two types of strain cause structural changes of
different symmetries. (The Newtonian viscosity at
this state point is 3.6 + 0.1 [12].)

5. Simultaneous elongational and shear flow

We now consider the effects of simultaneously
applied shear and elongational strain rates. These
combined flows produce many non-additive or
1lcross effects” in the ensemble averages, such as
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Fig. 6. Elongational flow with 8y =1, §, = —3 and &, = -3
dvy /3y = 0. The normal pressure responses, Pyy(1)— 3Py (1)
- 3Pzz(1), of p=08442, T=0.722, and N =256 liquids sub-
Jected to elongational strain rates applied at time ¢t =0: 7=
0.049, solid line, ¥-=0098, O, and ¥;=0.197, a. The re-
sponse functions are transients, with the flow imposed at ¢ = 0.

viscosities and normal pressure effects, manifest
also in the cross-correlation functions.

We consider extension in the streaming direc-
tion of the shear flow. The strain distortions are
defined by 7(=0v,/8Y) and 8,=1, 8,= — 4

and 8, = — 3. In fig. 7a the Py, (2) for (y=10.25,
vr = 0.0689) is given. In fig. 7b we show the asso-
ciated Pyy— 3Pyy — 3P,,. In these figures ¢t =0
coincides with the commencement of application
of the two types of strain rates. The shear stress
shows a distinct sign of material failure whereas
the elongational stress plateaus out, a complex
many-body non-Newtonian phenomenon. Pyy at
the end of the segment yields 7 = 2.0 4+ 0.05, which
is significantly lower than the shear viscosity at
this shear rate in the absence of elongational flow
(=2.75+0.04 [12]). We ascribe this enhanced
shear thinning to the action of the elongational
flow in “dynamically ordering” the fluid along the
stream lines of the shear flow (X direction). The
elongational flow facilitates the mechanism that
causes shear thinning in simple fluids. Under these
combined flow circumstances it is not meaningful

“to characterise this flow in terms of a “ viscosity”

as there is no plateau in the shear stress. The
response is purely viscoelastic.

Computations have also been carried out with
an orthogonal or perpendicular relative alignment
of the two flow fields, specified by: y(=d0v,/0Y)
and 8, = — %, 8y =1 and 8, = — 3. This flow has

b

.S 2 2.5

t t
Flg 7. Combmed shear and elongatlon where y=0.25, v = 0.0689, solid line, (a) Pyy (1), (b) Pyy(t)— 1PYY(I) Pzz(’) with
8X =1,8y=—1and §,=-7 > for p=0.8442 and T'= 0.722, N = 256 liquids subjected to shear strain rates applied at time ¢ = 0, The

response functions are transients, with the flow imposed at ¢ = 0.
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the extension of the fluid taking place perpendicu-
Ia}.r to the streaming (x) direction. This gives rise
to the class of “perpendicular” shear and elonga-

tional flow combinations. We have considered
these two classes of combined flow in order to
cian'fy the general trends. In any practical
a:rrangement, (e.g. flow into a contraction), the
flow will be a linear combination of these two
classes at different points in the flow field.

This perpendicular flow combination has a quite
different effect on the shear viscosity. There is still
y‘ induced shear thinning in 7, when accompanied
by a finite y,. However, the elongational flow acts
to diminish the extent of shear thinning when
c‘ompared with the unelongated sample. For ex-

ple, at y=0.25 and y;=0.049, =292,
vx}zhereas at the same shear rate but v, = 0 we have
n =276 [12]. (Note n = 3.5 for v — 0.) The effect
of this class of elongational flow 1s to compress

tIRe particles in the streaming direction. This we
suggest, overrides expansion in the y direction,

leading to less shear thinning at finite ¥ in the

presence of “orthogonal” v,. We conclude that
flow in the non-Newtonian regime is facilitated
when the streaming velocities of both the shear
and elongational strain rates are parallel.

In fig.-8a we present the P,, for two of these
flow combinations. In fig. 8a the two flow fields
have a comparable effect, but in 8b the shear field
dominates (evident in P, going positive for ¢ >
1.0). The shear flow promotes all diagonal pres-
sure tensor components to become positive. The
outcome in any simulation depends on the relative
magnitudes of y and y, and the competition
between ‘the somewhat incompatible preferences
of the two flows.

