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The last decade has seen the emergence of new circular and uni-axial, or forward
backward, birefringence and dichroism due to magnetic, nonlinear electromagnetic, and
under the correct conditions, alternating electric fields. In this review, we explain some of
our contributions to this new area of chemical physics, with special reference to
fundamental and applied phenomena such as parity violation and nonlinear optical
resonance effects set up by various conjugate products of the Maxwellian electromagnetic
field.

Introduction

The first theoretical prediction of uni-axial, or forward backward, birefringence
and dichroism appears to have been made by Wagniére and Meier! in 1982. They
proposed a new uni-axial equivalent of the Faraday effect,” which is circular
birefringence and dichroism. Both uni-axial and circular effects are due to static
magnetic flux density B. In the Faraday effect, B causes the well-known rotation
of the plane of polarised électromagnetic probe radiation, and occurs in chiral
and achiral atomic and molecular ensembles. Forward backward birefringence'->*
occurs only in chiral media, and can be observed with unpolarised probe
radiation, the refractive index of which is different for the probe propagation
vector (k) parallel or antiparallel with B. It is a much smaller effect, has been
estimated to be about one part in a million by Barron and Vrbancich,’ and is
capable of providing unique information on molecular property tensors of chiral
molecules, thus supplementing the information available from natural optical
activity. Under the appropriate experimental conditions, discussed by Wagniere,®
forward backward (FB) birefringence and dichroism can be used to investigate the
fundamental phenomenon’ of parity non-conservation.®-'° The latter manifests
itself, for example, as a very small circular birefringence in achiral ensembles such
as heavy metal atoms, and is due to the theoretical unification of weak and
electromagnetic fields, the “‘electroweak™ theory of matter. FB birefringence and

*1990/1991, Guest of the University of Zurich, Switzerland.

1963



1964 M. W. Evans

dichroism is therefore potentially important for the investigation of the chiral
properties of atoms and molecules in several different contexts,!’~!4 nuclear, elec-
tronic, and electroweak.

Note that FB phenomena occur in one axis only (are ‘‘uni-axial”), and should
be distinguished from the well known phenomenon sometimes known as
magnetic linear dichroism, the Cotton-Mouton effect,!> which is proportional to
magnetic flux density squared and which is usually observed as elliptical
polarisation of a probe beam by a magnetic field applied perpendicular to the
direction of propagation and at 45° to the plane of polarisation. The Cotton-
Mouton effect is also a type of circular dichroism, and is not uni-axial in nature.
Note that the Cotton-Mouton effect has an electrically induced analogue, the
optical Kerr effect, which is proportional to the square of the electric field
strength, whereas there is no analogue of FB birefringence due to a static electric
field. The latter would violate reversality, as discussed in Sec. 1. We note that
Stedman'® and Wozniak et al.!” appear to have implied the presence of forward
backward birefringence to first order in B, a phenomenon which appears'® to
have been referred to as ‘“magnetic linear dichroism” by Stedman and
co-workers.

In this review we introduce several new birefringent and dichroic effects due
to an intense pump laser. Among these is the optical equivalent of magnetic FB
birefringence and dichroism, which is due to the conjugate product (IT) of a
circularly polarised laser, or electromagnetic field. This conjugate product is
responsible for the Pershan, or “inverse Faraday” effect,'®~2! which is magnetism
due to an intense circularly polarised pump laser’s nonlinear electromagnetic
nature. The conventional Faraday effect is accompanied by FB birefringence’ due
to static magnetic flux density, as we have seen, and recent work by Evans??~2°
has shown that there is a forward backward analogue of the inverse Faraday effect
due to II. This was first proposed in 198822 and tentatively named “spin chiral
dichroism”. This nomenclature was adopted as the optical analogue of the
forward backward birefringence first proposed by Wagniére and Meier,! and
termed ‘““magnetochiral dichroism” by Barron and Vrbancich.? The semi-classical
theory of spin chiral dichroism (or “optical uni-axial, or forward backward,
dichroism” is another possibility) has been developed by Evans,>>2° and Evans
and Wagniere?® have demonstrated the existence of frequency dependent, or
dynamic, electric polarisation in chiral ensembles due to the interaction of Il
with the imaginary part of the dynamic electronic polarisability. This appears at
present to have important consequences in two directions: 1) the experimental
investigation of parity non-conservation in atomic and molecular spectroscopy;
2) the development of nonlinear optical NMR and ESR, in which a circularly
polarised laser is used in an NMR spectrometer to generate additional
magnetisation both in chiral and achiral ensembles.

These directions are explored in this review article, and a classification scheme
developed for new circular and forward backward dichroic effects in nonlinear
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optics. Several of these effects have by now a solid theoretical foundation in
semi-classical and (in the case of the inverse Faraday effect) quantum field
theory,?” and part of the purpose of this review is to encourage the development
of experimental observation.

1. Fundamental Symmetries

This is an area of chemical physics in which symmetry plays an important role
in several different contexts.?®?° The familiar rules of molecular point group
theory are supplemented by the concepts of parity inversion (P) and motion
reversal (T'), applied both to complete experiments and to individual variables.
Overall conservation of P and T in the complete experiment should always be a
first consideration.’ Finally the three principles of group theoretical statistical
mechanics, developed by Evans®®-3* from the well-known Neumann-Curie
Principle, have proven to be useful in relating cause and effect, and in the
identification of non-vanishing ensemble averages of the molecular dynamics of
circular and uni-axial dichroism. Some of these dynamical phenomena have been
computer simulated®®3” and animated on video®® for general distribution and
broadcasting. A detailed discussion of the symmetry principles is available in
recent reviews by Barron®®° and Evans.*' Here we summarise the most relevant
and fundamental details.

1.1. Symmetry of the complete experiment

1.1.1. The conservation of reversality, or motion reversal symmetry, T

The concept of conservation of reversality in a complete experiment appears
to have been introduced by Wigner in 1927.%? Its implementation in contem-
porary semi-classical theory is illustrated by Barron.3**® Essentially, when the
motion reversal operator

T
(q, p) - (‘1, - p)

where q is position and p is linear momentum, is applied to the variables of a
complete, realizable, experiment, the result must be indistinguishable for
conservation of reversality. If not, then reversality is not conserved, and any
observable must violate 7. Violation of T has been observed only once,*? in
nuclear physics, and then only indirectly.

1.1.2, The conservation of parity inversion, P, in the complete experiment

This is Wigner’s second conservation principle of 1927.> When the parity
inversion operator
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P
(@, p)—(-q, -p)

is applied to the variables of a complete, realizable, experiment, the result must be
indistinguishable from the original. Otherwise there is parity non-conservation.3’
Any observables in this context violate P, and are measured, for example, in
electroweak phenomena®*~*¢ such as natural optical activity in atoms due to the
neutral intermediate vector boson, detected in the well-known CERN experi-
ment.4’

In practice, the application of these principles requires considerable physical
insight, because each experiment is necessarily different, and rules have been
devised by Evans*® in an attempt to help the non-specialists in their application
to optical activity caused by static electric and magnetic fields and field
combinations. These rules complement those of Stedman et al.,'>'* but appear
to be much simpler to apply. The rules of Evans and Stedman et al. lead to the
same physical conclusions.*’ It can be shown, for example,’>! that circular
dichroism due to a static electric field E violates T, and appears never to have
been observed experimentally. Faraday himself looked for this effect,’> and
obtained a negative result. “Electric circular dichroism” also violates P in achiral
ensembles. Similarly, natural optical activity violates P in achiral ensembles, but
conserves T in all ensembles, so that it is observed in chiral media®® only.
(Electroweak theory, as we have seen, leads to P non-conservation, and to the
observation of very small optical rotations in achiral ensembles such as atoms.)
These considerations can be extended!-® to forward backward birefringence due
to B, which conserves 7T in all ensembles, but violates P when the medium is
achiral.® It is observable in consequence only in chiral ensembles if P is to be
conserved. This is the origin of the nomenclature “magnetochiral birefringence”,
due originally to Barron and Vrbancich,’ i.e. the birefringence is magnetic in
origin, and occurs only in chiral media. Note that the terms ‘“magnetochiral”,
‘“uni-axial” and ‘““forward-backward” are all used interchangeably to describe the
same B induced phenomenon. When II is used to induce forward backward
birefringence, ‘“magnetochiral” is replaced by “spin chiral”.