An interesting consequence of principle (3) is
that combined elongational and shear stress has
the necessary symmetry to generate heat flux and
thermal conductivity. This expectation has been
confirmed by Molecular dynamics simulation [19]
thus proving the existence of a new effect, un-
known to rheology. In this context [19], thermal
conductivity is defined as the Green—-Kubo in-

a
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ig. 8. A combination of shear flow, ¥ =3vy/dY, and elongational flow with §; = — 3, 8, =1 and 8, = — ;. The P, time responses

of p=0.8442, T=0.722, and N = 500 liquids. Key: Py, solid line; Py, 0J, and P,,, a.(a) ¥ =0.25 and y;-=0.1477, (b) y=0.25
and ¥ = 0.0246. The response functions are transients, with the flow imposed at 7 = 0.
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Fig. 9. A combination of shear flow, ¥ =3uy/3Y, and elonga-
tional flow with 8y =1, §,=—% and 8,=—1}. The heat

current J, time responses of p=0.8442, T=0.722, and N=

56 liquids with y = 0.25 and v, = 0.049: J,, solid line, Jy, O,
dnd J, a. The response functions are transients, with the flow
imposed at 1 = 0.

tegral over the correlation function of the Irving-
Kirkwood heat flux tensor. The complete symme-
tlry of the correlation function is

(DPDPY = (DO + DO +DP)’, (30)

i.e. the cube of the D symmetry of the external
force field equivalent to combined elongational
:J.nd shear stress. Thermal conductivity in frame
(X, Y, Z) is generated by this complete symmetry
only, and does not appear computationally [58]
v:vhen either elongational or shear stress is absent.
The appearance of thermal conductivity from the
éomputer simulation 1s llustrated in fig. 9.

In transient flows the non-equilibrinm cross-
correlation functions, (Jx(s)0,(0)) and {J(s)
9x(0)) also appear in response to shear. Here the
time argument 0 is taken from an equilibrium
ensemble and s from the transient flow state. The
observed transients are weighted sums of the
\)\orticity and deformational transients. Rise tran-
?'cms and fall transient c.c.f.’s of velocity can be
lefined in the non-equilibrium condition. The

former occur immediately after a field is applied

at the equilibrium point t=0. The non-equi-
librium c.c.f. is built up with one variable in the
equilibrium condition and the other in the rise
transient condition at r=s, for example {7y (0)
0y (s)). Fall transient c.c.f’s are defined with o,
having reached the ficld-on steady state. After
reaching the steady state the field is switched off
at ¢ = 0 and the non-equilibrium c.c.f. constructed
by correlating &, at this instant with 7, in the fall
transient condition at ¢z =s. The c.c.f. is therefore
(0y(0)Tx(s)). We see that one c.c.f. is generated
from the other by a time or index reversal. The
velocity rise and fall transients are asymmetric
and become approximately symmetric only when
the external field goes to zero. The rise and fall
transient velocity c.c.f’s cannot have the same
time dependence. The rise transients are obtained
with r=0 of the transient c.c.f. at equilibrium
(field off) and r=s in the transient condition
after application of shear. The fall transients are
obtained with 7 = 0 of the transient c.c.f. at steady
state in the presence of shear, and ¢=s in the
transient state after removing the shear. The tran-
sients are sums of the vorticity and deformational
parts and the overall asymmetry means that the
time dependence of the rise and fall transients
cannot be the same. The velocity transient c.c.f’s
are molecular probes of the non-Newtonian na-
ture of the sheared ensemble. With this observa-
tion we have fused together rheology, dielectric
and the dynamical Kerr effect.