1.1.3. P and T symmetries of individual variables

At this point it is convenient to consider the P and T symmetries of some of
the individual variables of the complete experiments considered in this article,
such as the applied external fields B and II, the conjugate product®3=>> of
nonlinear optics.

It is well known from fundamental theory®® that static magnetic flux density,
B, is negative to 7" and positive to P. One consequence of this is that the Faraday
effect is ““activated” by B through the intermediacy®’ of the T negative, P positive
imaginary part of the dynamic electronic polarisability, 7, which is related to
the complex electronic polarisability of semi-classical theory® by
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;= oy - o 1)
Note carefully that the real part of the polarisability, a;, is a T positive quantity,
a symmetric second rank tensor quantity with no vector (i.e. rank one tensor)
equivalent, whereas the imaginary part «’; is an antisymmetric T negative polar
tensor, mathematically equivalent to an axial vector quantity,

o} = gyl (2)
known’®-%! as “the angular polarisability” (Sec. 2). Here &, is the third rank
totally antisymmetric unit tensor,>® known as the Levi-Civita symbol. The
angular polarisability vanishes in the absence of B because it is a T negative
quantity.

Recently, it has been shown’®~®! that the angular polarisability is also the
molecular property tensor responsible for the optical Faraday effect, which is the
rotation of the plane of rotation of a linearly polarised probe laser by an intense,
circularly polarised, pump laser. The latter generates the conjugate product, II,
which is defined’ by

M-E xE =-Eg xEg - -2E} ik . (2a)

Here the E symbols denote various electric field strengths (in volts m ~') of the
plane wave solutions of Maxwell’s equations of the electromagnetic field. The
superscripts + and - denote plus and minus complex conjugate solutions,® and
the subscripts L and R denote left and right circularly polarised. If i, j, and k be
unit vectors in the X, Y, and Z axes of the laboratory frame (X, Y, Z), and |
denote the square root of minus one, then

Eq = Egli-ij)e™; Ep = Efi+ije "~
E =Efi+ij)e®; E[ = Efi-ije”™ 3)
where the phases are defined by
g = OL—Kp-T; ¢ = OL-K T . (4)

Here x; and kp are propagation vectors of left and right circularly polarised
components of the electromagnetic plane wave, directed along the Z axis, r the
position vector in (X, Y, Z), w the angular frequency of the plane wave in rads ™ ';
and ¢ the time.

Note that the conjugate product, I1, is an imaginary quantity which is directed
in the Z axis and which is proportional to the square of the amplitude E, of the
electric field of the plane wave. It reverses sign with circular polarity, and in
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consequence vanishes in a plane polarised wave, or in unpolarised, incoherent,
radiation such as daylight. The T symmetry of II is established through the fact
that 7 reverses the circular polarity of a plane wave from right to left
(traditionally clockwise and anticlockwise rotation, respectively, of the electric
field vector of a beam of light travelling towards an observer). Equation (2) shows
that IT is reversed in sign by reversing the circular polarity, which is equivalent
to the T operation. Accordingly, IT is negative to 7. Its positive P symmetry is
established through the fact that it is the product of two P negative electric field
strengths. Finally, the conjugate product is independent of the phases of
electromagnetic plane waves, and does not time average to zero.

We arrive at the conclusion that II is a 7 negative, P positive, axial vector,
mathematically equivalent to an antisymmetric, 7 negative, rank two polar
tensor

1-Ik = sijknij . (5

Note that IT and the angular polarisability have the same symmetry character-
istics. This T negative, P positive axial symmetry is also the same as those of B,
and the magnetic dipole moment m.*® The latter, in turn, is well known to have
the same 7 and P symmetries as angular momentum. For example

;= yAL;+2.002S) (6)

where 7, is the well known gyromagnetic ratio, and L, and 2.002 3,~ are
respectively the quantised orbital and relativistic, quantised, spin electronic
angular momenta. It is therefore possible to write the OPERATOR DEFINI-
TION

io; = yfL;+2.002 S, (7

where g is a scalar quantity called the gyroptic ratio®®=5! recently introduced in
the context of nonlinear optical NMR and ESR spectroscopy (Sec. 4).
Another important consequence of fundamental symmetry is that /& and I,
form>8-%' a P positive, T positive, scalar interaction hamiltonian
i o
in analogy with the well-known®? interaction hamiltonian

between B; and r1;. The hamiltonian (8) is important in the description of several
new phenomena due to I of a circularly polarised pump laser, some of which are
detailed in this article.
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1.2. The principles of group theoretical statistical mechanics

A final symmetry consideration in this context is group theoretical statistical
mechanics,>®-3° which is founded on three principles of general applicability.*!
The first is the Neumann-Curie Principle, in contemporary group theoretical
language; the second is principle (1) applied to a molecule fixed frame of
reference; the third is a general cause effect principle which is useful for
anticipating the statistical effects of an external influence such as B or II.
Principle 1

The thermodynamic average (4,B;C, . . . ) exists in the laboratory frame (X, Y,
Z) if the product of symmetry representations I'(4)I'(B)I(C,)... of the
molecular quantities A, B, C,... contains at least once the totally symmetric
irreducible representation D;O)of the rotation reflection group R;(3)

Principle 2.

The thermodynamic ensemble average (4,B;C, . . .) exists in frame (x, y, z) of
the molecular point group if the product of symmetry representations I'(4;)
I(B))... in this point group contains at least once the totally symmetric
irreducible representation of the molecular point group itself.

Principle 3

If an external vector field of force is applied to an atomic or molecular
ensemble which subsequently reaches a steady state in the presence of that field,
new vector ensemble averages may be created whose symmetry is that of the
applied field.

Principle three is particularly useful in the context of circular and forward
backward birefringence caused both by B and the conjugate product II. The
symmetry of B and IT>*-*% in the rotation reflection point group R,(3) of achiral
ensembles is D;l) (- ), where the D symbol means “‘irreducible representation”,*!
the subscript implies g, i.e. positive, to P, and the superscript the tensor rank
(one of an axial vector). The quantity in brackets is the 7" symmetry. Therefore,
D;l) (-) is the irreducible representation of B or II in the point group R,(3) of

achiral ensembles.?> The same vectors B and Il are represented differently,
however, in the point group of all rotations, R(3), of chiral ensembles, where the
irreducible representation becomes D'V( - ). The g subscript is missing because in
chiral ensembles, the reflection operation generates the opposite molecular
enantiomer (a different, mirror image, molecule), and cannot be a valid point
group operator. In point group theory,® valid symmetry operations must always
leave the molecular structure unaltered.

Using principle three, the symmetry D;l) ( -)is imparted by the vector fields B
and II to achiral ensemble averages of vector rank (rank one tensors), and the
symmetry D'V (-) to chiral ensemble averages.

This means, for example, that either B or Il can set up magnetisation or
angular momentum both in chiral and achiral ensembles (see estimate in Sec. 2).
In chiral ensembles ONLY, B and II have the additional capability of producing
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dynamic, or alternating, or time varying, electric polarisation,>® which in R(3)
has the same DV (-) symmetry as magnetisation. Note that this alternating
polarisation, as the name implies, is 7 negative, unlike static electric polarisation,
which is T positive. This phenomenon has recently been proposed by Evans and
Wagniere,?® and verified using computer simulation in the .S enantiomer of
bromochlorofluoromethane. It is mediated by the angular polarisability ia?,
which has the same negative 7 and positive P symmetries as magnetisation,
angular momentum, B and the conjugate product II.

Note that according to principle three, this phenomenon is NOT supported in
achiral ensembles, because both dynamic and static electric polarisation are
negative to P. Its irreducible representation in the point group R,(3) is therefore

D(u1 '(-), which has a u subscript, denoting negative*®-354! to P. The field vector
symmetry is on the other hand D(gl) (-), as we have seen, and by principle three
cannot impart this to a vector ensemble average of a different symmetry.

Principle three is also useful in the realisation that forward backward
birefringence due to B or II must also involve a vector ensemble average of
D (-) symmetry in R(3). This is the symmetry in a chiral ensemble of the time
odd polar vector which Barron®®#° has described as the “magnetochiral
observable”. Note carefully that in R,(3), the symmetry of a time odd polar
vector is D(u”(—), and by principle three, achiral ensembles cannot sustain
forward backward birefringence due either to B or I1. This time odd polar vector
has the same T and P symmetries as the propagation vector,*'*® k, of the
circularly polarised laser, a vector which is negative both to P and T.

Forward backward birefringence, as the name implies, is generated by
switching the propagation vector of a probe laser from forward (parallel to B of
a magnet or II of a pump laser) to backward (antiparallel).

To conclude this section, note that it is always important to apply these
symmetry principles in a given order: 1) the complete experiment symmetry,
aided by principles one to three and related rules, such as those given by Evans*®
and Stedman et al.'*>'%; 2) consideration of the symmetry of individual variables
and their irreducible representations; 3) point group theory. Using symmetry with
care can result in a great saving of computational*! and analytical*® effort, and
conversely can also be used to indicate whether a given observable indicates P
and/or T non-conservation, of fundamental importance.

Principle three must be applied with the necessary care, for example, a vector
influence such as B results in magnetisation (a vector ensemble average of
the same symmetry), but also in optical rotation, which is a pseudo scalar. The
pseudo scalar is generated through the intermediacy of the Maxwell equations®*!->%
and molecular property tensors of rank higher than one (the vector rank of
tensor). The Faraday effect is mediated by the rank two angular polarisability, for
example. Symmetry principles can provide limited information only, and are not
intended to substitute for mathematical analysis.
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2. The Interaction of Intense Electromagnetic Radiation with Atomic and
Molecular Ensembles — the Nonlinear Interaction Hamiltonian

In this section the hamiltonian governing the interaction of intense electro-
magnetic radiation with molecular matter is set up in terms of a novel®® double
Taylor expansion of the interaction energy as a function of the electric and
magnetic components of the electromagnetic field. This is compared term by
term with results from scattering theory (nth order quantum perturbation theory)
and related to the fundamental Lorentz interaction hamiltonian and dynamic
multipole interaction hamiltonian (DMIH).’® The new general hamiltonian is
used to show the presence of several phenomena based on the conjugate product
I1, and is a rigorous basis for the hamiltonian (8) of optical NMR and ESR.

There have been several approaches to the problem of describing the in
general nonlinear interaction hamiltonian of intense electromagnetic radiation
with atomic and molecular ensembles. The linear semi-classical approach assumes
that the field is classical and that the molecular property tensors are quantised,>®
and described by the time dependent Schrodinger equation. The well-known non-
linear approach used by Ward®* is based on scattering theory and expands the
wave functions in terms of propagators (Green’s functions). These two approaches
can be unified by expanding the interaction energy in terms of E and B of the
electromagnetic field.%>

A straightforward application of Taylor’s Theorem for the function H of the
two complex variables E and B produces a result such as

2 2
oH oH 1 [/ *H o°H
- oL = EE+| 22| EB
H HO*(aE,.)E (6B)B+ 2![(6E,0Ej)0 ’EJ+<6E,6BJ-)O i)
o H o H
E BB
+(6B,6E,- )OB'E”( aBaB) }

oH oH
(W[E) VE;+ (aVB)VB (10)

whose molecular property tensors are summarised in Table 1. Here the energy of
interaction, H, is expanded about the point

(Ep, By) = (0,0) (11)

the origin of the complex space (E,, B,). The term H, is the energy in the absence
of the field. In this representation, tensor notation has been used, so that the usual
summation over repeated indices is implied. The zero subscripts imply that the
subscripted quantity is defined in the limit (11). The coefficients of E; and B, and
of the gradients V.E; and V,B; and so on in this expansion define complex
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Table 1. Fundamental definitions of the complex dynamic molecular property tensors from the
hamiltonian (10)

Property Definition P Symmetry
Electric Dipole W= - oH -
! 3E; J,o
Magnetic Dipole = - oH +
! 9B, /,
Polarisability - I H +
““f OB, 3E, ),
Rosenfeld Tensor 1 _ O°H -
%25~ "\ 3,38, ),
Rosenfeld Tensor 2 _ &H -
%5~ "\ 8B,3E, ),
Magnetisability _ OH +
%4~ "\ aBaB; },
Electric Quadrupole 8, .=_ OH *
i 4V, 3k, J,
Magnetic Quadrupole o, = - 9H -
W av;aB, |,
Quadrupole Polarisability ®. .= O H +
S VEaVkE, 0
Quadrupole Magnetisability - +
aukt aV,B)aVkB,
Quadrupole Rosenfeld 1 _ -
q)ZijkI:
aV,E)aVkB, 0
Quadrupole Rosenfeld 2 O = -
30kt = aV.B aVkE, 0

molecular property tensors which can be related to equivalent expressions in the
nonlinear theory of Ward.®* In mathematical terms, the energy H is a complex
quantity, the physical significance of this can be discussed in terms of P and T
non-conservation.

The terms E; and B, can be developed analytically as plane wave solutions of
the Maxwell equations. In general, there are plus and minus conjugates both for
right and left circularly polarised plane waves, defined earlier in Egs. (3). In

general therefore, each molecular property tensor is complex, and defined by the
quantities

E = E| + iE" (12)
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Table 2. Electric and magnetic components, Eqs. (12) and (13).

Electric E; EY Magnetic B; B}
Ex E,cos 6, - Egsin 6 By - By sin 6 ~ By cos 6
Ey Eycos 6, Egsin 6 By - B, sin ;. B cos 0
Egx FE, cos Ox - E, sin Oy Biy B, sin 6y By cos g
Exx E, cos Og E, sin 6y Bry B, sin 0 - By cos O
E, Egsin 0 Eycos 6, By B, cos 6y - By sin 6
Ey Eysin 6 ~Eqcos 6, By B, cos 6, B, sin 6
Egy ~ Egsin 6 - E; cos 6y Bgy By, cos Og - By sin g
Exy ~ Egsin O E,cos 0y Bay By cos O By sin g

and
B, = B, + iB} . (13)

For Z axis propagation, these are summarised in Table 2.

It is convenient to develop the complex electric field strengths and complex
electric flux densities in terms of their positive and negative conjugates, identified
respectively by + and - superscripts, With the definitions

E  =E/+iE"=E/i-ij)e™ or Eji+ije™® (14)

and

E  =E/-iE/=Efi+ij)e’™ or Efi-ije ™ (15)

for the + and - conjugates the following identities are obtained algebraically

E'= B (E +E] )]+i[2il. (E -E; )] (16)
E = B i]5E -ED)] (17)
Ep= 2B +E)); Ef=3.(E -E) . (18)

These allow comparison with the linear DMIH®® and the Ward diagrammatic
perturbation theory®* that forms the basis of nonlinear optics in this context.
They also allow molecular property tensors to be defined directly in terms of field
conjugates. A careful inspection of these various terms allows the identification
of new nonlinear optical effects involving various conjugate products.
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2.1. The complex conjugate dynamic electronic dipole moments

These are defined by the partial derivatives of the energy with respect to the
electric field strength conjugates

. oH

AN L = 19
& ( OE; )0 )

- oH

N 2 £ 20
“ ( ok, )0 ¢

It is convenient to express these as the products

#: - (aH(aEi+ ) l)o]
(1)

= —(BHOE )™ "),

i

M

expressions which follow from the fundamental analytical definition of the partial
derivatives. Thus, the complex positive and negative conjugates of the dynamic
electronic dipole moment are defined in their most general form by

(22)

+ - 2 + 47
;i = - (OHOE, )o/Eo =h - ]
4

- + 2 -’ L=
~ (0HOE, )o/EoE.Ui + Iy,

The semi-classical DMIH>® and the nonlinear theory of Ward®* are based on
particular approximations to the electronic dipole moment. For example,
Barron®® approximates

E’ = Ejcos 6, i~ sin 6 j) = -12-(5,.* +E) (23)

by its T positive part (Table 2)
E ) )
(E)pp= —29 (€% +e i (24)

which is used to multiply the real part of the dynamic polarisability in his
Eq. (2.6.26) of Ref. 56. The real part (24) in this approximation is positive to
motion reversal symmetry 7. Barron also approximates

E" =Ey-sin 8 i+cos 0 j)
1
2i

_ (25)

(E" - E)
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by

(B = —%(e“’h-e”"h)i (26)
a T negative quantity which multiplies the 7 negative imaginary part of the
dynamic polarisability. More generally, E% has a T positive real part (the X
component) and a T negative real part (the ¥ component). Ward®* also makes
similar approximations in developing his nonlinear diagrammatic perturbation
theory. It follows from the approximation made by Barron that the dynamic
complex electronic dipole moment has a T positive real part

. 1 .
(4 Vop= - E—) (6HAd cos 6,), i (27)

and a T negative imaginary part

fi

., 1 : .

both being negative to parity inversion P. Rigorously, however, the real part of
the dynamic electronic dipole moment has a real X component which is T
positive and a real Y component which is T negative, an imaginary X component
which is T negative, and an imaginary Y component which is 7 positive.