In fig. 10 we show the difference in the tran-
sient c.c.f.’s, (7,(0)5y(?)), in rise and fall condi-
tions. That is, for the rise situation the c.c.f. is
(Ox (005 (1)), — (Gx(0)Dy(1));-9, where at time
t =0 the two ensembles depart due to the differ-
ent strain rate histories. The “background” steady
state is unsheared fluid. For the fall situation the
c.c.f 18 (Dx(0)0y(1));-0~ (Tx(0)Fy(2));- In this
case we have the reverse situation of a steady-state
sheared fluid and an instantaneously “applied”
unsheared state. The two difference c.c.f.’s in fig.
10a are clearly quite different. The corresponding
“difference” mean square displacements in the x
(“streaming™) direction are shown in fig. 10b.
(The position increments due to the peculiar
momenta are only used.) This figure shows that
the presence of shear causes enhanced self-diffu-
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dif ccf

b

Fig. 10. (a) The difference c¢.c.f.’s in rise and fall transients (y = 3). The solid line 1s for the rise and the squares are for the fall.
(b) The corresponding difference mean square displacement (m.s.d.) in the x direction.

sion, whether in a steady or transient state com-
p‘ared to the unsheared state. The corresponding y
and z m.s.d. curves are all positively increasing,
iﬂdicat'mg that any sudden change of shear rate

(application or cessation) to a fluid causes at least
a temporary enhancement of self-diffusion in the
y and z directions.

Rise transients and fall transients of shear in-
duced velocity provide information analogous to
that in orientational transients induced by an elec-
tr}ic field [58). The latter depend on field strength
when the response is non-linear. The rise tran-
si‘ents show field induced oscillations, recently
confirmed by computer simulation [58], and the
fall transients are accelerated with respect to the
ec‘;uivalem equilibrivm correlation function. The
latter is an exclusive indicator of non-linear re-
sﬁ)onse, and is also expected to occur in the con-
te%xts of shear and elongational flow. Oscillations

n the rise transient are indicative [59] of non-

Markovian, non-linear statistical mechanics.
6, Shear induced depolarised light scattering

The indication by computer simulation of en-
tirely new types of asymmetric correlation func-

tion implies the need for experimental observa-
tion. One of the most direct routes is by light
scattering, because the Fourier transform of the
second moment of the light scattering spectrum is
a current correlation function of the type,

Gi(2) = (8(£)5(0) exp(ig - (r(z) — r(0))), (31)

where

r(t) —r(0) = fo'v(z) du, (32)

and q is the scattering vector [60], g = k — k,. The
symmetry representation of the current correlation
function in frame (X, ¥, Z) is the same as that of
the indicator cc.f. (#(¢)5(0)), because the ex-
ponential multiphier is a scalar. Applying principle
(3) we see that a shearing field must induce asym-
metric off-diagonal components of C,;(¢), and that
an elongational field produces symmetric diagonal
elements.

Principle (3) indicates that shear stress pro-
duces an asymmetric depolarised light scattering
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spectrum, related by Fourier’s integral theorem to
the equivalent correlation function of the type,

Ca(1r) = (0x(1) 55 (0) exp(iq - (r(r) —r(0))),
| (33)

Ca(1) # {0y (1) 5x(0) exP(iQ'("(t) —r(0))),
(34)

and elongational stress produces a polarised light
scattering spectrum involving the symmetric diag-
onal components equivalent to C,(¢). A combina-
tion of both shear and elongational stress affects
both the polarised and depolarised parts of the
second-momentum spectrum. The specific effect
of the elongational component on the shear com-
ponent can be observed in the depolarised compo-
nent, which vanishes in the absence of shear.

The correlation function C,(z) has been iso-
lated quantitatively by a recent computer simula-
tion and shows the asymmetry predicted by prin-
ciple (3). We note that the light scattering spec-
trum is the second moment of the observed light
scattering intensity, i.e. the latter multiplied by the
square of the angular frequency. The depolarised
second-moment spectrum is related specifically to
the appropriate off-diagonal elements of the

shear-induced indicator function (&(¢)5(0))
through the current correlation function, and dis-
appears at thermodynamic equilibrium. This new
type of spectrum is obtained straightforwardly
from a direct application of principle (3). The
collective correlation functions are derived from
egs. (33) and (34) using,

N

Sgx= Y Oy sin(gxryi + gyryi), (35)
i=1
N

Syy= 2 Uy sin(qyry; + gyry;). (36)
i=1

Here the velocities are excess or “peculiar” veloci-
ties, being the velocity deviation from the local
spacial average. From egs. (35) and (36) we can
construct a number of component collective corre-

- lation functions,

SqX}’(t) =<qu(0)qu(t)>’ (37)
Sprx (1) = (547 (0)5,%(1))- (38)
These functions are used in calculating the real
and imaginary parts of the frequency transforms.