These considerations allow a comparison of the general nonlinear interaction
hamiltonian (10) with the DMIH, using

E, = Ej(cos 6, i + cos ;,]) , (29)
4
6, = 0 + E(t + k-r) (30)
E' = Efe™ i+ ™)y ES = Efe™™i v o)) 31)

so that F’ is chosen to be T positive. Similarly

E% = ~Eysinf i - sin6,j) (32)
E. . 4 , 4
G TR (33)

so that £’ is T negative. Using these fundamental symmetries, and Table 1, the
dynamic complex electric dipole moment is expanded in the two variable
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complex Taylor series

;=P + ayE + ag B+ (34)

() (2 (o)) L EE)
“i =\ 8E, ) 3E;\9E;} |, OE,OE; |, °

i
(), -(nlie)).- -(aat)

sy = | T - — | — -

%W\ 8B/ OB\ OE;] |, dB,OE; |,

with an analogous expansion for the complex dynamic magnetic dipole moment.
An inspection of the terms in (34) linear in E; and B, leads to a direct comparison
with the linear DMIH. In order to match the notation used®® in the DMIH we
write

]
it

Re (1) = ) = a;E)- o} E}+ (35)

where the real and imaginary parts of the dynamic electronic polarisability,
respectively a; and a'l;, are defined more closely later. The real part of the
dynamic electronic dipole moment from (35) is

Re (1) = o ( (E +E; )) (~(E -E )) (36)

and using
E\ = -wE", (37)
Re(u) - ayEj + —= Ej+ ... (38)

we recover the first two terms of Barron’s representation,>® his Eq. (2.6.26a), of
the real part of the electronic dipole moment from the linear DMIH, his
Eq. (2.5.30). Note that the quantities a}; and o”; in our Eq. (38) are respectively
T positive and negative, following upon our deﬁnmons (29) and (32). Barron’s
result equivalent to our Eq. (38), his Eq. (2.6.26a), was obtained using the Placzek
expansion of the wavefunction in the time dependent Schrodinger equation. Qur
Eq. (36), clearly, was obtained without the use of an equation of motion.

We are now in a position to extend the DMIH to terms nonlinear in the
complex oscillating electric and magnetic fields, and to check the result term by
term against the expressions obtained by Ward®* using diagrammatic perturba-
tion theory. In the latter approach the energy is developed through
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H = Hy + @ | H' |4® (39)

where ¢ is a wave function defined at long positive times® and expanded in
terms of Green’s functions (propagators):

W = (1 + GH' + GH'GH' + ...)|g) . (40)
The energy is therefore expanded as

H=H,+{g|H |\g)+(g|H'G*H’' |g)+(g| H'GH’ |¢)) + (¢ | H'G*H'GH' | g)
+{(g|H'G*H'G*H' |y +(g|H'GH'GH’ |g¢) + ... (41)

where G* is the conjugate of the Green’s function, and g the ground state.
Feynman diagrams® are then used to evaluate each term in the expansion. In this
section, Egs.(41) and (10) are compared term by term to give quantum
definitions of the various molecular property tensors without the need to solve
the time dependent Schrodinger equation, and to show that Eq. (10) encompasses
the results of n order (nonlinear) diagrammatic quantum perturbation theory.

The latter depends on a definition of H’, the “core perturbation energy”.
Ward®* defines this through his Eq. (IL.11) as

H = —eE°rsinwti=H"e™ + H ™ (42)

in the “electric dipole approximation”. Here e is the electronic charge and r a
position vector. This is an approximation, given in our notation by the imaginary
part of the linear electric field term of Eq. (10)

, oH .
H = _(aE’;)OE’ . 43)
Ward also makes the approximation
6, = O = ot (44)

i.e. develops the theory without regard to left or right circular polarisation. His
core hamiltonian H’ leaves the magnetic terms out of consideration, and finally,
he proceeds without defining 7" and P symmetries in his molecular property
tensors. Nonetheless, the theory has proven to be useful in nonlinear optics, and
many of the predictions made have been verified experimentally.®?

Table 3 is a comparison of the first, second, and third order terms from
Eqgs. (41) and (10).

From this table it is clear that Ward perturbation theory, with its core
hamiltonian, his equation (IL.11), is equivalent term by term to an approximation
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Table 3. Comparison of terms, general nonlinear hamiltonian (10) and N Order diagrammatic
perturbation theory.

Order From Eq. (10) Ward®*
1 O\ g @\H 9
3F" ),
2 1( &1 g (g|H'G*H' | g)
2\ OE7IE] ]~ 9 H'GH | )
3 L__TH ) gy 9| H'G*H GH' |g)
31\ OE7OE79E, ), # +(g|H'G*H'G*H' |¢)

+@|H'GH'GH' | ¢

oH
* 7= ”
H ( aE,l,)OE

of Eq. (10) which substitutes E; by its imaginary part, and neglects the magnetic
terms at all orders. Higher order Taylor differentiation in Eq. (10) is equivalent
at all orders to operating with Green’s functions and integrating over all
configuration space. Furthermore, it can be seen that the Ward type core
interaction hamiltonian needed to generate the full equation (6) is in our notation

oH oH
7 i B 4
e () 5 ()0 o

which includes the real and imaginary parts both of the electric and magnetic
components of the Maxwellian electromagnetic field. Reinstating these terms
leads to a more complete understanding of the approximate theory by Ward,%*
and also to new and useful nonlinear optical phenomena.

2.2. The dynamic electronic polarisabilities

It is convenient to develop the hamiltonian in terms of products of complex
conjugates of electric and magnetic components. In so doing, the relevant
dynamic mutipoles and molecular property tensors are defined in terms of
conjugate products, with appropriate T and P symmetries which signal the
existence of various nonlinear optical phenomena by inspection of terms. This
method is exemplified in this section by the four dynamic electronic polarisabi-
lities

(46)
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which involve conjugate products at order two in the oscillating complex electric
field. These are the four conjugate products of the dynamic electronic polarisa-
bility, two of which, Egs. (46a) and (46d), signal frequency doubling,%* and two,
Eqgs. (46b) and (46¢), optical rectification.®*%” Types (46b,c) can generate
magnetisation through the Pershan effect,!® often known in the literature as the
inverse Faraday effect.>* This means that the angular polarisability (Sec. 1) can
generate an optical Zeeman splitting, and optical NMR and ESR. This is
potentially of great practical utility when a circularly polarised laser is used to
generate magnetisation in a conventional NMR or ESR spectrometer, because the
laser induces extra magnetisation which leads to a blue shift in the NMR or ESR
resonance frequencies, and to a higher resolution (absolute frequency difference
between NMR resonances at different nuclear sites). Some of the concepts of
optical NMR and ESR are introduced in Sec.4 of this review, and are
summarised in the appendix with reference to the notation used in a standard
NMR text such as that of Slichter.5® The negative 7 symmetries of these
interesting new effects serve to distinguish them from the well-known and
observed optical Stark effect.®%72

In discussing 7 and P symmetries of the dynamic polarisabilities, the real part
E’ of E; is taken as T positive, P negative (Eq. (29)), and the imaginary part E”
as T negative, P negative (Eq. (32)). With these definitions, the double positive
conjugate of the dynamic electronic polarisability is

o) = ~ (O HO(E} - iEDI(E,~ iED)[Eq=of" " —iaf"" (47)

Ul U

which has a T positive, P positive real part
r+t 2 ’ ’ ” 1 2
o' = - (8’ H(OE, OE’ - 9E", E")), Eq (48)
and a 7 negative, P positive imaginary part

't = ~ (3" H(OE", 3E + 8E} E"))s/ Eq . (49)
In the hamiltonian (10} both parts multiply the tensor Ef E; and produce
frequency doubling.®* The only part of this described by Ward®® is the term
proportional to the tensor product 3E” dE” in the real part of o * . This is simply
because Ward approximated F; by its imaginary part £%. The other three terms
in (47) and (48) produce other frequency doubling phenomena, which appear to
be new. Of particular interest is the imaginary, 7" negative, polarisability, which

multiplies the imaginary, 7 negative tensor product of oscillating electric field
components
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i pt— + -
+- - . o t- (50)

_ _ 17
a; = laj

to give a REAL, measurable, scalar contribution to the energy H in Eq. (10). The
conjugate product E* x E~ changes sign from left to right circular polarisation as
in Eq. (2) of Sec. 1

T
n—-II (51)

and vanishes if there is no circular polarisation.
In terms of the phases 6, and Oy of the electromagnetic field we have

X sin 26, 0 0
4y, 4y, d HJI in 20
(aij )Laij = (aij )Raij = 2 0 -sin 26; 0 (52)
° 1o 0 0l/o
for the diagonal part, and
S Ho 0 -cos26;, 0
(o )= =y k= 221 —cos 26, 0 0 (53)
10 0 0l/o

for the symmetric tensor part. Both parts are T negative, and are non-zero only
in the presence of a T negative influence. The latter is generated through the
diagonal and symmetric tensor components of the imaginary part of the complete
tensor product

E'E ' =EE"Y -i(E E"Y (54)

so that the contribution to the hamiltonian is a T positive P positive scalar
formed by a tensor contraction of the polarisability and field product. Equations
(52) and (53) signal the presence of one out of several new types of frequency
doubling phenomena.

2.3. The electronic angular polarisability

Of central importance to the new circular and uni-axial birefringence effects of
this review, and in particular to optical NMR and ESR, is the electronic angular
polarisability (Sec. 1 and Appendix).

Consider the phase independent conjugate product polarisability a,;- ", which
multiplies the conjugate field product E; E; to form a scalar energy. In this case
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the trace and symmetric tensor parts vanish, leaving the antisymmetric, T
negative, P positive, dynamic electronic polarisability

- 1 " P a +-"

laf = (e -ay )=iay; . (55)

This is defined as the electronic angular polarisability.
The angular polarisability multiplies the phase independent conjugate product
(IT) of Sec. 1 to give the interaction hamiltonian

i
AH, - 5 a1, (56)

which can be written (Sec. 1) as the scalar product of two 7T negative P positive
axial vectors (rank one tensors)

AH, = =a}Tl, (57)

~|~.

where
2 ”.,
ap = gpop; I = g,I0; (58)

with ¢ as the third rank totally antisymmetric unit tensor (the Levi-Civita
tensor). Using Eq. (2) of Sec. (1) we arrive at a hamiltonian

AH, = - a’E; (59)
which is closely analogous to the interaction hamiltonian
AH, = -, B, (60)

of a magnetic dipole moment and applied static magnetic flux density, the basic
hamiltonian of the theory of nuclear magnetic resonance®® (see Appendix 1,
where further analogies of this nature are made).

We note that semi-classical theory (Table 3) gives the EXPECTATION
VALUE of the angular polarisability as

W= = 5 2 T Im | D gl ) (61)
j#n a)

where ji, and jj are electric dipole matrix element operators with transition
frequency
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W, - o - o, (62)

in rads s~!. This expression®® gives the necessary T negative, P positive,
antisymmetric symmetry for the expectation value of the angular polarisability in
its second rank polar tensor form.

Note carefully that the angular polarisability has both an operator definition
(Eq. (7)), and an expectation value (Eq. (61)) in direct analogy (Appendix 1) with
the magnetic dipole moment. The angular polarisability and magnetic dipole
operators are proportional through

oy Vn
iar = Zrm, (63)

where 7, is the gyromagnetic and y, the gyroptic ratio. The latter is developed in
Sec. 4. It has the units and approximate magnitude as tabulated in Appendix 1.

In consequence of this operator definition of angular polarisability, it is natural
to define a non-vanishing product such as

(n|aj) = f YA &Ly, dt (64)

in which the OPERATOR &/ is implied, and not the expectation value (61). This
is entirely analogous with the standard practice of writing the magnetic dipole
moment as either an operator or expectation value, as necessary.

2.4. Comparison of magnetizations produced by a magnet
and a circularly polarised laser

In consequence to this theoretical development of &/as a quantum mechanical
operator with the same P and T symmetries as both the magnetic dipole moment
and angular momentum, we emphasise in this section that a circularly polarised
laser’s conjugate product IT can produce the same order of magnitude of
magnetization as a 1.0 Tesla magnet for a laser electric field strength amplitude
of about 100,000 volts per centimetre (an intensity of the order 4,000 watts per
cm?). This is an important rule of thumb for optical NMR, because a laser of this
intensity is easily available, and can be used to supplement the magnetisation of
the conventional NMR magnet.

The magnetisation produced by a 1.0 Tesla magnet is estimated through’>

B,
(my) = myy + &y + ... (65)
My

where m,; is the permanent magnetic dipole moment, ¢, is the molecular mag-
netizability, B, the applied magnetic flux density, u, the vacuum permeability.
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The magnetizability is estimated through its diamagnetic part’?

2
€ Uy
Sz =~ (66)

e

where e is the charge on the electron, and m, its mass. The mean square orbital
radius (") is estimated to be about 10-2°m2 This gives a diamagnetic
magnetizability of about

&, 5x10 P Imkgm ' . 67)
The magnetisation in amps m~"' is then
N(my) = N&z; B/, (68)

which for N of about 6 x 10?® molecules per m? is
Nm) = 0.01 Am™' (69)

for an applied B of 1.0 Tesla. This is the order of magnitude of the number
density diamagnetic magnetization in amperes per metre produced by an applied
magnetic flux density of 1.0 Tesla.

In comparison, the diamagnetic part of the magnetization produced by a
circularly polarised laser has been given by Wagniere’* as

M = Ny
iNw 2
= ~—2Z Z Im (py, - g py) —————
3nT Tk oo, -w)
(wla + a)ka)
- Im (my - X By —; o |(E-xE,) (70)

(v, - a)z)(a),z(a -w’)

where w is the angular frequency of the laser in rad s~ !; # is the reduced Planck
constant; and where the matrix element shorthand notation

B, = klila)
By = alpl|l);
m = ARk

my, = (a|m{/l) ;
my = (|m|k) ; (71)
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has been used for the quantum states a, /, and k. Using angular frequencies
corresponding to electronic transition energies

a)#a)la#a)kﬂ#IOmrads'1 (72)

and # of the order 1034 Js, estimating an order of magnitude
. . . n-29
B ¥ By = Py = 10 7 Cm (73)
for the electric dipole moments, we obtain the order of magnitude magnetisation
M@ =10 |my, | EZ Am ™" (74)

in amperes per metre. Taking an order of magnitude for the diamagnetic
magnetic dipole moment of about a tenth of the Bohr magneton

imy,| =102 JT"! (75)

gives a diamagnetic magnetisation from the circularly polarised laser of the ordei
of magnitude

MP=10""E Am ™" | (76)

For a laser electric field strength amplitude of the order

1

E,=10°Vvm™' = 10 Vem”~ (77)

the magnetisation is 0.01 amp m ~!; which is the same order of magnitude as
obtained for an applied magnetic flux density of 1.0 Tesla. It is useful to note
that 10Vm~' is 10* Vem !, which corresponds to an intensity of about
4 x 10> Wem ~ 2. This is easily obtainable in contemporary laser technology witk
several different kinds of laser.