In fig. 11 we give a typical example of S,yy and
Sgrx> for v=0,1,2 and ¢*=(g7. ¢, ¢})=

Fig. 11. (a) S,xy(1), (b) Spyx(1), for y=0,1,2 and ¢* = (¢¥, g}, g*) = (0,1.25,0); =0, solid line; § =1,0; y =2, A.
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(0, 1.25, 0). It shows that shear flow creates a
ﬁon -zero time correlation function, which 1n-
creases in magnitude with shear rate. (At y=1

a.nd 2, n=2.06 and 1.66, respectively.)

7. Flow in molecular liquids

Principle (3) applied to shear stress in molecu-
lar liquids implies the possible existence of many
more asymmetric correlation functions of the
genenc type (A(t)A(®)) or (A(t)B(0)), provided
that 4 and B have the same parity reversal sym-
J‘netry in R, (3). In the point group R(3) of chiral
molecules this condition becomes superfluous,
}‘vroviding the possibility of shear-induced cross-
correlation functions such as (v(t)w(0)), which
z‘ire negative to parity reversal in R, (3). In general
hese are again asymmetric, being a weighted com-
bmauon of D™ and D® symmetry.

In the presence of shear, it is possible by princi-
ple (3) to generate the asymmetric c.c.f. (pu, ()
[‘.Ly (0)) # (py (1)1 x(0)) where p is the molecular
permanent dipole moment. Fourier transforma-
tion relates this to a dielectric spectrum [59,60],
consisting of a frequency dependent dielectric loss
and permittivity. This spectrum contains informa-
ion on deformation and vorticity and is asymmet-
ric in the indices of the shear plane. The range of
f‘requencies over which the shear-induced dielec-
tric loss is non-zero can be made to coincide with
the shearing frequencies attainable experimentally,
J’:urrently up to the MHz range. The maximum
éxperimental effect is likely to occur when the
c}lielectric—loss peak frequency coincides with the
frequency of shear, and this can be adjusted using
a‘lppropriate samples, temperature and pressure,
from Hz to MHz, providing plenty of scope for
éxperimental investigation.

Programs for the investigation of shear-induced
c.c.f’s in molecular liquids are currently under

evelopment, and should result in a wide variety
9f new insights, suggesting the existence of new
types of spectral investigation of non-Newtonian
fcatures such as shear-induced thinning, thicken-
mg and vorticity. Ultimately, these methods will
probably be of direct analytical value in industrial

Iaboratones for the development of new materials,

and for the investigation of fundamental rheology
in very non-Newtonian materials such as liquid
crystals.

To date, agreement has been obtained on the
existence of asymmetric correlation functions using
different programs (SLLOD, PUT, and BD) and
different numbers of atoms in the ensemble (up to
500). Using symmetry principles as a guide, new
spectral techniques are suggested by the simulated
asymmetric c.c.f.’s. These results are inaccessible
to customary hydrodynamics even in the simplest
of liquids, consisting of atomic ensembles, but
show great promise if extended to structured fluids,
where the problems of the customary approach
are greatly compounded and confused by ill-de-
fined constitutive equations and by contemporary
controversy such as that over frame indifference.
In contrast, the symmetry principles of this paper
are simple enough to go beyond controversy of
this kind, yet powerful enough to result in insights
overlooked completely in classical hydrodynamics.
An example of these is the demonstration by MD
simulation of the appearance of thermal conduc-
tivity specific to combined shear and elongational
flow. This thermal conductivity can be measured
experimentally and used as an indicator of the
way in which shear and elongational stresses are
mutually influential. This type of finding is clearly
of interest in industrial contexts, for example in
tracing the weak points (and weak contours) of a
structure under complicated stresses by the
changes in thermal conductivity, picked up pet-
haps by sensitive heat detectors such as arrays of
Golay detectors. This structure could be anything
from a fibre composite to a turbine blade to an
aircraft wing to a suspension bridge.
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