Provided therefore that the laser is acccurately circularly polarised, and it is
expected to shift significantly the NMR resonance frequency to split it through
Landé coupling as described’® in the literature and summarised later in this
article. The shift should be towards higher frequencies if the conjugate product
I1 is parallel to B, and vice versa. This is also a kind of “forward/backward” effect
therefore. The shift to higher frequencies is particularly useful for increasing the
resolution of an NMR spectrometer by greatly increasing the effective magneti-
sation using a combination of magnet and applied circularly polarised laser. This
can be particularly useful for the ultra high resolution optical NMR of proteins
and other complex specimens in which the many different proton resonances
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occur at much the same frequency, and with low resolution cannot be
distinguished. The circularly polarised laser in this context increases the absolute
frequency separation between the various chemically shifted proton resonances
by effectively increasing the magnetization of the sample. The proton resonances
are therefore separated out on an absolute frequency scale, i.e. the effective
resolution of the instrument is greatly increased. The difficulties introduced by
fluctuations (inhomogeneities) in the electric field strength amplitude of the laser
can be overcome’® in principle by using a combination of factors such as specially
designed pulse sequencies and stable lasers such as a nitrogen cooled diode laser
in the visible.

2.5. The Hellman-Feynman Theorem for the conjugate product 11

Finally in this section we define the Hellman-Feynman Theorem’? for the
conjugate product IT. The Theorem relates the change in energy due to II to the
expectation value of the change in the hamiltonian due to II.

Consider a system characterised by a hamiltonian that depends on the
conjugate product of Eq. (2) of Sec. 1. The exact wave function describing the
system is a solution of the Schrodinger equation, and also depends on II. The
energy of the system therefore depends on II through the equation

E) - [wrHy & (78)
where H, and the wave function ¢, and its conjugate *, are all functions of IT:
H = HAD; ¢ = ydD); ¢* = ¢yXID) . (79)

Differentiating Eq. (78) with respect to II gives

i - (o) o [ (G)vac o [on (B)
5( [ var) + [ (22)va -

which reduces to the Hellman-Feynman Theorem

() - (B 81)

where the angular brackets denote expectation value. The Theorem immediately
provides the definition of the angular polarisability in the form

”o_ (_9_1__1
o = o (82)
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which corresponds to a particular term in the expansion of the hamiltonian

JE,
E() - By + | 5 ) T+ - (83)

as described earlier in this section.

The Hellman-Feynman Theorem shows that the differential of energy with
respect to the conjugate product is the expectation value of the angular
polarisability.

3. Voigt-Born Perturbations: Approximate Expressions for Uni-Axial and
Circular Birefringence and Dichroism

The molecular property tensors of Sec.2 can themselves be expanded in
Taylor series in terms of external field perturbations such as B and I, the
Voigt-Born series.”” Of fundamental importance to the theory of circular and
forward backward birefringence is the Voigt-Born expansion of molecular
property tensors such as the complex polarisability of Eq. (1):

ai(By) = a0) + B, + ... . (84)

This type of expansion was used by Barron and Vrbancich® to derive forward
backward birefringence due to B using both Rayleigh refringent scattering theory
and the Maxwell equations. A later description by Evans®?~25 of forward
backward dichroism and birefringence due to IT, has been based on a similar
Voigt-Born perturbation. In this section a summary of a simple, approximate,
method of solving the Maxwell equations for both circular and forward backward
birefringence due either to B or I is based on a recent long paper.’®

In the Voigt-Born expansions of molecular property tensors such as the
complex polarisability, «;;, and the complex Rosenfeld tensor, a,;;, it is assumed
that Taylor expansions are possibly analogous to those of Sec.2. Thus, a
perturbation due to the conjugate product I, is developed as the Taylor series

a; (1) = @;(0) + apll, + ... (85)

ay;(T1) = ap(0) + ayplT + ... (86)

which define the 7 and P symmetries of higher rank perturbing tensors such as
oy and  ayy -

Confining the Taylor expansions to first order in Il, gives the perturbation
expressions
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aij(”k) = al«j(O) T ooy s

ayi(m) = ay(0) £ apym; ; (87)

where the plus sign denotes I1, in the + z direction and vice versa. Note that the
third rank tensor a;; mediating the effect of I1, on molecular polarisability is
positive to P, and is supported by achiral ensembles. The tensor «,;; mediating
the effect of Il on the negative parity optical activity tensor a,;; is also negative
to P, and is supported only in chiral ensembles.

These tensors can be incorported within “core equations” derived from the
Maxwell equations’® and which describe spectral effects such as uni-axial and
circular birefringence due to the conjugate product I1,. The Maxwell equation is
written as

E(l)

vxBY - L ( ﬁ‘” a0 B") (88)

,Uo
where g, is the vacuum permeability (in S.I. units), and ¢, the vacuum
permittivity. B? is the magnetic and E) the electric field component of the
probe electromagnetic field. Solving this equation’® in the approximation
M < P, where M is the bulk magnetisation and P the bulk polarisation, gives the
necessary core equations for the spectra effects in which we are interested.

3.1. Uni-Axial birefringence due to T1 or B

In this case the probe is unpolarised, and measures the average of the
refractive and absorption indices measured by a left and right circularly polarised
probe beam. The core equations are

, Mo o) M n_,
Pz = — (8oFo + NEg 'x+ NB oy (89)
0
R PR O
Mavz = B0 (Eo a’xx+ By a'ayy) . (90)

The power absorption coefficient in neper cm~!

Eq. (90) as

is obtained directly from

axla CO,U.ON ( ( 1 )

A,,, (nepercm )— 20
0

4B 1)

and the real and imaginary parts of the complex permittivity are obtained from

= 2n"n’ . 92
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3.2. Circular birefringence

The refractive and absorption indices for circular birefringence are obtained
from the core equations

1)
’ ’ O ” ”
(nz-nR2) = 24y CN(E(T)O‘XY“XHX) (93)
0
£
(n'i‘z_n'kz) = 2/10 CN(aaXX— Fa}y) (94)
0

1.e. are expressions for the difference in refractive index in left and right circularly
polarised probe radiation. The angle of rotation of a plane polarised probe is

E(l)
0 ” 14
e - [/‘on(F}axY - a2XX) . (95)

0

3.3. Field induced axial and circular birefringence

3.3.1. Static magnetic flux density

The difference between ensemble averaged refractive indices parallel and
antiparallel with the externally applied static magnetic flux density B, is the
Wagniére-Meier effect, described by our simple core equations as

(myy = nyp) = 240 CNBy (o) (96)
axial axial (B)”
Ay = A7) = 4y NoBy (o xyy) - 97

This depends’® on an odd parity totally antisymmetric tensor element (a(zi),yz),
which survives ensemble averaging, and conserves parity only in chiral ensem-
bles. If the uni-axial effect were to be observed in achiral ensembles, it would
signal parity non-conservation due to such causes as electroweak interactions
between nucleus and electron, mediated*® by the appropriate boson.

The original Faraday effect, circular birefringence due to B, is described in
this approximation (M << P) by

©4, -8, = 2luy Nox B, (ayyp (98)

(A5 - A5y = = 8aopy NeB (dayp (99)
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giving the Verdet constant

= luy Noxc (axyj (100)
© = VB, . (101)

It is seen that the Faraday effect depends on the even parity, totally antisym-
metric component, (a(f;,z), which survives ensemble averaging.’®’° Note that the
Faraday effect is ¢ times greater, effectively, than the Wagniére-Meier effect. In
this treatment we have left out of consideration the effect of field gradients. A
more complete treatment includes these to eliminte the possibility of origin
dependence in the molecular property tensors. For details, see the paper by
Barron and Vrbancich.’ The treatment given here is simplified, but sufficient to

compare the origins of uni-axial and circular spectral effects of magnetic flux
density.

3.3.2. Circular and uni-axial spectral effects due to the electric conjugate product
of a circularly polarised pump laser

The P and T symmetries of the electric conjugate product of a circularly
polarised pump laser, defined in Eq. (2) of this review, are the same as those of
static magnetic flux density, i.e. P positive, T negative. On the grounds of
fundamental symmetry we expect similar uni-axial and circular spectral effects.
Writing the conjugate product as

M, = +2E.ik = +(2EQ),i (102)
and the Voigt-Born perturbation as

ay(T) = o F E,"; (Edy ;

(103)
Cl,;j (Hk) = C(,:j g aljz (Eo)z 5
and similarly for «,,, we obtain the uniaxial birefringence’®
(s - asg) = = 20N (Eg)z (e3y) (104)

which depends on the square of the electric field strength amplitude (volts per
metre) of the pump laser, and is proportional to the odd parity ensemble average
szyz) This result leads to the interesting possibility of using intense pump
lasers to observe parity non-conservation in achiral ensembles in the form of
symmetry forbidden uni-axial birefringence.”® Using mode locking and focusing,
E, can reach 10° volts per metre.
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The corresponding axial dichroism in the power absorption coefficient
measured by the probe is

axial axial

AR - ADRY = Aoy N(EQ)z (eapy2) (105)

and has the same P characteristics as the axial birefringence.

The circular birefringence, the Pershan effect,'®-2! produced by switching the
pump laser from left to right circular polarisation, and measured with a plane
polarised probe, is

(GHL - O”R) = 21[1,0 ch(Eg)Z (a(;))j'z) (106)

and the corresponding circular dichroism is

circ circ (my’

AR - A5 = 8wy eN(EQ), () - (107)

For both birefringence and dichroism, the mediating property tensors are even to
P, and the effects are observable without P violation in achiral and chiral
ensembles of atoms and molecules. The same is true for the difference in rotation
angle generated by the left to right switch in circular polarity of the pump, and
measured by the plane of the probe.

These are examples of class one spin chiral effects,”® class two effects depend
on conjugate products such as

I, - E/ xB, = Ex xBg = 2E Bk (108)

which mediate inverse magnetochiral birefringence.”®* For more details see
Ref. 78.

4. Optical NMR and ESR, Theory, Simulation, and Animation

As we have seen, the conjugate product of a circularly polarised laser field, I,
produces circular and forward backward birefringence and dichroism. It also
produces magnetisation through a phenomenon which has become known as the
“inverse Faraday effect”,’? first proposed by Pershan'® and measured by Pershan
et al.2%?! It appears that only this one measurement of the magnetisation has
been reported. The symmetry characteristics of the circular birefringence
accompanying the magnetisation of the Pershan effect have been discussed in
Sec. 3. The pump laser induced magnetisation is potentially of great importance
in what has become known as “‘nonlinear optical NMR and ESR”’,*8-¢! in which
an intense, circularly polarised, laser is used to supplement the customary
homogeneous superconducting magnetic field of contemporary NMR and ESR
spectrometers.
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Magnetisation due to an intense, circularly polarised, laser was introduced
theoretically by Pershan!® in 1963, and shortly afterwards demonstrated
experimentally by Pershan et al.2%2! The quantum field theory of the effect was
developed by Atkins and Miller,3° and it is described by Shen®! and Atkins’? as
the “inverse Faraday effect”. Wagniére has demonstrated theoretically® that the
inverse Faraday effect is due to the conjugate product (Il) of this article. He has
also shown’* that the related conjugate product

I, - EIL{ x BL (109)

is responsible for magnetisation in a chiral ensemble, an effect which he has
named “inverse magnetochiral birefringence or dichroism”. As in the original
magnetochiral effect of Wagniére and Meier,! the birefringence vanishes in an
achiral ensemble such as water. An order of magnitude of the magnetisation
produced by the inverse Faraday and the (smaller) inverse magnetochiral effects
has been given by Wagniére,* (see Sec. 2). Using the interaction hamiltonian (59),
Evans has demonstrated recently the phenomenon of spectral splitting due to Il
of a circularly polarised pump laser, a contribution to which is the “inverse, or
optical, Zeeman effect”.>® The 4 term of the semi-classical theory of the inverse
Faraday effect* is the inverse Zeeman effect.

This analogy with the conventional Zeeman effect (spectral splitting due to B)
has led naturally to the expectation®®®' that II can produce resonance
phenomena analogous to those produced by B in a contemporary NMR or ESR
spectrometer. By using a combination of B and I in the same spectrometer, a
blue shift of the resonance frequency can be induced,’® which is potentially of
great practical utility in the ultra high resolution resonance spectroscopy of
complex systems®® such as proteins.

Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) are
important contemporary analytical techniques which have been developed in
many different directions. The conventional NMR of proteins, however, is
constrained by contemporary technological limits, because a protein may have
about two hundred peptide units, for example, and there are only about twenty
amino acids, so that the proton resonances of the spectrum overlap heavily.
Two-dimensional Fourier transform techniques effectively spread out the spectral
information®® over two different time delays of a pulse sequence, and generate a
greater NMR “spectral dispersion”, the term used for absolute frequency
separation between different resonances, usually proton resonances. A typical
pulse sequence of this type is 90° - ¢, - 90° - ¢, with magnetism measured as a
function of ¢; and ¢,. If a technique can be devised that increases the resonance
frequency by a significant amount during the ¢, period, it would allow a greatly
increased resolution in the NMR investigation of proteins. Such a technique,
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based on the application of a circularly polarised pump laser, is proposed in this
section, and referred to as “‘optical NMR”,

Appendix 1 compares some of the basic concepts of magnetic and optical
resonance. In both cases, simple interaction hamiltonians are used as a basis for
the theoretical development, in terms respectively of the magnetic flux density, B,
and the conjugate product, II. Landé coupling develops between the parts of the
interaction hamiltonian that depend on the magnet and the circularly polarised
laser, a coupling which effectively mixes quantum numbers, allowing more
transitions and resonances, analogously with the theory of the anomalous
Zeeman effect.”® This enriches the conventional NMR spectrum in addition to
increasing the spectral resolution, the absolute frequency separation between
proton resonances.

The nonlinear optical equivalent of the gyromagnetic ratio is the gyroptic
ratio, the scalar ratio between the 7" negative, P positive angular polarisability and
the electronic angular momentum. Classical considerations show that the
gyroptic ratio is proportional to the effective electronic orbital area, inversely
proportional to the magnitude of the resultant electronic orbital momentum, and
proportional to the angular frequency in radians per second. It becomes infinite,
theoretically, when the laser is tuned to a natural transition frequency of the
molecule or atom, i.e. can be greatly amplified by resonance tuning of the
circularly polarised laser to a natural transition frequency. It is also possible to
develop the theory in optical NMR and ESR of chemical shifts, shielding
constants, g values, Overhauser enhancement, spin-spin coupling, and hyperfine
interaction,

The simplest representation of the combined hamiltonian of both laser and
magnet is

AH, = -, B, - &JE¢-k (110)

and it is possible to use this to provide an order of magnitude estimate of the shift
to higher frequency produced in a conventional NMR spectrometer by the
application of a laser field. In Sec. 2, an order of magnitude estimate produced
an equivalent magnetisation for a laser intensity of about 400 watts per
centimetre squared and a magnetic field of 1.0 Tesla. This was based on an order
of magnitude estimate of the angular polarisability of 10~4°c?m?J~!, a value
which can also be obtained from measurements®? of the Verdet constant in
diamagnetic materials.

The additional electronic angular momentum imparted to a molecule by the
circularly polarised pump laser enriches the conventional NMR or ESR spectrum

by Landé coupling.® For simplicity, we develop the Landé factor for the angular
momentum sum

J-1i+L (111)
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where L is the orbital electronic angular momentum and i the nuclear angular
momentum. Other combinations can be used for further theoretical develop-
ment. Landé splitting can be shown using a simple hamiltonian such as

AH, = -yyI-B - yL-Elk . (112)

Here k is a unit vector in the Z axis of the laboratory frame. The factor y, is the
gyroptic ratio, defined by Eq. (7) in the operator definition of &”. The physical
properties of y, are developed classically later in this section.

We first note the approximate vector relations

l 2

L
A
L

B=(-

i >

J-B/| (113)

l 2

L
L=

L-k=(@L-J)

K/ (114)

similar to those used in the theory of the anomalous Zeeman effect.”® Here

w-J -7+ L0

72

oy (115)

S N L &

o2

- L (116)

i >

2
from Eq. (115) in (113) and (116) in (114)
PalP-L?\ . PaitoP\
AHy = —yy| ———5— |4 B - | ——5|EJ 'k (117)
21J] 21J]

allowing one hamiltonian (117) to be written in terms of the z component of the
total angular momentum J:

-

AH, = -g,J k= -g,M;, M,=J, J-1,...,-J. (118)

where the Landé factor is

JJ+D)+1I+1)-LL+1)
9= yNBZ( 27+ 1) )
L (JU+ D+ LL+ D=1+ 1)

+ ynEo( 2J(J+1) )

(119)

With the selection rule

AM, = =1 (120)
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for the Z component M, of the quantum number J, the NMR resonance
frequency is defined simply by

Wp =4y - (121)

This result allows several contributions of practical interest. In the simple scheme
used here the presence of two quantum numbers in the Landé factor g, allows
extra transitions which split the original NMR lines in a manner analogous with
the textbook treatment’® of the anomalous Zeeman effect due to B. This appears
to give plenty of scope for analytical implementation of optical NMR.

4.1. The gyroptic ratio

In the specific case of a paramagnetic molecule or atom the gyroptic ratio can
be developed simply in classical terms as follows. We begin by writing the angular
polarisability for a given m and n from Eq. (61) as

2

" 2¢"w
&y = = 2 2 gl'jkrOirOj (122)
now,,, - @
where
Foi = f‘lﬁ;nrill/nd‘[ (123)
roj = J'W;" rv, dr (124)

are expectation values of the position vectors defining the electric dipole
moments

Ho; = €5 Mo = €Fy; . (125)
We note that the quantity
Aok = €5toly) (126)

is an electronic orbital area.
Classically’? the magnetic dipole moment is defined as

im“| = 14 (127)

where

v
I- e(i?r) (128)
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is the charge per unit time passing some point of an orbit r traversed by an
electron travelling at speed v. For a circular orbit, the area A4 is

A-1 (129)

lm(c)[ = (2—;) mrv

where y, is the gyromagnetic ratio and |L| is the magnitude of the electronic
orbital angular momentum

so that

i

~ Vel L] (130)

|[L| = mrv . (131)

Now, instead of taking a circular area A4, we take

2 2
o, , - w’)
Ay = —— (133)
2e°w

which defines an effective magnetic dipole moment

My, = LAy, (134)
implying that
Y
Tl 14, . (135)
Vn
Choosing
v
= 13
- o{at)
where r,, is an average effective circular orbital radius, gives
2nr, . 202
ay av e w
Vo= - Ve = : (137)
e Ll yol, - o)

which is the desired classical expression for the electronic gyroptic ratio y, in a
paramagnetic molecule in which there is net orbital electronic angular momen-
tum.
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The theory of chemical shifts, spin spin coupling, shielding constants, and
Overhauser enhancement in optical NMR can be developed by using the propor-
tionality between the angular polarisability and the real, classical, magnetic dipole
moment

a,; _ (Zy_z) mgclassica]) ) (l 38)
e

Details of this development are given in Ref. 61. For example, the shielding
constant of optical NMR is defined by

I, = II(1 - 0) (139)

implying that the observed resonances occur at different frequencies due to the
chemical shift between the applied and effective conjugate product.

4.2. Laser induced Overhauser enhancement

Finally the magnetisation produced by the circularly polarised laser can be
shown to result in Overhauser enhancement as described in Ref. 83. The final
expression for the enhancement of the nuclear magnetic resonance signal
produced by a circularly polarised laser used to saturate the electronic resonance
is, in terms of the gyroptic ratio®?

— = + + =
<I Z)thermal zynB 1] 4}’nhB 0 2}',,B()

a vEe a4 v

where y,, is the nuclear gyromagnetic ratio and 4 a spin-spin constant, so that the
Overhauser enhencement is maximised by the same set of factors which
maximise the magnitude of the gyroptic ratio itself.

These considerations allow plenty of scope therefore for the practical
development of laser NMR. Overhauser enhancement appears to be a particu-
larly interesting possibility, because it is not adversely affected by inhomogenei-
ties in the pump laser intensity. It appears that problems of power broadening
due to pump laser inhomogeneities can be surmounted with a 90° - ¢, - 90° - ¢,
pulse sequence and conventional spin echo implementation, keeping the laser in
CW mode with relatively low electric field strengths.
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Appendix 1: Tabular Comparison of Basic Concepts in Magnetic and Nonlinear
Optical Resonance

This appendix tabulates the basic concepts of magnetic and optical resonance
in terms of the gyromagnetic and gyroptic ratios. It is developed using the
notation employed by Slichter®® in the first chapters of his well-known text on

Circular and Uni-axial Dichroism and Birefringence

conventional NMR and ESR.

Concept

Magnetic Optical
Hamiltonian H=-m-B H- —Eozd” -k
= - 7enByly = ~yhEsl,

Eigenvalues of the

Multiples of

Multiples of

hamiltonian y.h B, y,,hEé
=~ B,M = - 2
Allowed E"1 veh By E,= -7, hEqM
energies M=L1-1,...,-1 M=LI-1,...,-1
J-ni J-ni
L L 2
Resonance AE, = hw =y, h By AE, =hw=y,hE;
condition wf =7,B, of =7 EL
Gyromagnetic Vo= - —
ratio ¢ 2m _
(paramagnetic =102 Ckgm !
resonance)
Gyroptic ; r azv 26w
ratio _ LRI VN
(paramagnetic Mav 1% (e, - )
resonance) =106 (V/m)~ 2t
M= y,J
Operator N " s e s s
definitions Jy= 2 {Yﬁ _ 3,} i@ =y,J
etc.
2
Expectation i _2e __2_“)_7
values (n|ri; | n) hominod o
x e dm ((n|r; | mym|ri| m)
Precession
dm da”
equation omx (7.B) - a” x ()’,,Eozk)
(classical)
Rotating frame B;-B- Q (E2K) g = ECK - Q
representation G , Vn
Q= -y,B,k Q- -y Ek
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71—=WL+Wf T=W‘+W’
Spin lattice W 1 B 1
relaxation time LN (ye 0) 4 y,,hEO2
W, kT — -
! W, kT
B- B,k
. . B) {m
Eigenfunctions (l) = D, 0 =
of the B) (B) _ ,E(B)(,)/}, ! )y (m) - iED()/R
time dependent m_ . C( m_Z_ [ Cm Uim€ "
Schrodinger B) 2 2
equation E = -7 hBM ER =~y hE;M

Time dependent
expectation values

(o)
- [P ()m Y, de
=y, [ PH(OIY()de

ia (@
={¥* (& ¥, (Hdr
A STORE MO

(i (£ HGAGN
= 2 pnCE G MR Yoo
Quantum mm’ i mm, i
representation of xtm’ | [‘m) x(m’ | .l m)
the classical <exp (60 -EY ) eso (5B~ £
precession ) A
frequency x(m’ 1| m) x(m’ |1{m)
= [M’niulmd‘[ = fultniulmd’r
=0; unless m =m=1 =0; unless m' =m=1
Time derivative of | ) F-ia"
the operator He v hB-I _ 2
definition: Vet olz H y,,h;o 1,
dFidt = i[H, FI/h Uy Iyl =il Iy, Iyl =il
dl dl 2
Vector operator 7 Ixy B P Ixy, Eqk
equation of dIX a'IX
motion 7 YeBoly - }'nEo Iy
etc. etc.

Expectation value
equation of
motion,
equivalent to the
classical equation

d .
E(m)=<m)x 7.B

d A’ A
22«1 )=(a )xy,,Eozk

2w
Effect of B, - k(EO _y_)
alternating probe Bs=-k (B0 - ?) +Bi -
magnetic field e . Ve Bii
7z
n " .
n/2 pulse v.Bit= 3 y—iBlt=E




Circular and Uni-axial Dichroism and Birefringence 1999

Bloch equation — =

B 2
My=x9 By M()-X(;'E();
aM, My-M, dM, M0 M,

dt T, Tdr T,
+7,(mxB), +y,,(m><k)zE02
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